
Chapter VII
Continuous Parameter Martingales

It turns out that many of the ideas and results introduced in § 5.2 can be easily
transferred to the setting of processes depending on a continuous parameter. In
addition, the resulting theory is intimately connected with Lévy processes, and
particularly Brownian. In this chapter, I will give a brief introduction to this
topic and some of the techniques to which it leads.∗

§ 7.1 Continuous Parameter Martingales

There is a huge number of annoying technicalities which have to be addressed in
order to give a mathematically correct description of the continuous time theory
of martingales. Fortunately, for the applications which I will give here, I can
keep them to a minimum.

§ 7.1.1. Progressively Measurable Functions. Let (Ω,F) be a measurable
space and

{
Ft : t ∈ [0,∞)

}
a non-decreasing family of sub-σ-algebras. I will say

that a function X on [0,∞)×Ω into a measurable space (E,B) is progressively
measurable with respect to

{
Ft : t ∈ [0,∞)

}
if X � [0, T ] × Ω is B[0,T ] × FT -

measurable for every T ∈ [0,∞). When E is a metric space, I will say that
X : [0,∞)×Ω −→ E is right-continuous if X(s, ω) = limt↘sX(t, ω) for every
(s, ω) ∈ [0,∞) × Ω and will say that it is continuous if X( · , ω) is continuous
for all ω ∈ Ω.

Remark 7.1.1. The reader might have been expecting a slightly different def-
inition of progressive measurability here. Namely, he might have thought that
one would say that X is

{
Ft : t ∈ [0,∞)

}
-progressively measurable if it is

B[0,∞) × F-measurable and ω ∈ Ω 7−→ X(t, ω) ∈ E is Ft-measurable for each
t ∈ [0,∞). Indeed, in extrapolating from the discrete parameter setting, this
would be the first definition at which one would arrive. In fact, it was the notion
with which Doob and Itô originally worked; and such functions were said by
them to be adapted to

{
Ft : t ∈ [0,∞)

}
. However, it came to be realized

that there are various problems with the notion of adaptedness. For example,
even if X is adapted and f : E −→ R is a bounded, B-measurable function, the

∗ A far more thorough treatment can be found in D. Revuz and M. Yor’s treatise Continuous

Martingales and Brownian Motion published by Springer–Verlag as volume #293 in their
Grundlehren der Mathematishen Series.
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258 VII Continuous Parameter Martingales

function (t, ω)  Y (t, ω) ≡
∫ t
0
f
(
X(s, ω)

)
ds ∈ R need not be adapted. On the

other hand, if X is progressively measurable, then Y will be also.

The following simple lemma should help to explain the virtue of progressive
measurability and its relationship to adaptedness.

Lemma 7.1.2. Let PM denote the set of A ⊆ [0,∞) × Ω with the property
that

(
[0, t]×Ω

)
∩A ∈ B[0,t]×Ft for every t ≥ 0. Then PM is a sub-σ-algebra of

B[0,∞)×F and X is progressively measurable if and only if it is PM-measurable.
Furthermore, if E is a separable metric space and X : [0,∞) × Ω −→ E is a
right-continuous function, then X is progressively measurable if it is adapted.

Proof: Checking that PM is a σ-algebra is easy. Furthermore, for any X :
[0,∞)× Ω −→ E, T ∈ [0,∞), and Γ ∈ B,{

(t, ω) ∈ [0, T ]× Ω : X(t, ω) ∈ Γ
}

=
(
[0, T ]× Ω

)
∩
{

(t, ω) ∈ [0,∞)× Ω : X(t, ω) ∈ Γ},

and so X is
{
Ft : t ∈ [0,∞)

}
-progressively measurable if and only if it is PM-

measurable. Hence, the first assertion has been proved.
Next, suppose that X is a right-continuous, adapted function. To see that X

is progressively measurable, let t ∈ [0,∞) be given, and define

Xt
n(τ, ω) = X

(
[2nτ ]+1

2n ∧ t, ω
)
, for (τ, ω) ∈ [0,∞)× Ω and n ∈ N.

Obviously, Xt
n is B[0,t]×Ft-measurable for every n ∈ N and Xt

n(τ, ω) −→ X(τ, ω)
as n→∞ for every (τ, ω) ∈ [0, t]×Ω. Hence, X � [0, t]×Ω is B[0,t]×Ft, and so
X is progressively measurable. �

§ 7.1.2. Martingales, Definition and Examples. Given a probability space
(Ω,F , P ) and a non-decreasing family of sub-σ-algebras

{
Ft : t ∈ [0,∞)

}
, I will

say that X : [0,∞) × Ω −→ (−∞,∞] is a submartingale with respect to{
Ft : t ∈ [0,∞)

}
or, equivalently, that

(
X(t),Ft,P

)
is a submartingale if X

is a right-continuous, progressively measurable function with the properties that
X(t)− is P-integrable for every t ∈ [0,∞) and

X(s) ≤ EP[X(t)
∣∣Fs] (a.s.,P) for all 0 ≤ s ≤ t <∞.

When both
(
X(t),Ft,P

)
and

(
−X(t),Ft,P

)
are submartingales, I will say either

that X is a martingale with respect to
{
Ft : t ∈ [0,∞)

}
or simply that(

X(t),Ft,P
)

is a martingale. Finally, if Z : [0,∞) × Ω −→ C is a right-

continuous, progressively measurable function, then
(
Z(t),Ft,P

)
is said to be a

(complex) martingale if both
(
ReZ(t),Ft,P

)
and

(
ImZ(t),Ft,P

)
are.

The next two results show that Lévy processes provide a rich source of con-
tinuous parameter martingales.
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Theorem 7.1.3. Let µ ∈ I(RN ) with µ̂(ξ) = e`µ(ξ), where `µ(ξ) equals

√
−1
(
ξ,m

)
RN −

(
ξ,Cξ

)
RN +

∫
RN

(
e
√
−1(ξ,y)RN − 1− 1[0,1](|y|)

(
ξ,y

)
RN

)
M(dy).

If (Ω,F ,P) is a probability space and Z : [0,∞) × Ω −→ RN is a B[0,∞) × F-

measurable map with the properties that Z(0, ω) = 0 and Z( · , ω) ∈ D(RN ) for
every ω ∈ Ω, then {Z(t) : t ≥ 0} is a Lévy process for µ if and only if, for each
x ∈ RN ,

(7.1.4)
(

exp
(√
−1(ξ,Z(t))RN − t`µ(ξ)

)
,Ft,P

)
is a martingale,

where Ft = σ
(
{Z(τ) : τ ∈ [0, t]}

)
.

Proof: If {Z(t) : t ≥ 0} is a Lévy process for µ, then, because Z(t) − Z(s) is
independent of Fs and has characteristic function e(t−s)`µ(ξ),

EP
[
exp

[√
−1
(
ξ,Z(t)

)
RN − t`µ(ξ)

] ∣∣∣Fs]
= exp

[√
−1
(
ξ,Z(s)

)
RN − s`µ(ξ)

]
e(s−t)`µ(ξ)EP

[
e
√
−1
(
ξ,Z(t)−Z(s)

)
RN
]

= exp
[√
−1
(
ξ,Z(s)

)
RN − s`µ(ξ)

]
.

To prove the converse assertion, observe that the defining distributional property
of a Lévy process for µ can be summarized as the statement that Z(0, ω) = 0
and, for each 0 ≤ s < t, Z(t)−Z(s) is independent of σ

(
{Z(τ) : τ ∈ [0, t]}

)
and

has distribution µt−s, where µ̂τ = eτ`µ . Hence, since (7.1.4) implies that

EP
[
exp
(√
−1
(
ξ,Z(t)− Z(s)

)
RN

) ∣∣∣Fs] = e(t−s)`µ(ξ), ξ ∈ RN ,

there is nothing more to do. �

Another, and often more useful, way to capture the same result is to introduce
the Lévy operator

(7.1.5)

Lµϕ(x) =
1

2
Trace

(
C∇2ϕ(x)

)
+
(
m,∇ϕ(x)

)
RN

+

∫
RN

[
ϕ(x + y)− ϕ(x)− 1[0,1](|y|)

(
y,∇ϕ(x)

)
RN

]
M(dy)

for ϕ ∈ C2
b(RN ;C).
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Theorem 7.1.6. Assume that µ ∈ I(RN ) and that {Z(t) : t ≥ 0} is a Lévy

process for µ. Then, for every F ∈ C1,2
b

(
[0,∞)× RN ;C

)
,(

F
(
t,Z(t)

)
−
∫ t

0

(
∂τ + Lµ

)
F
(
τ,Z(τ)

)
dτ,Ft,P

)
is a martingale, where Ft = σ

(
{Z(τ) : τ ∈ [0, t]}

)
and Lµ is the operator

described in (7.1.5). Conversely, if Z is a progressively measurable function
satisfying Z(0, ω) = 0 and Z( · , ω) ∈ D(RN ) for each ω ∈ Θ, and if(

ϕ
(
Z(t)

)
−
∫ t

0

Lµϕ
(
Z(τ)

)
dτ,Ft,P

)
is a martingale for each ϕ ∈ C∞c (RN ;R), then {Z(t) : t ≥ 0} is a Lévy process
for µ.

Proof: Begin by noting that it suffices to handle the case when F is the re-
striction to [0,∞) × RN of a an element of the Schwartz test function space
S (R × RN ;C). Indeed, because ‖Lµϕ‖u ≤ C‖ϕ‖C2

b
(RN ;C) for some C < ∞,

the result for F ∈ C1,2
b

(
[0,∞) × RN ;C

)
follows, via an obvious approxima-

tion procedure, from the result for F ∈ S (R × RN ;C). Next observe that
it suffices to treat F ∈ S (RN ;C). To see this, simply interpret the process
t ∈ [0,∞) 7−→

(
t,Zµ(t)

)
∈ RN+1 as a Lévy process for δ1 × µ.

Now let ϕ ∈ S (RN ;C) be given. The key to proving the required result is the
identity

(*)
d

dt
ϕ ? µ̆t = (Lµϕ) ? µ̆t,

where µ̆t is the distribution of−x under µt, the measure determined by µ̂t = et`µ .
Given the computations preceding Theorem 3.2.22, the easiest way to check (*)
is the work via Fourier transform and to use those computations to verify that

d

dt
ϕ̂ ? µ̆t(ξ) = `µ(−ξ)ϕ̂(ξ)et`µ(−ξ) = L̂µϕ(ξ)et`µ(−ξ),

which is equivalent to (*). To see how (*) applies, observe that

EP[ϕ(Z(t)
) ∣∣Fs] = ϕ ? µ̆t−s

(
Z(s)

)
,

and therefore that, for any A ∈ Fs,

EP[ϕ(Z(t)
)
, A]− EP[ϕ(Z(s)

)
, A
]

=

∫ t

s

EP[(Lµϕ) ? µτ−s
(
Z(s)

)
, A
]
dτ

=

∫ t

s

EP[Lµϕ(Z(τ)
)
, A
]
dτ = EP

[∫ t

s

Lµϕ
(
Z(τ)

)
dτ, A

]
,
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which, after rearrangement, is the asserted martingale property.
To prove the converse assertion, again begin with the observation that, by

an easy approximation procedure, one can prove the martingale property for all
ϕ ∈ C2

b(RN ;C) as soon as one knows it for ϕ ∈ C∞c (RN ;R). In particular, one

can take ϕ(x) = e
√
−1(ξ,x)RN , in which case Lµϕ = `µ(ξ)ϕ, and therefore, for

any A ∈ Fs, one gets that

u(t) ≡ EP
[
exp
(√
−1(ξ,Z(t)

)
RN

)
RN
, A
]

= u(s) + `µ(ξ)

∫ t

s

u(τ) dτ.

Since this means that u(t) = e(t−s)`µ(ξ)u(s), it follows that {Z(t) : t ≥ 0}
satisfies (7.1.4) and is therefore a Lévy process for µ. �

As an immediate consequence of the preceding we have the following charac-
terizations of the distribution of a Lévy process. In the statement which follows,
Ft is the σ-algebra over D(RN ) generated by {ψ(τ) : τ ∈ [0, t]}.

