## Homework \#5

## Exercise 4.4:

(i) Because $A(t)-A(s)$ is non-negative definite,

$$
\begin{aligned}
\left|A_{i j}(t)-A_{i j}(s)\right| & \leq\left(A_{i i}(t)-A_{i i}(s)\right)^{\frac{1}{2}}\left(A_{j j}(t)-A_{j j}(s)\right)^{\frac{1}{2}} \\
& \leq \frac{\left(A_{i i}(t)-A_{i i}(s)\right)+\left(A_{j j}(t)-A_{j j}(s)\right)}{2} \leq \operatorname{Trace}(A(t)-A(s))
\end{aligned}
$$

for $0 \leq s<t$. Hence, $A_{i j}(\cdot)$ is absolutely continuous, and so, if $a(t)=\left(\left(\dot{A}_{i j}\right)\right)_{1 \leq i, j \leq N}$, then $A(t)=\int_{0}^{t} a(\tau) d t$, from which it is clear that $a$ can be chosen so that it is nonnegative definite. Finally, since

$$
\int_{s}^{t} \operatorname{Trace}(a(\tau)) d \tau=\operatorname{Trace}(A(t)-A(s)) \leq t-s
$$

it follows that $a$ can be chosen so that $\operatorname{Trace}(a(t)) \leq 1$.
(ii)-(iv) Just follow the outline.

Exercise 5.1: Set $M(t)=\psi(t)-\mathbf{x}-\int_{0}^{t} b(\psi(\tau)) d \tau$. Then $\left(M(t), \mathcal{B}_{t}, \mathbb{P}_{\mathbf{x}}\right)$ is a continuous, local $\mathbb{R}^{N}$-valued martingale and $A \equiv\left(\left(\left\langle M_{i}, M_{j}\right\rangle\right)\right)_{1 \leq i, j \leq N}=0$. Hence, since $\left(|M(t)|^{2}-\operatorname{Trace}(A(t)), \mathcal{B}_{t}, \mathbb{P}_{\mathbf{x}}\right)$ is a martingale, $\mathbb{E}^{\mathbb{P}}\left[|M(t)|^{2}\right]=0$.
Exercise 5.2: Note that $d E(t)=-E(t)(\beta(t), d B(t))_{\mathbb{R}^{N}}$, and then apply Itô's formula to see that, for any $\varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$,

$$
d(E(t) \varphi(X(t)))=E(t)(\nabla \varphi(X(t))-\beta(t), d B(t))_{\mathbb{R}^{N}}+\frac{1}{2} E(t) \Delta \varphi(X(t)) d t
$$

and therefore that

$$
\left(E(t) \varphi(X(t))-\frac{1}{2} \int_{0}^{t} E(\tau) \Delta \varphi(X(\tau)) d \tau, \mathcal{F}_{t}, \mathbb{P}\right)
$$

is a martingale. Thus, if $0 \leq s<t$ and $A \in \mathcal{F}_{s}$, then

$$
\begin{aligned}
\mathbb{E}^{\tilde{P}} & {[\varphi(X(t))-\varphi(X(s)) A]=\mathbb{E}^{\mathbb{P}}[E(t) \varphi(X(t))-E(s) \varphi(X(s)) A] } \\
& =\frac{1}{2} \int_{s}^{t} \mathbb{E}^{\mathbb{P}}[E(\tau) \Delta \varphi(X(\tau)), A] d \tau=\frac{1}{2} \int_{s}^{t} \mathbb{E}^{\mathbb{P}}[E(t) \Delta \varphi(X(\tau)), A] d \tau \\
& =\frac{1}{2} \mathbb{E}^{\tilde{P}}\left[\int_{s}^{t} \Delta \varphi(X(\tau)) d \tau, A\right]
\end{aligned}
$$

which means that

$$
\left(\varphi(X(t))-\frac{1}{2} \int_{0}^{t} \Delta \varphi(X(\tau)) d \tau, \mathcal{F}_{t}, \tilde{\mathbb{P}}\right)
$$

is a martingale and therefore that $\left(X(t), \mathcal{F}_{t}, \tilde{\mathbb{P}}\right)$ is a Brownian motion.
Exercise 5.3: By following the outline, one arrives at the conclusion that

$$
\mathcal{W}(\mathfrak{e} \leq 1) \geq \mathcal{W}(w(t) \geq-1 \text { for } t \in[0,1])>0
$$

Thus

$$
\mathbb{E}^{\mathcal{W}}\left[\exp \left(\int_{0}^{t} w(\tau)^{2} d w(\tau)-\frac{1}{2} \int_{0}^{2} w(\tau)^{4} d \tau\right)\right]=\mathcal{W}(\mathfrak{e}>t)<1
$$