Theorem 7.1.7. Given µ ∈ I(RN ), let Qµ ∈M1

(
D(RN )

)
be the distribution

of a Lévy process for µ. Then Qµ is the unique P ∈M1

(
D(RN )

)
which satisfies

either one of the properties that(
exp
[√
−1
(
ξ,ψ(t)

)
RN + t`µ(ξ)

]
,Ft,P

)
is a martingale with mean value 1 for each ξ ∈ RN ,

or (
ϕ
(
ψ(t)

)
− ϕ(0)−

∫ t

0

Lµϕ
(
ψ(τ)

)
dτ,Ft,P

)
is a martingale with mean value 0 for each ϕ ∈ C∞c (RN ;R).

§ 7.1.3. Basic Results. In this subsection I run through some of the results
from § 5.2 which transfer immediately to the continuous parameter setting.

Lemma 7.1.8. Let the interval I and the function f : I −→ R ∪ {∞} be as in
Corollary 5.2.10. If either

(
X(t),Ft,P

)
is an I-valued martingale or

(
X(t),Ft,P

)
is an I-valued submartingale and f is non-decreasing and bounded below, then(
f ◦X(t),Ft,P

)
is a submartingale.

Proof: The fact that the parameter is continuous plays no role here, and so
this result is already covered by the argument in Corollary 5.2.10. �

Theorem 7.1.9 (Doob’s Inequality). Let
(
X(t),Ft,P

)
be a submartingale.

Then, for every α ∈ (0,∞) and T ∈ [0,∞),

P

(
sup
t∈[0,T ]

X(t) ≥ α

)
≤ 1

α
EP
[
X(T ), sup

t∈[0,T ]

X(t) ≥ α

]
.
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In particular, for non-negative submartingales and T ∈ [0,∞),

EP

[
sup
t∈[0,T ]

X(t)p

] 1
p

≤ p

p− 1
EP[X(T )p

] 1
p , p ∈ (0,∞).

Proof: Because of Exercise 1.4.18, I need only prove the first assertion. To
this end, let T ∈ (0,∞) and n ∈ N be given, apply Theorem 5.2.1 to the discrete

parameter submartingale
(
X
(
mT
2n

)
,FmT

2n
,P
)

, and observe that

sup
{
X
(
mT
2n

)
: 0 ≤ m ≤ 2n

}
↗ sup

t∈[0,T ]

X(t) as n→∞. �

Theorem 7.1.10 (Doob’s Martingale Convergence Theorem). Assume
that

(
X(t),Ft,P

)
be a P-integrable submartingale. If

sup
t∈[0,∞)

EP[X(t)+
]
<∞,

then there exists an F∞ ≡
∨
t≥0 Ft-measurable X = X(∞) ∈ L1(P;R) to which

X(t) converges P-almost surely as t→∞. Moreover, when
(
X(t),Ft,P

)
is either

a non-negative submartingale or a martingale, the convergence takes place in
L1(P;R) if and only if the family

{
X(t) : t ∈ [0,∞)

}
is uniformly P-integrable,

in which case X(t) ≤ EP[X | Ft] or X(t) = EP[X | Ft] (a.s.,P) for all t ∈ [0,∞),
and

(7.1.11) P
(

sup
t≥0
|X(t)| ≥ α

)
≤ 1

α
EP
[
|X|, sup

t≥0
|X(t)| ≥ α

]
.

Finally, again when
(
X(t),Ft,P

)
is either a non-negative submartingale or a

martingale, for each p ∈ (1,∞) the family
{
|X(t)|p : t ∈ [0,∞)

}
is uniformly P-

integrable if and only if supt∈[0,∞) ‖X(t)‖Lp(P) <∞, in which case X(t) −→ X

in Lp(P;R).

Proof: To prove the initial convergence assertion, note that, by Theorem 5.2.15
applied to the discrete parameter process

(
X(n),Fn,P

)
, there is an

∨
n∈N Fn-

measurable X ∈ L1(P;R) to which X(n) converges P-almost surely. Hence,
we need only check that limt→∞X(t) exists in [−∞,∞] P-almost surely. To

this end, define U
(n)
[a,b](ω) for n ∈ N and a < b to be the precise number of

times that the sequence
{
X
(
m
2n , ω

)
: m ∈ N

}
upcrosses the interval [a, b] (cf. the

paragraph preceding Theorem 5.2.15), observe that U
(n)
[a,b](ω) is non-decreasing

as n increases, and set U[a,b](ω) = limn→∞ U
(n)
[a,b](ω). Note that if U[a,b](ω) <∞,

then (by right-continuity), there is an s ∈ [0,∞) such that either X(t, ω) ≤ b for
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all t ≥ s or X(t, ω) ≥ a for all t ≥ s. Hence, we will know that X(t, ω) converges
in [−∞,∞] for P-almost every ω ∈ Ω as soon as we show that EP[U[a,b]

]
< ∞

for every pair a < b. In addition, by (5.2.16), we know that

sup
n∈N

EP
[
U

(n)
[a,b]

]
≤ sup
t∈[0,∞)

EP[(X(t)− a)+
]

b− a
<∞,

and so the required estimate follows from the Monotone Convergence Theorem.
Now assume that

(
X(t),Ft,P

)
is either a non-negative submartingale or a

martingale. Given the preceding, it is clear that X(t) −→ X in L1(P;P)
if
{
X(t) : t ∈ [0,∞)

}
is uniformly P-integrable. Conversely, suppose that

X(t) −→ X in L1(P;R). Then, for any T ∈ [0,∞),

(*) |X(T )| ≤ lim
t→∞

EP[|X(t)|
∣∣FT ] = EP[|X| ∣∣FT ].

In particular, from Theorem 7.1.9,

P

(
sup
t∈[0,T ]

|X(t)| ≥ α

)
≤ 1

α
EP

[
|X|, sup

t∈[0,T ]

|X(t)| ≥ α

]
for every T ∈ (0,∞). Hence, (7.1.11) follows when one lets T →∞. But, again
from (*),

EP[|X(T )|, |X(T )| ≥ α
]
≤ EP[|X|, |X(T )| ≥ α

]
≤ EP[|X|, sup

t≥0
|X(t)| ≥ α

]
,

and therefore, since, by (7.1.11), P
(
supt≥0 |X(t)| ≥ α

)
−→ 0 as α→∞, we can

conclude that {X(t) : t ≥ 0} is uniformly P-integrable.
Finally, if {X(T ) : T ≥ 0} is bounded in Lp(P;R) for some p ∈ (1,∞), then,

by the last part of Theorem 7.1.9, supt≥0 |X(t)|p is P-integrable and therefore
X(t) −→ X in Lp(P;R). �

§ 7.1.4. Stopping Times and Stopping Theorems. A stopping time
relative to a non-decreasing family {Ft : t ≥ 0} of σ-algebras is a map ζ :
Ω −→ [0,∞] with the property that {ζ ≤ t} ∈ Ft for every t ≥ 0. Given a
stopping time ζ, I will associate with it the σ-algebra Fζ consisting of those
A ⊆ Ω such that A ∩ {ζ ≤ t} ∈ Ft for every t ≥ 0. Note that, because
{ζ < t} =

⋃∞
n=0{ζ ≤ (1− 2−n)t}, {ζ < t} ∈ Ft for all t ≥ 0.

Here are a few useful facts about stopping times.

Lemma 7.1.12. Let ζ be a stopping time. Then ζ is Fζ-measurable, and,
for any progressively measurable function X with values in a measurable space
(E,B), the function ω  X(ζ, ω) ≡ X

(
ζ(ω), ω

)
is Fζ-measurable on {ζ <∞} in

the sense that
{
ω : ζ(ω) < ∞ & X(ζ, ω) ∈ Γ

}
∈ Fζ for all Γ ∈ B. In addition,

f ◦ ζ is again a stopping time if f : [0,∞] −→ [0,∞] is a non-decreasing, right
continuous function satisfying f(τ) ≥ τ for all τ ∈ [0,∞]. Next, suppose that
ζ1 and ζ2 are a pair of stopping times. Then ζ1 + ζ2, ζ1 ∧ ζ2, and ζ1 ∨ ζ2
are all stopping times, and Fζ1∧ζ2 ⊆ Fζ1 ∩ Fζ2 . Finally, for any A ∈ Fζ1 ,
A ∩ {ζ1 ≤ ζ2} ∈ Fζ1∧ζ2 .
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Proof: Since {ζ ≤ s} ∩ {ζ ≤ t} = {ζ ≤ s ∧ t} ∈ Ft, it is clear that ζ is
Fζ-measurable. Next, suppose that X is a progressively measurable function.
To prove that X(ζ) is Fζ measurable, begin by checking that

{
ω :

(
ζ(ω), ω

)
∈

A
}
∈ Ft for any A ∈ Bt × Ft. Indeed, this is obvious when A = [0, s] × B for

s ∈ [0, t] and B ∈ Ft and, since these generate B[0,t] × Ft, follows in general.
Now, for any t ≥ 0 and Γ ∈ B,

A(t,Γ) ≡
{

(τ, ω) ∈ [0,∞)× Ω :
(
τ,X(τ, ω)

)
∈ [0, t]× Γ

}
∈ B[0,t] ×Ft,

and therefore

{X(ζ) ∈ Γ} ∩ {ζ ≤ t} =
{
ω :

(
ζ(ω), ω

)
∈ A(t,Γ)

}
∈ Ft.

As for f ◦ ζ when f satisfies the stated conditions, simply note that {f ◦ ζ ≤
t} = {ζ ≤ f−1(t)} ∈ Ft, where f−1 ≡ inf{τ : f(τ) ≥ t} ≤ t.

Next suppose that ζ1 and ζ2 are two stopping times. It is trivial to see that
ζ1 ∧ ζ2 and ζ1 ∨ ζ2 are again stopping times. In addition, if Q denotes the set of
rational numbers, then

{ζ1 + ζ2 > t} = {ζ1 > t} ∪
⋃

q∈Q∩[0,1]

{ζ1 ≥ qt & ζ2 > (1− q)t} ∈ Ft.

Thus, ζ1 + ζ2 is a stopping time. To prove the final assertions, begin with the
observation that if ζ1 ≤ ζ2, then A ∩ {ζ2 ≤ t} =

(
A ∩ {ζ1 ≤ t}

)
∩ {ζ2 ≤ t} ∈ Ft

for all A ∈ Fζ1 and t ≥ 0, and therefore Fζ1 ⊆ Fζ2 . Next, for any ζ1 and ζ2,
{ζ1 ≤ ζ2} ∈ Fζ2 since

{ζ1 > ζ2} ∩ {ζ2 ≤ t} =
⋃

q∈Q∩[0,1]

{ζ1 > qt} ∩ {ζ2 ≤ qt} ∈ Ft.

Finally, if A ∈ Fζ1 , then(
A ∩ {ζ1 ≤ ζ2}

)
∩ {ζ1 ∧ ζ2 ≤ t} =

(
A ∩ {ζ1 ≤ t}

)
∩ {ζ1 ≤ t ∧ ζ2},

and therefore, since A ∩ {ζ1 ≤ t} ∈ Ft and {ζ1 ≤ t ∧ ζ2} ∈ Ft∧ζ2 ⊆ Ft, we have
that A ∩ {ζ1 ≤ ζ2} ∈ Fζ1∧ζ2 . �

In order to prove the continuous parameter analog of Theorems 5.2.13 and
5.2.11 I will need the following uniform integrability result.

Lemma 7.1.13. If
(
X(t),Ft,P

)
is either a martingale or a non-negative, inte-

grable submartingale, then, for each T > 0, the set{
X(ζ) : ζ is a stopping time dominated by T

}
is uniformly P-integrable. Furthermore, if, in addition, {X(t) : t ≥ 0} is uni-
formly P-integrable, and (cf. Theorem 7.1.10) X(∞) = limt→∞X(t) (a.s.,P),
then

{
X(ζ) : ζ is a stopping time

}
is uniformly P-integrable.
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Proof: Throughout, without loss in generality, I will assume that
(
X(t),Ft,P

)
is a non-negative, integrable submartingale.

Given a stopping time ζ ≤ T , define ζn = [2nζ]+1
2n for n ≥ 0. By Lemma 7.1.12,

ζn is again a stopping time. Thus, by Theorem 5.2.13 applied to the discrete
parameter submartingale

(
X(m2−n),Fm2−n ,P

)
,

X(ζn) ≤ EP[X(2−n([2nT ] + 1
) ∣∣Fζn] ≤ EP[X(T + 1),

∣∣Fζn],
and so

EP[X(ζn), X(ζn) ≥ α
]
≤ EP[X(T + 1), X(ζn) ≥ α

]
≤ EP

[
X(T + 1), sup

t∈[0,T+1]

X(t) ≥ α

]
.

Starting from here, noting that ζn ↘ ζ as n→∞, and applying Fatou’s Lemma,
we arrive at

(*) EP[X(ζ), X(ζ) > α
]
≤ EP

[
X(T + 1), sup

t∈[0,T+1]

X(t) ≥ α

]
.

Hence, since, by Theorem 7.1.9, P
(

supt∈[0,T+1]X(t) ≥ α
)

tends to 0 as α→∞,

this proves the first assertion. When {X(t) : t ≥ 0} is uniformly integrable, we
can replace (*) by

EP[X(ζ ∧ T ), X(ζ ∧ T ) > α
]
≤ EP

[
X(∞), sup

t≥0
X(t) ≥ α

]
for any stopping time ζ and T > 0. Hence, after another application of Fatou’s
Lemma, we get

EP[X(ζ), X(ζ) > α
]
≤ EP

[
X(∞), sup

t≥0
X(t) ≥ α

]
.

At the same time, the first inequality in Theorem 7.1.9 can be replaced by

P
(

sup
t≥0

X(t) ≥ α
)
≤ 1

α
EP
[
X(∞), sup

t≥0
X(t) ≥ α

]
≤ 1

α
EP[X(∞)],

and so the asserted uniform integrability follows. �

It turns out that in the continuous time context, Doob’s Stopping Time The-
orem is most easily seen as a corollary of Hunt’s. Thus, I will begin with Hunt’s.
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Theorem 7.1.14 (Hunt). Let
(
X(t),Ft,P

)
be either a non-negative, inte-

grable submartingale or a martingale. If ζ1 and ζ2 are bounded stopping times
and ζ1 ≤ ζ2, then X(ζ1) ≤ EP[X(ζ2)

∣∣Fζ1], and equality holds in the mar-
tingale case. Moreover, when {X(t) : t ≥ 0} is uniformly P-integrable and
X(∞) ≡ limt→∞X(t), then the same result holds for arbitrary stopping times
ζ1 ≤ ζ2.

Proof: Given ζ1 ≤ ζ2 ≤ T , define (ζi)n = 2−n
(
[2nζi] + 1

)
for n ≥ 0, note that

(ζi)n is a {Fm2−n : m ≥ 0}-stopping time and that Fζ1 ⊆ F(ζ1)n , and apply

Theorem 5.2.13 to the discrete parameter submartingale
(
X(m2−n,Fm2−n ,P

)
in order to see that

EP
[
X
(
(ζ1)n

)
, A
]
≤ EP

[
X
(
(ζ2)n

)
, A
]
, A ∈ Fζ1 ,

with equality in the martingale case. Because of right continuity and Lemma
7.1.13, X

(
(ζi)n

)
−→ X(ζi) in L1(P;R), and so we have now shown that X(ζ1) ≤

EP[X(ζ2)
∣∣Fζ1], with equality in the martingale case.

When {X(t) : t ≥ 0} is uniformly P-integrable and ζ1 ≤ ζ2 are unbounded,
{X(ζi ∧ T ) : T ≥ 0} is uniformly P-integrable for i ∈ {1, 2}. Hence, for any
A ∈ Fζ1 and 0 ≤ t ≤ T ,

EP[X(T ∧ ζ1), A ∩ {ζ1 ≤ t}
]
≤ EP[X(T ∧ ζ2), A ∩ {ζ1 ≤ t}

]
,

with equality in the martingale case. Letting first T and then t tend to infinity,
one gets the same relationship for X(ζ1) and X(ζ2), initially with A∩{ζ1 <∞}
and then, trivially, with A alone. �

Theorem 7.1.15 (Doob’s Stopping Time Theorem). If
(
X(t),Ft,P

)
is

either a non-negative, integrable submartingale or a martingale, then, for every
stopping time ζ,

(
X(t ∧ ζ),Ft,P

)
is either an integrable submartingale or a

martingale.

Proof: Given 0 ≤ s < t and A ∈ Fs, note that A ∩ {ζ > s} ∈ Fs∧ζ and
therefore, by Hunt’s Theorem applied to the stopping times s∧ ζ and t∧ ζ, that

EP[X(t ∧ ζ), A
]

= EP[X(ζ), A ∩ {ζ ≤ s}
]

+ EP[X(t ∧ ζ), A ∩ {ζ > s}
]

≥ EP[X(ζ), A ∩ {ζ ≤ s}
]

+ EP[X(s ∧ ζ), A ∩ {ζ > s}
]

= EP[X(s ∧ ζ), A
]
,

where the inequality is an equality in the martingale case. �

To demonstrate just how powerful these results are, I give the following ex-
tension of the independent increment property of Lévy processes. In its state-
ment, the maps δt : D(RN ) −→ D(RN ) for t ∈ [0,∞) are defined so that
δtψ(τ) = ψ(τ + t) − ψ(t), τ ∈ [0,∞). Also, Ft = σ

(
{ψ(τ) : τ ∈ [0, t]}

)
, ζ is a

stopping time relative to
{
Ft : t ∈ [0,∞)

}
, and δζ is the map on {ψ : ζ(ψ) <∞}

into D(RN ) given by δζψ = δζ(ψ)ψ.
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Theorem 7.1.16. Given µ ∈ I(RN ), let Qµ ∈ M1

(
D(RN )

)
be the measure

described in Theorem 7.1.6. Then for each stopping time ζ and FD(RN ) × Fζ-
measurable functions F : D(RN )×D(RN ) −→ [0,∞),∫

{ζ<∞}
F
(
δζψ,ψ

)
Qµ(dψ) =

∫∫
1[0,∞)

(
ζ(ψ′)

)
F (ψ,ψ′)Qµ(dψ)Qµ(dψ′).

Proof: By elementary measure theory, all that we have to show is that, for
each B ∈ Fζ contained in {ζ <∞}, Qµ

(
(δ−1ζ Γ) ∩B

)
= Qµ(Γ)Qµ(B).

Let B ∈ Fζ contained in {ζ < ∞} with Qµ(B) > 0 be given, choose T > 0
so that Qµ(BT ) > 0 when BT = B ∩ {ζ ≤ T}, and define QT ∈M1

(
D(RN )

)
so

that

QT (Γ) =
Qµ
(
(δ−1ζ Γ) ∩BT

)
Qµ(BT )

.

If we show that QT = Qµ, then we will know that

Qµ
(
(δ−1ζ Γ) ∩B

)
= lim
T→∞

Qµ
(
(δ−1ζ Γ) ∩BT

)
= Qµ(Γ) lim

T→∞
Qµ(BT ) = Qµ(Γ)Qµ(B)

and therefore will be done.
By Theorem 7.1.6, checking that QT = Qµ comes down to showing that, for

any 0 ≤ s < t, ξ ∈ RN , and A ∈ Fs,

EQT
[
e
√
−1(x,ψ(t))RN−t`µ(ξ), A

]
= EQT

[
e
√
−1(x,ψ(s))RN−s`µ(ξ), A

]
.

To this end, note that, by Theorem 7.1.14 applied to s+ ζ ∧ T and t+ ζ ∧ T ,

Qµ(BT )EQT
[
e
√
−1(x,ψ(t))RN−t`µ(ξ), A

]
= EQµ

[
e−
√
−1(ξ,ψ(ζ))RN+ζ`µ(ξ)e

√
−1(ξ,ψ(t+ζ))RN−(t+ζ)`µ(ξ), (δ−1ζ A) ∩BT

]
= EQµ

[
e−
√
−1(ξ,ψ(ζ))RN+ζ`µ(ξ)e

√
−1(ξ,ψ(s+ζ))RN−(s+ζ)`µ(ξ), (δ−1ζ A) ∩BT

]
= Qµ(BT )EQT

[
e
√
−1(x,ψ(s))RN−s`µ(ξ), A

]
,

since ψ  e−
√
−1(ξ,ψ(ζ))RN+ζ`µ(ξ)1A(δζψ)1BT (ψ) is Fs+ζ∧T -measurable. �

§ 7.1.5. An Integration by Parts Formula. In this subsection I will derive
a simple result which has many interesting applications.

Theorem 7.1.17. Suppose V : [0,∞)×Ω −→ C is a right-continuous, progres-
sively measurable function, and let |V |(t, ω) ∈ [0,∞] denote the total variation
of V ( · , ω) on the interval [0, t]. Then |V | : [0,∞) × Ω −→ [0,∞] is a non-
decreasing, progressively measurable function which is right-continuous on each
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interval [0, t) for which |V |(t, ω) < ∞. Next, suppose that
(
X(t),Ft,P

)
is a

C-valued martingale with the property that, for each (t, ω) ∈ (0,∞) × Ω, the
product ‖X( · , ω)‖[0,t]|V |(t, ω) <∞, and define

Y (t, ω) =

{ ∫
(0,t]

X(s, ω)V (ds, ω) if |V |(t, ω) <∞

0 otherwise

where, in the case when |V |(t, ω) < ∞, the integral is the Lebesgue integral of
X( · , ω) on [0, t] with respect to the C-valued measure determined by V ( · , ω).
If

EP
[
‖X‖[0,T ]

(
|V |(T ) +

∣∣V (0)
∣∣)] <∞ for all T ∈ (0,∞),

then
(
X(t)V (t)− Y (t),Ft,P

)
is a martingale.

Proof: Without loss in generality, I will assume that both X and V are R-
valued. To see that |V | is

{
Ft : t ∈ [0,∞)

}
-progressively measurable, simply

observe that, by right-continuity,

|V |(t, ω) = sup
n∈N

[2nt]∑
k=0

∣∣V (k+1
2n ∧ t, ω

)
− V

(
k
2n , ω

)∣∣ ;
and to see that |V |( · , ω) is right-continuous on [0, t) whenever |V |(t, ω) < ∞,
recall that the magnitude of the jumps (from the right and left) of the variation
of a function coincide with those of the function itself.

I turn now to the second part. Certainly Y is
{
Ft : t ∈ [0,∞)

}
-progressively

measurable. In addition, because ‖X( · , ω)‖[0,t]|V |(t, ω) < ∞ for all (t, ω) ∈
[0,∞)× Ω, for any ω ∈ Ω one has that

Y (t, ω) = 0 or Y (t, ω) =

∫
(0,t]

X(s, ω)V (ds, ω) for all t ∈ [0,∞);

and so, in either case, Y ( · , ω) is right-continuous and Y (t, ω) − Y (s, ω) can be
computed as

lim
n→∞

[2nt]∑
k=[2ns]

X
(
k+1
2n ∧ t, ω

) (
V
(
k+1
2n ∧ t, ω

)
− V

(
k
2n ∨ s, ω

))
.

In fact, under the stated integrability condition, the convergence in the preceding
takes place in L1(P;R) for every t ∈ [0,∞); and therefore, for any 0 ≤ s ≤ t <∞
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and A ∈ Fs :

EP[Y (t)− Y (s), A
]

= lim
n→∞

[2nt]∑
k=[2ns]

EP
[
X
(
k+1
2n ∧ t, ω

) (
V
(
k+1
2n ∧ t, ω

)
− V

(
k
2n ∨ s, ω

))
, A
]

= lim
n→∞

[2nt]∑
k=[2ns]

EP
[
X(t)

(
V
(
k+1
2n ∧ t, ω

)
− V

(
k
2n ∨ s, ω

))
, A
]

= EP
[
X(t)

(
V (t)− V (s)

)
, A
]

= EP
[
X(t)V (t)−X(s)V (s), A

]
,

and clearly this is equivalent to the asserted martingale property. �

We will make frequent practical applications of Theorem 7.1.17 below, but
here I will show that it enables us to prove that there is an important dichotomy
between continuous martingales and functions of bounded variation. However,
before doing so, I need to make a small, technical digression.

A function ζ : Ω −→ [0,∞] is an extended stopping time relative to{
Ft : t ∈ [0,∞)

}
if {ζ < t} ∈ Ft for every t ∈ (0,∞). Since {ζ < t} ∈ Ft for any

stopping time ζ, it is clear that every stopping time is an extended stopping time.
On the other hand, not every extended stopping time is a stopping time. To wit,
if X : [0,∞)× Ω −→ R is a right-continuous, progressively measurable function
relative to

{{
σ
(
X(τ) : τ ∈ [0, t]

})
: t ≥ 0

}
, then ζ = inf{t ≥ 0 : X(t) > 1} will

always be an extended stopping time but will seldom be a stopping time.