## Exercise 5.7:

(i) By Theorem 3.5.3, we know that the span of

$$
\mathbb{R} \oplus\left\{\tilde{I}_{g^{\otimes m}}^{(m)}(\infty): m \geq 1 \& g \in L^{2}([0, \infty) ; \mathbb{R})\right\}
$$

is dense in $L^{2}(\mathcal{W} ; \mathbb{R})$, and from this it is clear that the span of

$$
\mathbb{R} \oplus\left\{\tilde{I}_{(f)^{\otimes m}}^{(m)}(\infty): m \geq 1 \& f \in H^{1}\left(\mathbb{R}^{N}\right)((0, \infty) ; \mathbb{R})\right\}
$$

is also dense there. Futher, by Exercise 3.6, $\tilde{I}_{(\dot{f})^{\otimes m}}^{(m)}(\infty)=H_{m}\left(I(\dot{f}) ;\|\dot{f}\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)$ for $m \geq 1$. Hence $\mathscr{P}\left(\mathbb{W}\left(\mathbb{R}^{N}\right) ; \mathbb{R}\right)$ is dense in $L^{2}(\mathcal{W} ; \mathbb{R})$, and from this it is easy to show that $\mathscr{P}\left(\mathbb{W}\left(\mathbb{R}^{N}\right) ; H\right)$ is dense in $L^{2}(\mathcal{W} ; H)$. Finally, (5.6.1) is a simple application of the chain rule and the fact that $D I(\dot{f})=f$.
(ii) By (3.1.6),

$$
\begin{aligned}
(\Psi, D \Phi)_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)} & =\mathbb{E}^{\mathcal{W}}\left[D_{h} \Phi(\Psi, h)_{H^{1}\left(\mathbb{R}^{N}\right)}\right]=\mathbb{E}^{\mathcal{W}}\left[\Phi\left(I(\dot{h})-D_{h}\right)(\Psi, h)_{H}\right] \\
& =\left(\left(I(\dot{h})-D_{h}\right)(\Psi, h)_{H}, \Phi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})} .
\end{aligned}
$$

(iii) Suppose that $\Phi \in \operatorname{Dom}(D)$ and $\Phi \in \operatorname{Dom}\left(D^{\top}\right)$, and choose $\left\{\Phi_{n}: n \geq 1\right\} \subseteq$ $\mathscr{P}\left(\mathbb{W}\left(\mathbb{R}^{N}\right) ; \mathbb{R}\right)$ so that $\Phi_{n} \longrightarrow \Phi$ in $L^{2}(\mathcal{W} ; \mathbb{R})$ and $D \Phi_{n} \longrightarrow D \Phi$ in $L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)$. Then

$$
\begin{aligned}
\left(\Phi, D^{\top} \Psi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})} & =\lim _{n \rightarrow \infty}\left(\Phi_{n}, D^{\top} \Psi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})} \\
& =\lim _{n \rightarrow \infty}\left(D \Phi_{n}, \Psi\right)_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)}=(D \Phi, \Psi)_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)}
\end{aligned}
$$

(iv) It suffices to treat the case when $\Psi=G\left(I\left(\dot{f}_{1}\right), \ldots, I\left(\dot{f}_{L}\right)\right) h$, where $G$ is a polynomial and $\|h\|_{H^{1}\left(\mathbb{R}^{N}\right)}=1$. In that case,

$$
\sum_{k=1}^{n} I\left(\dot{h}_{k}\right)\left(\Psi, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)}=G\left(I\left(\dot{f}_{1}\right), \ldots, I\left(\dot{f}_{L}\right)\right) I\left(\sum_{k=1}^{n}\left(h, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)} \dot{h}_{k}\right) .
$$

Since $\sum_{k=1}^{n}\left(h, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)} \dot{h}_{k} \longrightarrow h$ in $L^{2}\left([0, \infty) ; \mathbb{R}^{N}\right), I\left(\sum_{k=1}^{n}\left(h, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)} \dot{h}_{k}\right) \longrightarrow$ $I(\dot{h})$ is $L^{p}(\mathcal{W} ; \mathbb{R})$ for all $p \in[1, \infty)$, and therefore

$$
\sum_{k=1}^{n} I\left(\dot{h}_{k}\right)\left(\Psi, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)} \longrightarrow I(\dot{h})(\Psi, h)_{H^{1}\left(\mathbb{R}^{N}\right)} \text { in } L^{2}(\mathcal{W} ; \mathbb{R})
$$

Next,

$$
\begin{aligned}
\sum_{k=1}^{n} D_{h_{k}}\left(\Psi, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)} & =\sum_{k=1}^{n}\left(h, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)}\left(\sum_{\ell=1}^{L}\left(f_{\ell}, h_{k}\right)_{H^{1}\left(\mathbb{R}^{N}\right)} \partial_{x_{\ell}} G\left(I\left(\dot{f}_{1}\right), \ldots, I\left(\dot{f}_{L}\right)\right)\right) \\
& \longrightarrow \sum_{\ell=1}^{L}\left(f_{\ell}, h\right)_{H^{1}\left(\mathbb{R}^{N}\right)} \partial_{x_{\ell}} G\left(I\left(\dot{f}_{1}\right), \ldots, I\left(\dot{f}_{L}\right)\right)=D_{h}(\Psi, h)_{H^{1}\left(\mathbb{R}^{N}\right)}
\end{aligned}
$$

in $L^{2}(\mathcal{W} ; \mathbb{R})$.