Lemma 7.1.18. For each t ≥ 0, set Ft+ =
⋂
τ>t Fτ . Then ζ : Ω −→ [0,∞]

is an extended stopping time if and only if it is a stopping time relative to
{Ft+ : t ≥ 0}. Moreover, if

(
X(t),Ft,P

)
is either a non-negative, integrable

submartingale or a martingale, then so is
(
X(t),Ft+,P

)
. In particular, if ζ is

an extended stopping time, then
(
X(t∧ ζ),Ft+,P

)
is a non-negative, integrable

submartingale or a martingale.

Proof: The first assertion is immediate from {ζ ≤ t} =
⋂
τ>t{ζ < τ}. To prove

the second assertion, apply right continuity and the first uniform integrability
result in Lemma 7.1.13 to see that if 0 ≤ s < t and A ∈ Fs+ then

EP[X(s), A
]

= lim
τ↘s

EP[X(τ), A
]
≤ EP[X(t), A

]
,

where the inequality is an equality in the martingale case. �

Theorem 7.1.19. Suppose that
(
X(t),Ft,P

)
is a continuous martingale, and

let |X|(t, ω) = var[0,t]
(
X( · , ω)

)
denote the variation of X( · , ω) � [0, t]. Then

P
(
∃t > 0 0 < |X|(t, ω) <∞

)
= 0.

Equivalently, for P-almost every ω and all t > 0, either X(τ, ω) = X(0, ω) for
τ ∈ [0, t] or |X|(t, ω) =∞.
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Proof: Without loss in generality, I will assume that X(0, ω) ≡ 0. Given
R > 0, let ζR(ω) = sup{t ≥ 0 : |X|(t, ω) ≤ R}, and set XR(t) = X(t ∧ ζR).
Then ζR is an extended stopping time, and so, by Lemma 7.1.18, (XR(t),Ft+,P)
is a bounded martingale. Hence, by Theorem 7.1.17,(

XR(t)2 −
∫ t

0

XR(τ)XR(dτ),Ft+,P
)

is also a martingale, and so

EP[XR(t)2
]

= EP
[∫ t

0

XR(τ)XR(dτ)

]
.

On the other hand, since XR( · ) is continuous, and therefore, by Fubini’s Theo-
rem,

XR(t)2 =

∫∫
[0,t]2

XR(dτ1)XR(dτ2) = 2

∫ t

0

XR(τ)XR(dτ),

we also know that

EP[XR(t)2
]

= 2EP
[∫ t

0

XR(τ)XR(dτ)

]
.

Hence, EP[XR(t)2
]

= 0 for all t > 0, which means that XR( · ) ≡ 0 P-almost
surely. �

The preceding result leads immediately to the following analog of the unique-
ness statement in Lemma 5.2.12.

Corollary 7.1.20. Let X : Ω −→ R be a right continuous, progressively
measurable function. Then, up to a P-null set, there is at most one continuous,
progressively measurable A : Ω −→ R such that A(0, ω) = 0, A( · , ω) is of
locally bounded variation for P-almost every ω ∈ Ω, and

(
X(t)− A(t),Ft,P

)
is

a martingale.

The role of continuity here seems minor, but it is crucial. Namely, continu-
ity was used in Theorem 7.1.19 only when I wanted to know that XR(t)2 =∫ t
0
XR(τ)XR(dτ). On the other hand, it is critical. Namely, if {N(t) : t ≥ 0}

is the simple Poisson process in § 4.2 and Ft = σ
({
N(τ) : τ ∈ [0, t]

})
, then it

is easy to check that
(
N(t)− t,Ft,P

)
is a martingale, all of whose paths are of

locally bounded variation.
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Exercises for § 7.1

Exercise 7.1.21. The definition of stopping times and their associated σ-
algebras which I have adopted is due to E.B. Dynkin. Earlier, less ubiquitous
but more transparent, definitions appear in the work of Doob and Hunt under
the name of optional stopping times. To explain these earlier definitions, let
E be a Polish space and Ψ a non-empty collection of right continuous paths
ψ : [0,∞) −→ E with the property that for all ψ ∈ Ψ and t ∈ [0,∞), the
stopped path ψt given by ψt(τ) = ψ(t ∧ τ) is again in Ψ. Similarly, given a
function ζ : Ψ −→ [0,∞], define ψζ so that ψζ(t) = ψ

(
t ∧ ζ(ψ)

)
. Finally, for

each t ∈ [0,∞), define the σ-algebras Ft over Ψ to be the one generated by
{ψ(τ) : τ ∈ [0, t]}, and take F =

∨
t≥0 Ft. In terms of these quantities, an

optional stopping time is an F-measurable map ζ : Ψ −→ [0,∞] such that
ζ(ψ) ≤ t =⇒ ζ(ψ) = ζ(ψt), and the associated σ-algebra is σ

(
{ψζ(t) : t ≥ 0}

)
.

The goal of this exercise is to show that ζ is an optional stopping time if and
only if it is a stopping time and that its associated σ-algebra is Fζ .
(i) It is an easy matter (cf. Exercise 4.1.9) to check that f : Ω −→ R is F-

measurable if and only if there exists a BZ+

-measurable F : EZ+ −→ R and a
sequence {tm : m ∈ Z+} such that f(ψ) = F

(
ψ(t1), . . . , ψ(tm), . . .

)
, from which

it is clear that a F-measurable f will be Ft-measurable for some t ∈ [0,∞) if
and only if f(ψ) = f(ψt). Use this to show that every optional stopping time is
a stopping time.

(ii) Show that ζ : Ψ −→ [0,∞] is a stopping time relative to
{
Ft : t ∈ [0,∞)

}
if and only if it is F-measurable and, for each t ∈ [0,∞), {ψ : ζ(ψ) ≤ t} =
{ψ : ζ(ψt) ≤ t}. In addition, if ζ is a stopping time, show that ζ(ψ) < ∞ =⇒
ζ(ψ) = ζ(ψζ), and therefore that ζ(ψ) ≤ t =⇒ ζ(ψ) = ζ(ψt) for all t ∈ [0,∞).
Thus, ζ is an optional stopping time if and only if it is a stopping time.

Hint: In proving the second part, check that {ζ = t} ∈ Ft, and conclude that
1{t}

(
ζ(ψ)

)
= 1{t}

(
ζ(ψt)

)
for all (t, ψ) ∈ [0,∞)×Ψ.

(iii) If ζ is a stopping time, show that Fζ = σ
(
{ψζ(t) : t ≥ 0}

)
. Besides having

intuitive value, this shows that, at least in the situation here, Fζ is countably
generated.

Hint: Using right continuity, first show that ψ  ψζ is F-measurable. Next,
given a B-measurable f : E −→ R and t ∈ [0,∞), use (ii) to show that

1[0,t]

(
ζ(ψ)

)
f
(
ψζ(τ)

)
= 1[0,t]

(
ζ(ψt)

)
f
(
ψ(τ ∧ ζ(ψt)

))
, τ ∈ [0,∞),

and conclude that σ
(
{ψζ(t) : t ≥ 0}

)
⊆ Fζ . To prove the opposite inclu-

sion, show that if f : Ψ −→ R is Fζ-measurable, then, for each t ∈ [0,∞),
1{t}

(
ζ(ψ)

)
f(ψ) = 1{t}

(
ζ(ψt)

)
f(ψt), and thereby arrive at f(ψ) = f(ψζ). Fi-

nally, use this together with Exercise 4.1.9 to show that f is σ
(
{ψζ(t) : t ≥ 0}

)
-

measurable.
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Exercise 7.1.22. Let (Ω,F ,P) be a probability space and
{
Ft : t ∈ [0,∞)

}
is non-decreasing family of sub σ-algebras of F . Denote by F and Ft the com-
pletions of F and Ft with respect to P. If

(
X(t),Ft,P

)
is a submartingale or

martingale, show that
(
X(t),Ft,P

)
is also.

Exercise 7.1.23. Let µ ∈ I(RN ) be given as in Exercise 3.2.23, and extend `µ
to CN accordingly. If {Z(t) : t ≥ 0} is a Lévy process for µ, show that (7.1.4)
continues to hold for all ξ ∈ CN .

Exercise 7.1.24. In Exercise 3.3.12, we discussed one-sided stable laws, and
in Exercise 4.3.12 we showed that P

(
maxτ∈[0,t]B(τ) ≥ a

)
= 2P

(
B(t) ≥ a

)
,

where {B(t) : t ≥ 0} is an R-valued Brownian motion. In this exercise, we will
examine the relationship between these two.

(i) Set ζa(ψ) = inf{t ≥ 0 : ψ(t) ≥ a}, and show that the result in Exercise
4.3.12 can be rewritten as

W(1)
(
ζa ≤ t

)
=

√
2

πt

∫ ∞
at−

1
2

e
y2

2 dy.

Now use the results in Exercise 3.3.14 (especially, (3.3.16)) to conclude that the

W(1)-distribution of ζa is ν
1
2

2
1
2 a

, the one-sided 1
2 -stable law “at time 2

1
2 a.”

(ii) Here is another, more conceptual way, to understand the conclusion drawn
in (i) that the W(1)-distribution is a one-sided 1

2 -stable law. Namely, begin by

showing that if ψ(0) = 0 and ζa(ψ) <∞, then ζa+b(ψ) = ζa(ψ) + ζb
(
δζaψ

)
. As

an application of Theorem 7.1.16, conclude from this that if βa denotes theW(1)-
distribution of ζa, then βa+b = βa ? βb. In particular, this means that β ≡ β1
is infinitely divisible and that β̂a = ea`β , where `β is the exponent appearing in

the Lévy–Khinchine formula for β̂.

(iii) Next, use Brownian scaling to see that, for all λ > 0, ζλa has the sameW(1)-
distribution as λ2ζa, and use this together with part (iii) of Exercise 3.3.12 to

see that the distribution of ζ1 is ν
1
2
c for some c > 0.

(iv) Although we know from (i) that the constant c must be 2
1
2 , here is an

easier way to find it. Use Exercise 7.1.23 to see that
(
eλψ(t)− 1

2λ
2t,Ft,W(1)

)
for every λ ∈ R, and apply Doob’s Stopping Time Theorem and the fact that

W(1)(ζa < ∞) = 1 to verify the identity EW(1)[
e−

1
2λ

2ζa
]

= e−λa for λ > 0.

Hence, the Laplace transform of ν
1
2
c is e−

√
2λ, which, by the calculation in part

(iii) of Exercise 3.3.12 means that c = 2
1
2 . Of course, this calculation makes the

preceding parts of this exercise unnecessary. Nonetheless, it is interesting to see
the Brownian explanation for the properties of the one-sided, 1

2 -stable laws.
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Exercise 7.1.25. An important corollary of Theorem 7.1.16 is the following
formula. Working in the setting of that theorem, show that, for any stopping
time ζ and t ∈ (0,∞) and Γ ∈ BRN ,

Qµ
(
{ψ : ψ(t) ∈ Γ & ζ(ψ) ≤ t}

)
= EQµ

[
µt−ζ

(
Γ−ψ(ζ)

)
, ζ ≤ t

]
,

where, as usual, µτ is determined by µ̂τ = eτ`µ . As a consequence,

Qµ
(
{ψ : ψ(t) ∈ Γ & ζ(ψ) > t}

)
= µt(Γ)− EQµ

[
µt−ζ

(
Γ−ψ(ζ)

)
, ζ ≤ t

]
,

which is a quite general, generic statement of what is called a Duhamel’s for-
mula.

§ 7.2 Brownian Motion and Martingales

In this section we will see that continuous martingales and Brownian motion are
intimately related concepts. In addition, we will find that martingale theory,
and especially Doob’s and Hunt’s Stopping Time Theorems, provides a powerful
tool with which to study Brownian paths.

§ 7.2.1. Lévy’s Characterization of Brownian Motion. When applied
to µ = γ0,I, Theorem 7.1.6 says that a progressively measurable function B :
[0,∞)×Ω −→ RN with B(0, ω) = 0 and B( · , ω) ∈ D(RN ) is a Brownian motion
if and only if (

ϕ
(
B(t)

)
−
∫ t

0

1
2∆ϕ

(
B(τ)

)
dτ,Ft,P

)
is a martingale for all ϕ ∈ C∞c (RN ;R). In this subsection we, following Lévy,† will
give another martingale characterization of Brownian motion, this time involving
many fewer test functions. On the other hand, we will have to assume ahead of
time that B( · , ω) ∈ C(RN ) every ω ∈ Ω.

Theorem 7.2.1 (Lévy). Let B : [0,∞) × Ω −→ RN be a progressively mea-
surable function satisfying B(0, ω) = 0 and B( · , ω) ∈ C(RN ) for every ω ∈ Ω.
Then

(
B(t),Ft,P

)
is a Brownian motion if and only if

((
ξ,B(t)

)
RN +

(
η,B(t)

)2
RN −

t|η|2

2
,Ft,P

)
is a martingale for every ξ,η ∈ RN .

† Lévy’s Theorem is Theorem 11.9 in Chapter VII of Doob’s Stochastic Processes, publ. by

J. Wiley (1953). Doob uses a clever but somewhat opaque Central Limit argument. The
argument which given here is far simpler and is adapted from the one introduced by H. Kunita

and S. Watanabe in their article “On square integrable martingales,” Nagoya Math. J. 30
(1967).
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Proof: First suppose that
(
B(t),Ft,P

)
is a Brownian motion. Then, because

B(t)−B(s) is independent of Fs and has distribution γ0,I,

EP[B(t)−B(s)
∣∣Fs] = 0 and EP[B(t)⊗B(t)−B(s)⊗B(s)

∣∣Fs] = (t− s)I.

Hence, the necessity is obvious.
To prove the sufficiency, Theorem 7.1.3 says that it is enough to prove that

(*)

EP
[
exp
[√
−1
(
ξ,B(t)

)
RN + t|ξ|2

2

]
, A

]
= EP

[
exp
[√
−1
(
ξ,B(s)

)
RN + s|ξ|2

2

]
, A

]
for 0 ≤ s < t and A ∈ Fs. The challenge is to learn how to do this by taking
full advantage of the assumed continuity. To this end, let ε ∈ (0, 1] be given, set
ζ0 ≡ s, and use induction to define

ζn =
(

inf
{
t ≥ ζn−1 :

∣∣B(t)−B
(
ζn−1

)∣∣ ≥ ε}) ∧ (ζn−1 + ε
)
∧ t

for n ∈ Z+. Proceeding by induction, one can easily check that {ζn : n ≥ 0}
is a non-decreasing sequence of [s, t]-valued stopping times. Hence, by Theorem
7.1.14 and our assumption,

(**) EP
[
∆n

∣∣∣Fζn−1

]
= 0 = EP

[
∆2
n − δn

∣∣∣Fζn−1

]
,

where

∆n(ω) ≡
(
ξ,B

(
ζn(ω), ω

)
−B

(
ζn−1(ω), ω

))
RN

δn(ω) ≡ |ξ|2
(
ζn(ω)− ζn−1(ω)

)
.

Moreover, because B( · , ω) is continuous, we know that, for each ω ∈ Ω, |∆n(ω)|
≤ ε|ξ|, δn(ω) ≤ ε|ξ|2, and ζn(ω) = t for all but a finite number of n’s. In
particular, we can write the difference between the left and the right sides of (*)
as the sum over n ∈ Z+ of EP[DnMn, A], where

Dn ≡ exp
[√
−1 ∆n + δn

2

]
− 1

Mn ≡ exp
[√
−1
(
ξ,B(ζn−1)

)
RN + |ξ|2

2 ζn−1

]
.

By Taylor’s Theorem,∣∣∣Dn −
(√
−1 ∆n + δn

2

)
− 1

2

(√
−1 ∆n + δn

2

)2∣∣∣ ≤ 1
6e
|ξ|2
2

∣∣∣√−1 ∆n + δn
2

∣∣∣3.
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Hence, after rearranging terms, we see that Dn =
√
−1 ∆n − 1

2

(
∆2
n − δn

)
+En,

where, by our estimates on ∆n and δn,

|En| ≤ 1
2 |∆nδn|+ δ2n

8 + 2
3e
|ξ|2
2

(
|∆n|3 +

δ3n
8

)
≤ ε
(
1 + |ξ|2

)
e
|ξ|2
2

(
∆2
n + δn

)
;

and so, after taking (**) into account,we arrive at∣∣∣∣∣
∞∑
1

EP[DnMm, A
]∣∣∣∣∣ =

∣∣∣∣∣
∞∑
1

EP[EnMn, A
]∣∣∣∣∣

≤ 2ε
(
1 + |ξ|2

)
e
|ξ|2
2

∞∑
1

EP[δn|Mn|, A
]
≤ 2ε

(
1 + |ξ|2

)
(t− s)e

|ξ|2
2 (1+t).

In other words, we have now proved that, for every ε ∈ (0, 1], the difference

between the two sides of (*) is dominated by 2ε(1 + |ξ|2)(t− s)e
|ξ|2
2 (1+t), and so

the equality in (*) has been established. �

As in Theorem 7.1.19, the subtlety here is in the use of the continuity as-
sumption. Indeed, the same example which demonstrates its importance there,
does so again here. Namely, if {N(t) : t ≥ 0} is a simple Poisson process and
X(t) = N(t)− t, then both

(
X(t),Ft,P

)
and

(
X(t)2 − t,Ft,P

)
are martingales,

but
(
X(t),Ft,P

)
is certainly not a Brownian motion.

§ 7.2.2. Doob–Meyer Decomposition, an Easy Case. The continuous pa-
rameter analog of Lemma 5.2.12 is a highly non-trivial result, one which was
proved by P.A. Meyer and led him to his profound analysis of stochastic pro-
cesses. Nonetheless, there is an important case in which Meyer’s result is rel-
atively easy to prove, and that is the case proved in this subsection. However,
before getting to that result, there is a rather fussy matter to be delt with.

Lemma 7.2.2. For each n ∈ N, let Xn : [0,∞) −→ R be a right continuous,
progressively measurable function with the property that Xn( · , ω) is continuous
for P-almost every ω ∈ Ω. If

lim
m→∞

sup
n>m
‖Xn( · , ω)−Xm( · , ω)‖[0,t] = 0 (a.s.,P) for each t ∈ (0,∞),

then there is a right continuous, progressively measurable X : [0,∞) −→ R such
that X( · , ω) is continuous and Xn( · , ω) −→ X( · , ω) uniformly on compacts for
P-almost every ω ∈ Ω.

Proof: Set A = {(t, ω) : limm→∞ supn>m ‖Xn( · , ω) − Xm( · , ω)‖[0,t] = 0}.
Then A is progressively measurable. Next, define ζ(ω) = sup{t ≥ 0 : (t, ω) ∈ A},
and note that {ζ < t} ∈ Ft for each t ∈ (0,∞). Finally, set B = {(t, ω) : ζ(ω) ≥
t}. Then, B is again progressively measurable. To see this, first note that

{(τ, ω) ∈ [0, t]× Ω : τ ∧ ζ(ω) < s} =

{
Ω ∈ Ft if t ≤ s
{ζ < s} ∈ Ft if t > s,
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and so (τ, ω) τ∧ζ(ω), and therefore also (τ, ω) τ∧ζ(ω)−τ , is a progressively
measurable function. Hence, since B = {(τ, ω) : τ ∧ ζ(ω) − τ ≥ 0}, B is
progressively measurable.

Now define

X(t, ω) =


limn→∞Xn(t, ω) if (t, ω) ∈ A
0 if (t, ω) ∈ B \A
X
(
ζ(ω), ω

)
if (t, ω) /∈ B.

Clearly X( · , ω) is right continuous. Moreover, because ζ =∞ (a.s.,P), X( · , ω)
is continuous and Xn( · , ω) −→ X( · , ω) uniformly on compacts for P-almost
every ω ∈ Ω. Thus, it only remains to check that X is progressively measurable.
For this purpose, let Γ ∈ BR be given, and set C = {(t, ω) : X(t, ω) ∈ Γ}.
Because A and the Xn’s are progressively measurable, it is clear that C ∩ A is
progressively measurable. Similarly, because B \ A is progressively measurable
and C ∩ (B \ A) equals B \ A or ∅ depending on whether 0 ∈ Γ or 0 /∈ Γ,
C ∩ (B \ A), and therefore C ∩ B, are progressively measurable. Hence, we
now know that X � B is progressively measurable. Finally, we showed earlier
that (t, ω) t ∧ ζ(ω) is a progressively measurable, and therefore so is (t, ω) ∈
[0,∞) × Ω 7−→

(
t ∧ ζ(ω), ω

)
∈ B. Thus, because X(t, ω) = X

(
t ∧ ζ(ω), ω

)
, we

are done. �

Theorem 7.2.3. Let
(
X(t),Ft,P

)
be an R-valued, square integrable mar-

tingale with the property that X( · , ω) is continuous for P-almost every ω ∈
Ω. Then there is a P-almost surely unique progressively measurable function
〈X〉 : [0,∞)×Ω −→ [0,∞) such that 〈X〉(0, ω) = 0 and 〈X〉( · , ω) is continuous
and non-decreasing for P-almost every ω ∈ Ω, and

(
X(t)2 − 〈X〉(t),Ft,P

)
is a

martingale.

Proof: The uniqueness is an immediate consequence of Corollary 7.1.20.
The proof of existence, which is based on a suggestion I got from K. Itô, is

very much like that of Theorem 7.2.1. Without loss in generality, I will assume
that X(0) ≡ 0.

I begin by reducing to the case when X is P-almost surely bounded. To
this end, suppose that we know the result in this case. Given a general X
and n ∈ N, define ζn = inf{t ≥ 0 : |X(t)| ≥ n}, and Xn(t) = X(t ∧ ζn).
Then, |Xn( · , ω)| ≤ n and, by Doob’s Inequaltiy, ζn(ω) ↗ ∞ for P-almost
every ω ∈ Ω. Moreover, by Corollary 7.1.15,

(
Xn(t),Ft,P

)
is a martingale.

Thus, by our assumption, for each n, we know 〈Xn〉 exists. In addition, by
Corollary 7.1.15 and uniqueness, we know (cf. Exercise 7.2.10) that, P-almost
surely, 〈Xm〉(t) = 〈Xn〉(t ∧ ζm) for all m ≤ n and t ≥ 0. Now define 〈X〉 so
that 〈X〉(t) = 〈Xn〉(t) for ζn ≤ t < ζn+1. Then 〈X〉 is progressively measurable
and right continuous, 〈X〉(0) = 0, and, P-almost surely, 〈X〉 is continuous and
non-decreasing. Furthermore,

(
X(t ∧ ζn)2 − 〈X〉(t ∧ ζn),Ft,P

)
is a martingale
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for each n ∈ N. Finally, note that, by Doob’s Inequality,

EP[‖〈X〉‖[0,t]] ≤ EP[‖X‖2[0,t]] ≤ 4EP[|X(t)|2
]
,

and so, as n → ∞, X(t ∧ ζn)2 − 〈X〉(t ∧ ζn) −→ X(t)2 − 〈X〉(t) in L1(P;R).
Hence,

(
X(t)2 − 〈X〉(t),Ft,P

)
is a martingale.

I now assume that |X( · , ω)| ≤ C < ∞ for P-almost every ω ∈ Ω. Next, for
each n ∈ N, use induction to define {ζk,n : k ≥ 0} so that ζ0,n = 0, ζk,0 = k,
and, for (k, n) ∈ (Z+)2, ζk,n is equal to(

min{ζ`,n−1 : ζ`,n−1 > ζk−1,n}
)
∧
(

inf
{
t ≥ ζk−1,n : |X(t)−X(ζk−1,n)| ≥ 1

n

})
.

Working by induction, one sees that, for each n ∈ N, {ζk,n : k ≥ 0} is a non-
decreasing sequence of bounded stopping times. Moreover, because X( · , ω) is
P-almost surely continuous, we know that limk→∞ ζk,n(ω) = ∞ for each n ∈ N
and P-almost every ω ∈ Ω. Finally, the sequences {ζk,n : k ≥ 0} are nested in
the sense that {ζk,n−1 : k ≥ 0} ⊆ {ζk,n : k ≥ 0} for each n ∈ Z+.

Set Xk,n = X
(
ζk,n) and, for k ≥ 1, ∆k,n(t) = X

(
t ∧ ζk,n

)
− X

(
t ∧ ζk−1,n

)
.

Then X(t)2 = 2Mn(t) + 〈X〉n(t), where

Mn(t) =

∞∑
k=1

Xk−1,n∆k,n(t) and 〈X〉n(t) =

∞∑
k=1

∆k,n(t)2.