## Exercise 5.8:

(i) The only assertion here that needs comment is the final one. Thus, suppose that $\Phi \in \operatorname{Dom}(\mathcal{L})$, and choose $\left\{\Phi_{n}: n \geq 1\right\} \subseteq \mathscr{P}\left(\mathbb{W}\left(\mathbb{R}^{N}\right) ; \mathbb{R}\right)$ so that $\Phi_{n} \longrightarrow \Phi$ and $\mathcal{L} \Phi_{n} \longrightarrow \mathcal{L} \Phi$ in $L^{2}(\mathcal{W} ; \mathbb{R})$. Then, for $1 \leq m<n$,

$$
\begin{aligned}
& \left\|D \Phi_{n}-D \Phi_{m}\right\|_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)}^{2}=\left(\Phi_{n}-\Phi_{m}, \mathcal{L}\left(\Phi_{n}-\Phi_{m}\right)\right)_{L^{2}(\mathcal{W} ; \mathbb{R})} \\
& \quad \leq\left\|\Phi_{n}-\Phi_{m}\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})}\left\|\mathcal{L} \Phi_{n}-\mathcal{L} \Phi_{m}\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})}
\end{aligned}
$$

and therefore $\left\{D \Phi_{n}: n \geq 1\right\}$ converges in $L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)$. Hence $\Phi \in \operatorname{Dom}(D)$, $D \Phi_{n} \longrightarrow D \Phi$ in $L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)$, and

$$
\begin{aligned}
\|D \Phi\|_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)}^{2} & =\lim _{n \rightarrow \infty}\left\|D \Phi_{n}\right\|_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)}^{2} \\
& =\lim _{n \rightarrow \infty}\left(\Phi_{n}, \mathcal{L} \Phi_{n}\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}=(\Phi, \mathcal{L} \Phi)_{L^{2}(\mathcal{W} ; \mathbb{R})}
\end{aligned}
$$

from which the asserted result follows by polarization.
(ii) This is an immediate consequence of (5.6.2).
(iii) By following the outline, one arrives at $H_{m}^{\prime}=m H_{m-1}$ for $m \geq 1$. Hence, since $x H_{m-1}(x)-H_{m-1}^{\prime}=H_{m}$, it follows that $x H_{m}^{\prime}(x)-H_{m}^{\prime \prime}(x)=m H_{m}(x)$. Finally, since $H_{m}(x, a)=a^{\frac{m}{2}} H_{m}\left(a^{-\frac{1}{2}} x\right)$, this leads to $x \partial_{x} H_{m}(x, a)-a \partial_{x}^{2} H_{m}(x, a)=$ $m H_{m}(x, a)$.
(iv) By Theorem 3.5.3, we know that $\mathbb{R} \oplus\left\{\tilde{I}_{f \otimes m}^{(m)}(\infty): f \in H^{1}\left(\mathbb{R}^{N}\right)\right\}$ is dense in $Z^{(m)}$, and, by Exercise 3.6, we know that $\tilde{I}_{f^{\otimes m}}^{(m)}(\infty)=H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)$. Next, set $\Phi=H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)$, and choose an orthonormal basis $\left\{h_{m}: m \geq 1\right\}$ with $h_{1}=\frac{f}{\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}}$. Then

$$
\begin{aligned}
& \mathcal{L} \Phi=I\left(\dot{h}_{1}\right) D_{h_{1}} \Phi-D_{h_{1}}^{2} \Phi=I\left(\dot{h}_{1}\right)\left(f, h_{1}\right)_{H^{1}\left(\mathbb{R}^{N}\right)} \partial_{x} H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right) \\
& \quad-\left(f, h_{1}\right)_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \partial_{x}^{2} H_{m}\left(I(\dot{h}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right) \\
&=I(\dot{f}) \partial_{x} H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)-\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \partial_{x}^{2} H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right) \\
&=m H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right) .
\end{aligned}
$$