Of course, for P-almost every ω ∈ Ω, all but a finite number of terms in each of
these sums vanish. In fact, M0(t) =

∑
1≤k≤[t]Xk−1,0∆k,0(t) for each t ≥ 0, and

it is an easy matter to check that
(
M0(t),Ft,P

)
is a P-almost surely continuous

martingale. At the same time, one should observe that 〈X〉n(s) ≤ 〈X〉n(t) if
s ≥ 0 and t− s > 1

n .

I now want to show that
(
Mn(t),Ft,P

)
is a P-almost surely continuous mar-

tingale for all n ∈ N. To this end, first observe that, for each (k, n) ∈ Z+ × N,(
Xk−1,n∆k,n(t),Ft,P

)
is a continuous martingale. Indeed, if 0 ≤ s < t and

A ∈ Fs, then

EP[Xk−1,n∆k,n(t), A
]

= EP[Xk−1,n∆k,n(t), A ∩ {ζk−1,n ≤ s}
]

+ EP[Xk−1,n∆k,n(t), A ∩ {ζk−1,n > s}
]
.

Next, check that

EP[Xk−1,n∆k,n(t), A ∩ {ζk−1,n ≤ s}
]

= EP[Xk−1,n
(
X(ζk,n)−X(ζk−1,n)

)
, A ∩ {ζk,n ≤ s}

]
+ EP

[
Xk−1,n

(
X
(
(t ∧ ζk,n) ∨ s

)
−X(ζk−1,n)

))
, A ∩ {ζk−1,n ≤ s < ζk,n}

]
= EP[Xk−1,n∆k,n(s), A ∩ {ζk,n ≤ s}

]
+ EP[Xk−1,n

(
X(s)−X(ζk−1,n)

)
, A ∩ {ζk−1,n ≤ s < ζk,n}

]
= EP[Xk−1,n∆k,n(s), A ∩ {ζk−1,n ≤ s}

]
,
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where, in the passage to the second to last equality, I have used the fact that
Xk−1,n1A1[ζk−1,n,ζk,n)(s) is Fs-measurable and applied Theorem 7.1.14; and

EP[Xk−1,n∆k,n(t), A ∩ {ζk−1,n > s}
]

= EP[Xk−1,n
(
X(t ∧ ζk,n)−X(t ∧ ζk−1,n)

)
, A ∩ {s < ζk−1,n ≤ t}

]
= EP[Xk−1,n

(
X(t)−X(t)

)
, A ∩ {s < ζk−1,n ≤ t}

]
= 0 = EP[Xk−1,n∆k,n(s), A ∩ {ζk−1,n > s}

]
,

where I have used the fact that Xk−1,n1A1(s,t](ζk−1,n) is Ft∧ζk−1,n
-measurable

and again applied Theorem 7.1.14 in getting the second to last line. After
combining these, one sees that EP[Xk−1,n∆k,n(t), A

]
= EP[Xk−1,n∆k,n(s), A

]
,

which means that
(
Xk−1,n∆k,n(t),Ft,P

)
is a continuous martingale as was

claimed.
Given the preceding, it is clear that, for each n and `,

(
Mn(t ∧ ζ`,n),Ft,P

)
is a P-almost surely continuous, square integrable martingale. In addition, for
k 6= k′, Xk−1∆k,n(t ∧ ζ`,n) is orthogonal to Xk′−1∆k′,n(t ∧ ζ`,n) in L2(P;R).
Thus

EP

[
sup

0≤τ≤t∧ζ`,n
Mn(τ)2

]
≤ 4EP[Mn(t ∧ ζ`,n)2

]
= 4

∑̀
k=1

EP[X2
k−1,n∆k,n(t ∧ ζ`,n)2

]
≤ 4C2

∑̀
k=1

EP[∆k,n(t ∧ ζ`,n)2
]

= 4C2EP[X(t ∧ ζ`,n)2
]
≤ 4C2EP[X(t)2

]
,

from which it is easy to see that
(
Mn(t),Ft,P

)
is a square integrable martingale.

I will now show that limm→∞ supn>m ‖Mn −Mm‖[0,t] = 0 P-almost surely

and in L2(P;R) for each t ∈ [0,∞). To this end, define Y
(m)
k−1,n so that Y

(m)
k−1,n(ω)

= Xk−1,n(ω)−X`−1,m(ω) when ζ`−1,m(ω) ≤ ζk−1,n(ω) < ζ`,m(ω). Then Y
(m)
k−1,n

is Fk−1,n-measurable, |Y (m)
k−1,n| ≤

1
m , and Mn−Mm =

∑∞
k=1 Y

(m)
k−1,n∆k,n. Hence,

by the same reasoning as above,

EP[‖Mn −Mm‖2[0,t]
]
≤ 4

∞∑
k=1

EP[(Y (m)
k−1,n)2∆k,n(t)2

]
≤ 4

m2
EP[X(t)2

]
,

which is more than enough to get the asserted convergence result.
Given the preceding, we can now apply Lemma 7.2.2 to produce a right con-

tinuous, progressively measure, P-almost surely continuous M : [0,∞)×Ω −→ R
to which {Mn : n ≥ 1} converges uniformly on compacts, both P-almost surely
and in L2(P;R). In particular,

(
M(t),Ft,P

)
is a square integrable martingale.
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Finally, set 〈X〉 = (X2 − 2M)+. Obviously, 〈X〉 = X2 − 2M (a.s.,P), and 〈X〉
is right continuous, progressively measurable, and P-almost surely continuous.
In addition, because, P-almost surely, 〈X〉n −→ 〈X〉 uniformly on compacts and
〈X〉n(s) ≤ 〈X〉n(t) when t − s > 1

n , it follows that 〈X〉( · , ω) is non-decreasing
for P-almost every ω ∈ Ω. �

Remark 7.2.4. The reader may be wondering why I insisted on complicating
the preceding statement and proof by insisting that 〈X〉 be progressively measur-
able with respect to the original family of σ-algebras

{
Ft : t ∈ [0,∞)

}
. Indeed,

Exercise 7.1.22 shows that I could have replaced all the σ-algebras with their
completions, and, if I had done so, there would have been no reason not to have
taken X( · , ω) to be continuous and 〈X〉( · , ω) to continuous and non-decreasing
for every ω ∈ Ω. However, there is a price to be paid for completing σ-algebras.
In the first place, when one does, all statements become dependent on the par-
ticular P with which one is dealing. Secondly, because completed σ-algebras
are nearly never countably generated, certain desirable properties can be lost by
introducing them. See, for example, Theorem 9.2.1.

By combining Theorem 7.2.3 with Theorem 7.2.1, one can show that, up to
time re-parametrization, all continuous martingales are Brownian motions. In
order to avoid technical difficulties, I will prove this only in the easiest case.

Corollary 7.2.5. Let
(
X(t),Ft,P

)
be a continuous, square integrable mar-

tingale with the properties that, for P-almost every ω ∈ Ω, 〈X〉( · , ω) is strictly
increasing and limt→∞〈X〉(t, ω) = ∞. Then there exists a Brownian motion(
B(t),F ′t,P

)
such that X(t) = X(0)+B

(
〈X〉(t)

)
, t ∈ [0,∞) P-almost surely. In

particular,

lim
t→∞

X(t)√
2〈X〉(t) log(2)〈X〉(t)

= 1 = − lim
t→∞

X(t)√
2〈X〉(t) log(2)〈X〉(t)

P-almost surely.

Proof: Clearly, given the first part, the last assertion is a trivial application of
Exercise 4.3.15.

After replacing F and the Ft’s by their completions and applying Exercise
7.1.22, I may and will assume that X(0, ω) = 0, X( · , ω) is continuous, 〈X〉( · , ω)
is continuous and strictly increasing, and limt→∞〈X〉(t, ω) =∞ for every ω ∈ Ω.
Next, for each (t, ω) ∈ [0,∞), set ζt(ω) = 〈X〉−1(t, ω), where 〈X〉−1( · , ω) is the
inverse of 〈X〉( · , ω). Clearly, for each ω ∈ Ω, t ζt(ω) is a continuous, strictly
increasing function which tends to infinity as t → ∞. Moreover, because 〈X〉
is progressively measurable, ζt is a stopping time for each t ∈ [0,∞). Now set
B(t) = X(ζt). Since it is obvious that X(t) = B

(
〈X〉(t)

)
, all that we have to

show is that
(
B(t),F ′t,P

)
is a Brownian motion for some non-decreasing family

{F ′t : t ≥ 0} of sub σ-algebras.
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Trivially B(0, ω) = 0 and B( · , ω) is continuous for all ω ∈ Ω. In addition,
B(t) is Fζt-measurable, and so B is progressively measurable with respect to
{Fζt : t ≥ 0}. Thus, by Theorem 7.2.1, we will be done once we show that(
B(t),Fζt ,P

)
and

(
B(t)2 − t,Fζt ,P

)
are martingales. To this end, first observe

that

EP

[
sup

τ∈[0,ζt]
X(τ)2

]
= lim
T→∞

EP

[
sup

τ∈[0,T∧ζt]
X(τ)2

]
≤ 4 lim

T→∞
EP[X(T ∧ ζt)2

]
≤ 4 lim

T→∞
EP[〈X〉(T ∧ ζt)] ≤ 4t.

Thus, limT→∞X(T ∧ ζt) −→ B(t) in L2(P;R). Now let 0 ≤ s < t and A ∈ Fζs
be given. Then, for each T > 0, AT ≡ A ∩ {ζs ≤ T} ∈ FT∧ζs , and so, by
Theorem 7.1.14,

EP[X(T ∧ ζt), AT
]

= EP[X(T ∧ ζs), AT
]

and

EP[X(T ∧ ζt)2 − 〈X〉(T ∧ ζt), AT
]

= EP[X(T ∧ ζs)2 − 〈X〉(T ∧ ζs), AT
]
.

Now let T → ∞, and apply the preceding convergence assertion to get the
desired conclusion. �

§ 7.2.3. Burkholder’s Inequality Again. In this subsection we will see what
Burkholder’s Inequality looks like in the continuous parameter setting, a result
whose importance for the theory of stochastic integration is hard to overstate.

Theorem 7.2.6 (Burkholder). Let
(
X(t),Ft,P

)
be a P-almost surely con-

tinuous, square integrable martingale. Then, for each p ∈ (1,∞) and t ∈ [0,∞)
(cf. (6.3.2))

(7.2.7) B−1p ‖X(t)−X(0)‖Lp(P;R) ≤ EP[〈X(t)〉
p
2

] 1
p ≤ Bp‖X(t)−X(0)‖Lp(P;R).

Proof: After completing the σ-algebras if necessary, I may (cf. Exercise 7.1.22)
and will assume that X( · , ω) is continuous and that 〈X〉( · , ω) is continuous and
non-decreasing for every ω ∈ Ω. In addition, I may and will assume X(0) = 0.
Finally, I will assume that X is bounded. To justify this last assumption, let
ζn = inf{t ≥ 0 : |X(t)| ≥ n}, set Xn(t) = X(t ∧ ζn), and use Exercise 7.2.10 to
see that one can take 〈Xn〉 = 〈X〉(t∧ζn). Hence, if we know (7.2.7) for bounded
martingales, then

B−1p ‖X(t ∧ ζn)‖Lp(P;R) ≤ EP[〈X〉(t ∧ ζn)
p
2

] 1
p ≤ Bp‖X(t ∧ ζn)‖Lp(P;R)
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for all n ≥ 1. Since 〈X〉 is non-decreasing, we can apply Fatou’s Lemma to the
preceding and thereby get

‖X(t)‖Lp(P;R) ≤ lim
n→∞

‖X(t ∧ ζn)‖Lp(P;R) ≤ BpEP[〈X〉(t) p2 ] 1
p ,

which is the left hand side of (7.2.7). To get the right hand side, note that either
‖X(t)‖Lp(P;R) =∞, in which case there is nothing to do, or ‖X(t)‖Lp(P;R) <∞,
in which case, by the second half of Theorem 7.1.9, X(t ∧ ζn) −→ X(t) in
Lp(P;R) and therefore

EP[〈X〉(t) p2 ] 1
p = lim

n→∞
EP[〈X〉(t ∧ ζn)

p
2

] 1
p

≤ Bp lim
n→∞

‖X(t ∧ ζn)‖Lp(P;R) = Bp‖X(t)‖Lp(P;R).

Proceeding under the above assumptions and referring to the notation in the
proof of Theorem 7.2.3, begin by observing that, for any t ∈ [0,∞) and n ∈
N, Theorem 7.1.14 shows that

(
X(t ∧ ζk,n),Ft∧ζk,n ,P

)
is a discrete parameter

martingale indexed by k ∈ N. In addition, ζk,n = t for all but a finite number
of k’s. Hence, by (6.3.7) applied to

(
X(t ∧ ζk,n),Ft∧ζk,n ,P

)
,

B−1p ‖X(t)‖Lp(P;R) ≤ EP[〈X〉n(t)
p
2

] 1
p ≤ Bp‖X(t)‖Lp(P;R) for all n ∈ N.

In particular, this shows that supn≥0 ‖〈X〉n(t)‖Lp(P;R) <∞ for every p ∈ (1,∞),
and therefore, since 〈X〉n(t) −→ 〈X〉(t) (a.s.,P), this is more than enough to

verify that EP[〈X〉n(t)
p
2

]
−→ EP[〈X〉(t) p2 ] for every p ∈ (1,∞). �

Exercises for § 7.2

Exercise 7.2.8. Let
(
X(t),Ft,P

)
be a square integrable, continuous martin-

gale. Following the strategy used to prove Theorem 7.2.1, show that(
F
(
X(t)

)
−
∫ t

0

1
2∂

2
xF
(
X(τ)

)
〈X〉(dτ),Ft,P

)
is a martingale for every F ∈ C2

b(R;C).

Hint: Begin by using cut offs and mollification to reduce to the case when
F ∈ C∞c (R;R). Next, given s < t and ε > 0, introduce the stopping times
ζ0 = s and

ζn = inf{t ≥ ζn−1 : |X(t)−X(ζn−1)| ≥ ε} ∧ (ζn−1 + ε) ∧ (〈X〉(ζn−1) + ε) ∧ t

for n ≥ 1. Now proceed as in the proof of Theorem 7.2.1.
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Exercise 7.2.9. Let
(
X(t),Ft,P

)
be a continuous, square integrable mar-

tingale with X(0) = 0, and assume that there exists a non-decreasing function
A : [0,∞) −→ [0,∞) such that 〈X〉(t) ≤ A(t) (a.s.,P) for each t ∈ [0,∞). The
goal of this exercise is to show that

(
E(t),Ft,P

)
is a martingale when

E(t) = exp
[
X(t)− 1

2 〈X〉(t)
]
.

(i) Given R ∈ (0,∞), set ζR = inf{t ≥ 0 : |X(t)| ≥ R}, and show that(
eX(t∧ζR) − 1

2

∫ t∧ζR

0

eX(τ) d〈X〉,Ft,P

)
is a martingale.

Hint: Choose F ∈ C∞c (R;R) so that F (x) = ex for x ∈ [−2R, 2R], apply
Exercise 7.2.8 to this F , and then use Doob’s Stopping Time Theorem.

(ii) Apply Theorem 7.1.17 to the martingale in (i) and e−
1
2 〈X〉(t∧ζR) to show

that
(
E(t ∧ ζR),Ft,P

)
is a martingale.

(iii) By replacing X and R with 2X and 2R in (ii), show that

EP[E(t ∧ ζR)2
]
≤ eA(t)EP[e2X(t∧ζR)−2〈X〉(t∧ζR)

]
= eA(t).

Conclude that {E(t ∧ ζR) : R ∈ (0,∞)} is uniformly P-integrable and therefore
that

(
E(t),Ft,P

)
is a martingale.

Exercise 7.2.10. If
(
X(t),Ft,P

)
is a P-almost surely continuous, square in-

tegrable martingale, ζ is a stopping time, and Y (t) = X(t ∧ ζ), show that
〈Y 〉(t) = 〈X〉(t ∧ ζ), t ≥ 0, P-almost surely.

Exercise 7.2.11. Continuing in the setting of Exercise 7.2.9, first show that,
for every λ ∈ R,

(
Eλ(t),Ft,P

)
is a martingale where

Eλ(t) = exp
[
λX(t)− λ2

2 〈X〉(t)
]
.

Next, use Doob’s Inequality to see that, for each λ ≥ 0,

P

(
sup
τ∈[0,t]

X(τ) ≥ R

)
≤ P

(
sup
τ∈[0,t]

Eλ(τ) ≥ eλR−λ
2

2 A(t)

)
≤ e−λR+λ2

2 A(t).

Starting from this, conclude that

(7.2.12) P
(
‖X‖[0,t] ≥ R

)
≤ 2e−

R2

2A(t) .

Finally, given this estimate, show that the conclusion in Exercise 7.2.8 continues
to hold for any F ∈ C2(R;C) whose second derivative has at most exponential
growth.
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Exercise 7.2.13. Given a pair of square integrable, continuous martingales(
X(t),Ft,P

)
and

(
Y (t),Ft,P

)
, set 〈X,Y 〉 = 〈X+Y 〉−〈X−Y 〉

4 , and show that(
X(t)Y (t) − 〈X,Y 〉(t),Ft,P

)
is a martingale. Further, show that 〈X,Y 〉 is

uniquely determined up the a P-null set by this property together with the facts
that 〈X,Y 〉(0, ω) = 0 and 〈X,Y 〉( · , ω) is continuous and has locally bounded
variation for P-almost every ω ∈ Ω.

Exercise 7.2.14. Let
(
B(t),Ft,P

)
be an RN -valued Brownian motion. Given

f, g ∈ C1,2
b

(
[0,∞)× RN ;R

)
, set

X(t) = f
(
t,B(t)

)
−
∫ t

0

(
∂τ + 1

2∆
)
f
(
τ,B(τ)

)
dτ,

Y (t) = g
(
t,B(t)

)
−
∫ t

0

(
∂τ + 1

2∆
)
g
(
τ,B(τ)

)
dτ,

and show that

〈X,Y 〉(t) =

∫ t

0

∇f ·∇g
(
τ,B(τ)

)
dτ.

Hint: First reduce to the case when f = g. Second, write X(t)2 as

f
(
t,B(t)

)2 − 2X(t)

∫ t

0

(
∂τ + 1

2∆
)
f
(
τ,B(τ)

)
dτ

−
(∫ t

0

(
∂τ + 1

2∆
)
f
(
τ,B(τ)

)
dτ

)2

,

and apply Theorem 7.1.17 to the second term.

§ 7.3 The Reflection Principle Revisited

In Exercise 4.3.12 we saw that Lévy’s Reflection Principle (Theorem 1.4.13) has
a sharpened version when applied to Brownian motion. In this section I will give
another, more powerful, way of discussing the reflection principle for Brownian
motion.

§ 7.3.1. Reflecting Symmetric Lévy Processes. In this subsection, µ will
be used to denote a symmetric, infinitely divisible law. Equivalently (cf. Exercise
3.3.11), µ̂ = e`µ(ξ), where

`µ(ξ) = −1

2

(
ξ,Cξ

)
RN +

∫
RN

(
cos
(
ξ,y

)
RN − 1

)
M(dy)

for some non-negative definite, symmetric C and symmetric Lévy measure M .
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Lemma 7.3.1. Let {Z(t) : t ≥ 0} be a Lévy process for µ, and set Ft =
σ
(
{Z(τ) : τ ∈ [0, t]}

)
. If ζ is a stopping time relative to

{
Ft : t ∈ [0,∞)

}
and

Z̃(t) ≡ 2Z(t ∧ ζ)− Z(t) =

{
Z(t) if ζ > t

2Z(ζ)− Z(t) if ζ ≤ t,

then { ˜Z(t) : t ≥ 0} is again a Lévy process for µ.

Proof: According to Theorem 7.1.3, all that we have to show is that(
exp
[√
−1 (ξ, Z̃(t)

)
RN − t`µ(ξ)

]
,Ft,P

)
is a martingale for all ξ ∈ RN . Thus, let 0 ≤ s < t and A ∈ Fs be given. Then,
by Theorem 7.1.14 and the fact that `µ(−ξ) = `µ(ξ),

EP
[
exp
[√
−1 (ξ, Z̃(t)

)
RN − t`µ(ξ)

]
, A ∩ {ζ ≤ s}

]
= EP

[
e2
√
−1(ξ,Z(s∧ζ))RN exp

[
−
√
−1 (ξ,Z(t)

)
RN − t`µ(ξ)

]
, A ∩ {ζ ≤ s}

]
= EP

[
e2
√
−1(ξ,Z(s∧ζ))RN exp

[
−
√
−1
(
ξ,Z(s)

)
RN − s`µ(ξ)

]
, A ∩ {ζ ≤ s}

]
= EP

[
exp
[√
−1
(
ξ, Z̃(s)

)
RN − t`µ(ξ)

]
, A ∩ {ζ ≤ s}

]
.

Similarly,

EP
[
exp
[√
−1
(
ξ, Z̃(t)

)
RN − t`µ(ξ)

]
, A ∩ {ζ > s}

]
= EP

[
e2
√
−1(ξ,Z(t∧ζ))RN exp

[
−
√
−1 (ξ,Z(t)

)
RN − t`µ(ξ)

]
, A ∩ {ζ > s}

]
= EP

[
exp
[√
−1
(
ξ,Z(t ∧ ζ)

)
RN − (t ∧ ζ)`µ(ξ)

]
, A ∩ {ζ > s}

]
= EP

[
exp
[√
−1
(
ξ,Z(s ∧ ζ)

)
RN − (s ∧ ζ)`µ(ξ)

]
, A ∩ {ζ > s}

]
= EP

[
exp
[√
−1
(
ξ, Z̃(s)

)
RN − s`µ(ξ)

]
, A ∩ {ζ > s}

]
. �

Obviously, the process {Z̃(t) : t ≥ 0} in Lemma 7.3.1 is the one obtained
by reflecting (i.e., reversing the direction of {Z(t) : t ≥ 0}) at time ζ, and the
lemma says that the distribution of the resulting process is the same as that of the
original one. Most applications of this result are to situations when one knows or
less precisely where the process is at the time when it is reflected. For example,
suppose N = 1, a ∈ (0,∞), and ζa = inf{t ≥ 0 : Z(t) ≥ a}. Noting that,

because Z̃(t) = Z(t) for t ≤ ζa and therefore that ζa = inf{t ≥ 0 : Z̃(t) ≥ a},
we have that

P
(
Z(t) ≤ x & ζa ≤ t

)
= P

(
2Z(ζa)− Z(t) ≤ x & ζa ≤ t

)
= P

(
Z(t) ≥ 2Z(ζa)− x & ζa ≤ t

)
.
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Hence, if x ≤ a, and therefore Z(t) ≥ 2Z(ζa)− x =⇒ ζa ≤ t when ζa <∞,

P
(
Z(t) ≤ x & ζa ≤ t

)
= P

(
Z(t) ≥ 2Z(ζa)− x & ζa <∞

)
for x ≤ a.

Applying this when x = a and using P
(
ζa ≤ t

)
= P

(
Z(t) ≤ a & ζa ≤ t

)
+

P
(
Z(t) > a

)
, one gets P

(
ζa ≤ t

)
≤ 2P

(
Z(t) ≥ a

)
, a conclusion which also could

have been reached via Theorem 1.4.13.

§ 7.3.2. Reflected Brownian Motion. The considerations in the preceding
subsection are most interesting when applied to R-valued Brownian motion.
Thus, let

(
B(t),Ft,P

)
be an R-valued Brownian motion. To appreciate the

improvements that can be made in the calculations just made, again take ζa =
inf{t ≥ 0 : B(t) ≥ a} for some a > 0. Then, because Brownian paths are
continuous, ζa < ∞ =⇒ B(ζa) = a, and so, since P(ζa < ∞) = 1, we can say
that

(7.3.2) P
(
B(t) ≤ x & ζa ≤ t

)
= P

(
B(t) ≥ 2a−x

)
for (t, x) ∈ [0,∞)×(−∞, a].

In particular, by taking x = a and using P
(
B(t) ≥ a

)
= P

(
B(t) ≥ a & ζa ≤ t

)
we recover the result in Exercise 4.3.12 that

P
(
ζa ≤ t

)
= 2P

(
B(t) ≥ a

)
.

A more interesting application of Lemma 7.3.1 to Brownian motion is to the
case when ζ is the exit time from an interval other than a half line.