Now suppose that

$$
\left\{\Phi_{n}: n \geq 1\right\} \subseteq \operatorname{span}\left(\mathbb{R} \oplus\left\{H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right): f \in H^{1}\left(\mathbb{R}^{N}\right)\right\}\right)
$$

and that $\Phi_{n} \longrightarrow \Phi$ in $L^{2}(\mathcal{W} ; \mathbb{R})$. Then $\mathcal{L} \Phi_{n}=m \Phi_{n} \longrightarrow m \Phi$ in $L^{2}(\mathcal{W} ; \mathbb{R})$ and so $\Phi \in \operatorname{Dom}(\mathcal{L})$ and $\mathcal{L} \Phi=m \Phi$. Conversely, suppose that $\Phi \in \operatorname{Dom}(\mathcal{L})$ and that $\mathcal{L} \Phi=m \Phi$. If $\Psi \in Z^{(n)}$, then

$$
m(\Phi, \Psi)_{L^{2}(\mathcal{W} ; \mathbb{R})}=(\mathcal{L} \Phi, \Psi)_{L^{2}(\mathcal{W} ; \mathbb{R})}=(\Phi, \mathcal{L} \Psi)_{L^{2}(\mathcal{W} ; \mathbb{R})}=n(\Phi, \Psi)_{L^{2}(\mathcal{W} ; \mathbb{R})}
$$

and so either $m=n$ or $(\Phi, \Psi)_{L^{2}(\mathcal{W} ; \mathbb{R})}=0$. Hence $\Phi \in Z^{(m)}$. Finally, observe that for any $a \geq 0$ and $m \geq 1, \partial_{x} H_{m}(x, a)=m H_{m-1}(x, a)$ follows from $H_{m}(x, a)=a^{\frac{m}{2}} H_{m}\left(a^{-\frac{1}{2}} \mathbf{x}\right)$ and $H_{m}^{\prime}=m H_{m-1}$. Thus, if $\Phi=H_{m}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)$, then $D_{h} \Phi=m(f, h)_{H^{1}\left(\mathbb{R}^{N}\right)} H_{m-1}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)$, and so

$$
\mathcal{L} D_{h} \Phi=m(f, h)_{H^{1}\left(\mathbb{R}^{N}\right)}(m-1) H_{m-1}\left(I(\dot{f}),\|f\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)=(m-1) D_{h} \Phi .
$$

Starting from this, it is an easy matter to check that $\mathcal{L} D_{h} \Phi=(m-1) D_{h} \Phi$ for all $\Phi \in Z^{(m)}$.
(v) Suppose that $\Phi \in L^{2}(\mathcal{W} ; \mathbb{R})$ and that
(*)

$$
\sum_{m=0}^{\infty} m^{2}\left\|\Pi_{Z^{(m)}} \Phi\right\|_{L^{2}\left(\mathcal{W} ; \mathbb{R}^{N}\right)}^{2}<\infty
$$

Set $\Phi_{n}=\sum_{m=0}^{n} \Pi_{Z^{(m)}} \Phi$. Then $\Phi_{n} \longrightarrow \Phi$ in $L^{2}(\mathcal{W} ; \mathbb{R})$ and $\mathcal{L} \Phi_{n}=\sum_{m=0}^{n} m \Pi_{Z^{(m)}} \Phi$. Thus, because of $(*)$, we know that $\mathcal{L} \Phi_{n} \longrightarrow \sum_{m=0}^{\infty} m \Pi_{Z^{(m)}} \Phi$ in $L^{2}(\mathcal{W} ; \mathbb{R}), \Phi \in$ $\operatorname{Dom}(\mathcal{L})$ and $\mathcal{L} \Phi=\sum_{m=0}^{\infty} m \Pi_{Z^{(m)}} \Phi$.

Next suppose that $\Phi \in \operatorname{Dom}(\mathcal{L})$. Then, for any $\Psi \in L^{2}(\mathcal{W} ; \mathbb{R})$,

$$
\begin{aligned}
\left(\Pi_{Z^{(m)}} \mathcal{L} \Phi, \Psi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})} & =\left(\mathcal{L} \Phi, \Pi_{Z^{(m)}} \Psi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}=\left(\Phi, \mathcal{L} \Pi_{Z^{(m)}} \Psi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})} \\
& =m\left(\Phi, \Pi_{Z^{(m)}} \Psi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}=m\left(\Pi_{Z^{(m)}} \Phi, \Psi\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}
\end{aligned}
$$

and so $\Pi_{Z^{(m)}} \mathcal{L} \Phi=m \Pi_{Z^{(m)}} \Phi$. Hence,

$$
\sum_{m=0}^{\infty} m^{2}\left\|\Pi_{Z^{(m)}} \Phi\right\|_{L^{2}\left(\mathcal{W} ; \mathbb{R}^{N}\right)}^{2}=\|\mathcal{L} \Phi\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2}<\infty
$$