Theorem 7.3.3. Let a1 < 0 < a2 be given, define ζ(a1,a2) = inf{t ≥ 0 : B(t) /∈
(a1, a2)}, and set Ai(t) = {ζ(a1,a2) ≤ t & B(ζ(a1,a2)) = ai} for i ∈ {1, 2}. Then,
for Γ ∈ B[a1,∞),

0 ≤ P
(
{B(t) ∈ Γ} ∩A1(t)

)
− P

(
{B(t) ∈ 2(a2 − a1) + Γ} ∩A1(t)

)
= P

(
B(t) ∈ 2a1 − Γ

)
− P

(
B(t) ∈ 2(a2 − a1) + Γ

)
,

and, for Γ ∈ B(−∞,a2],

0 ≤ P
(
{B(t) ∈ Γ} ∩A2(t)

)
− P

(
{B(t) ∈ −2(a2 − a1) + Γ} ∩A2(t)

)
= P

(
B(t) ∈ 2a2 − Γ

)
− P

(
B(t) ∈ −2(a2 − a1) + Γ

)
.

Hence, for Γ ∈ B[a1,∞), P
(
{B(t) ∈ Γ} ∩A1(t)

)
equals

∞∑
m=1

[
γ0,t
(
Γ− 2a1 + 2(m− 1)(a2 − a1)

)
− γ0,t

(
Γ + 2m(a2 − a1)

)]
and, for Γ ∈ B(−∞,a2], P

(
{B(t) ∈ Γ} ∩A2(t)

)
equals

∞∑
m=1

[
γ0,t
(
Γ− 2a2 − 2(m− 1)(a2 − a1)

)
− γ0,t

(
Γ− 2m(a2 − a1)

)]
,

where in both cases the convergence is uniform with respect t in compacts and
Γ ∈ B(a1,a2).
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Proof: Suppose Γ ∈ B[a1,∞). Then, by Lemma 7.3.1,

P
(
{B(t) ∈ Γ} ∩A1(t)

)
= P

(
{2a1 −B(t) ∈ Γ} ∩A1(t)

)
= P

(
B(t) ∈ 2a1 − Γ

)
− P

(
{B(t) ∈ 2a1 − Γ} ∩A2(t)

)
,

since B(t) ∈ 2a1 − Γ =⇒ B(t) ≤ a1 =⇒ ζ(a1,a2) ≤ t. Similarly

P
(
{B(t) ∈ Γ} ∩A2(t)

)
= P

(
{2a2 −B(t) ∈ Γ} ∩A1(t)

)
= P

(
B(t) ∈ 2a2 − Γ

)
− P

(
{B(t) ∈ 2a2 − Γ} ∩A1(t)

)
when Γ ∈ B(−∞,a2]. Hence, since 2a1 − Γ ⊆ (−∞, a1] ⊆ (−∞, a2] if Γ ∈ B[a1,∞),

P
(
{B(t) ∈ Γ} ∩A1(t)

)
= P

(
B(t) ∈ 2a1 − Γ

)
− P

(
B(t) ∈ 2(a2 − a1) + Γ

)
+ P

(
{B(t) ∈ 2(a2 − a1) + Γ} ∩A1(t)

)
when Γ ∈ B[a1,∞). Similarly, when Γ ∈ B(−∞,a2],

P
(
{B(t) ∈ Γ} ∩A2(t)

)
= P

(
B(t) ∈ 2a2 − Γ

)
− P

(
B(t) ∈ −2(a2 − a1) + Γ

)
+ P

(
{B(t) ∈ −2(a2 − a1) + Γ} ∩A2(t)

)
.

To check that

P
(
{B(t) ∈ Γ}∩A1(t)

)
−P
(
{B(t) ∈ 2(a2−a1)+Γ}∩A1(t)

)
≥ 0 when Γ ∈ B[a1,∞),

first use Theorem 7.1.16 to see that

P
(
{B(t) ∈ Γ} ∩A1(t)

)
= EP[γ0,t−ζ(a1,a2)(Γ− a1), A1(t)

]
.

Second, observe that, because Γ ⊆ [a1,∞), γ0,τ
(
2(a2−a1) + Γ

)
≤ γ0,τ (Γ) for all

τ ≥ 0. The case when Γ ∈ B(−∞,a2] and A1(t) is replaced by A2(t) is handled in
the same way.

Given the preceding, one can use induction to check that P
(
{B(t) ∈ Γ}∩A1(t)

)
equals

M∑
m=1

[
P
(
B(t) ∈ 2a1 − 2(m− 1)(a2 − a1)− Γ

)
− P

(
B(t) ∈ 2m(a2 − a1) + Γ

)]
+ P

(
{B(t) ∈ 2M(a2 − a1) + Γ} ∩A1(t)

)
for all Γ ∈ B[a1,∞). The same line of reasoning applies when Γ ∈ B(−∞,a2] and
A1(t) is replaced by A2(t). �

Perhaps the most useful consequence of the preceding is the following corollary.
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Corollary 7.3.4. Given a c ∈ R and an r ∈ (0,∞), set I = (c− r, c+ r) and

P I(t, x,Γ) = P
(
{x+B(t) ∈ Γ} ∩ {ζI > t}

)
, x ∈ I and Γ ∈ BI .

Then

(7.3.5) P I(s+ t, x,Γ) =

∫
I

P I(t, z,Γ)P I(s, x, dz).

Next, set

g̃(t, x) =
∑
m∈Z

g(t, x+ 4m), where g(t, x) = (2πt)−
1
2 e−

x2

2t

and

p(−1,1)(t, x, y) = g̃(t, y − x)− g̃(t, y + x+ 2) for (t, x, y) ∈ (0,∞)× [−1, 1]2.

Then p(−1,1) is a smooth function which is symmetric in (x, y), strictly positive
on (0,∞)× (0, 1)2, and vanishes when x ∈ {−1, 1}. Finally, if

pI(t, x, y) = r−1p(−1,1)
(
r−2, r−1(x− c), r−1(y − c)

)
, (t, x, y) ∈ (0,∞)× I2,

then

(7.3.6) pI(s+ t, x, y) =

∫
I

pI(s, x, z)pI(t, z, y) dz,

and, for (t, x) ∈ (0,∞)× I, P I(t, x, dy) = pI(t, x, y) dy.

Proof: Begin by applying Theorem 7.1.16 to check that P I(s+ t, x,Γ) equals

W(1)
(
{x+ ψ(s) + δsψ(t) ∈ Γ} ∩ {x+ ψ(s) + δsψ(τ), τ ∈ [0, t− s]}

∩ {x+ ψ(σ) ∈ I, σ ∈ [0, s]}
)

= EW
(1)[

P I
(
t, x+ ψ(s),Γ

)
, {x+ ψ(σ) ∈ I, σ ∈ [0, s]}

]
=

∫
I

P I(t, z,Γ)P I(s, x, dz).

Next, set a1 = r−1(c− x)− 1 and a2 = r−1(x− x) + 1. Then

P I(t, x,Γ) = P
(
{B(t) ∈ Γ− x} ∩ {B(τ) ∈ (ra1, ra2), τ ∈ [0, t]}

)
= P

(
{B(r−2t) ∈ r−1(Γ− x)} ∩ {B(r−2τ) ∈ (a1, a2), τ ∈ [0, t]}

)
= P

(
B(r−2t) ∈ r−1(Γ− x) & ζ(a1,a2) > r−2t

)
= P

(
B(r−2t) ∈ r−1(Γ− x)

)
− P

(
B(r−2t) ∈ r−1(Γ− x) & ζ(a1,a2) ≤ r−2t

)
,
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where, in the passage to the second line, I have used Brownian scaling. Now,
use the last part of Theorem 7.3.3, the symmetry of γ0,r−2t, and elementary
rearrangement of terms to arrive first at

P I(t, x,Γ) =
∑
m∈Z

[
γr−2t

(
4m+ r−1(Γ− x)

)
− γr−2t

(
4m+ 2 + r−1(Γ + x− 2c)

)]
,

and then at P I(t, x, dy) = pI(t, x, y) dy. Given this and (7.3.5), (7.3.6) is obvious.

Turning to the properties of p(−1,1)(t, x, y), both its symmetry and smooth-
ness are clear. In addition, as the density for P (−1,1)(t, x. · ), it is non-negative,
and, because x  g̃(t, x) is periodic with period 4, it is easy to see that
p(−1,1)(t,±1, y) = 0. Thus, everything comes down to proving that p(−1,1)(t, x, y)
> 0 for (t, x, y) ∈ (0,∞) × (−1, 1)2. To this end, first observe that, after rear-
ranging terms, one can write p(−1,1)(t, x, y) as

g(t, y − x)− g(t, y + x) + g(t, 2− x− y)

+

∞∑
m=1

[(
g(t, y − x+ 4m)− g(t, y + x+ 2 + 4m)

)
+
(
g(t, y − x− 4m)− g(t, y + x− 2− 4m)

)]
.

Since each of the term in the sum over m ∈ Z+ is positive, we have that

p(−1,1)(t, x, y) > g(t, y − x)
[
1− 2e−

2(1−|x|)(1−|y|)
t

]
≥
(
1− 2

e

)
g(t, y − x)

if t ≤ 2(1 − |x|)(1 − |y|). Hence, for each θ ∈ (0, 1), p(−1,1)(t, x, y) > 0 for all
(t, x, y) ∈ [0, 2θ2]× [−1 + θ, 1− θ]2. Finally, to handle x, y ∈ [−1 + θ, 1− θ] and
t > 2θ2, apply (7.3.6) with I = (−1, 1) to see that

p(−1,1)
(
(m+ 1)θ2, x, y) ≥

∫
|z|≤(1−θ)

p(−1,1)(θ2, x, z)p(−1,1)(mθ2, z, y) dz,

and use this and induction to see that p(−1,1)(mθ2, x, y) > 0 for all m ≥ 1. Thus,
if n ∈ Z+ is chosen so that nθ2 < t ≤ (n + 1)θ2, then another application of
(7.3.6) shows that

p(−1,1)(t, x, y) ≥
∫
|z|≤(1−θ)

p(−1,1)(t− nθ2, x, z)p(−1,1)(nθ2, z, y) dz > 0. �
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Exercise 7.3.7. Suppose that G is a non-empty, open subset of RN , define
ζGx : C(RN ) −→ [0,∞] by

ζGx (ψ) = inf{t ≥ 0 : x +ψ(t) /∈ G},

and set
PG(t,x,Γ) =W (N)

(
{ψ : x +ψ(t) ∈ Γ & ζGx (ψ) > t}

)
for (t,x) ∈ (0,∞)×G and Γ ∈ BG.

(i) Show that

PG(s+ t,x,Γ) =

∫
G

PG(t, z,Γ)PG(s,x, dy).

(ii) As an application of Exercise 7.1.25, show that

PG(t,x,Γ) = γ0,tI(Γ− x)− EW
(N)[

γ0,(t−ζGx )I

(
Γ− x−ψ(ζGx )

)
, ζGx ≤ Γ

]
.

. This is the probabilistic version of Duhamel’s formula, which we will see again
in § 10.3.1.

(iii) As a consequence of (ii), show that there is a Borel measurable function
pG : (0,∞) × G2 −→ [0,∞) such that (t,y)  pG(t,x,y) is continuous for
each x ∈ G and PG(t,x, dy) = pG(t,x,y) dy for each (t,x) ∈ (0,∞) × G. In
particular, use this in conjunction with (i) to conclude that

pG(s+ t,x,y) =

∫
G

pG(t, z,y)pG(s,x, z) dz.

Hint: Keep in mind that (τ, ξ)  (2πτ)−
N
2 e−

|ξ|2
2τ is smooth and bounded as

long as ξ stays away from the origin.

(iv) Given c = (c1, . . . , cN ) ∈ RN and r > 0, let Q(c, r) denote the open cube∏N
i=1(ci − r, ci + r), and show that (cf. Corollary 7.3.4)

pQ(c,r)(t,x,y) =

N∏
i=1

p(ci−r,ci+r)(t, xi, yi)

for x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ Q(c, r). In particular, conclude that
pQ(c,r)(t,x,y) is uniformly positive on compact subsets of (0,∞)×Q(c, r)2.

(v) Assume that G is connected, and show that pG(t,x,y) is uniformly positive
on compact subsets of (0,∞)×G2.

Hint: If Q(c, r) ⊆ G, show that pG(t,x,y) ≥ pQ(c,r)(t,x,y) on (0,∞)×Q(c, r)2.


