Homework #5

Exercise 4.4:

(i) Because A(t) - A(s) is non-negative definite,

$$|A_{ij}(t) - A_{ij}(s)| \le \left(A_{ii}(t) - A_{ii}(s)\right)^{\frac{1}{2}} \left(A_{jj}(t) - A_{jj}(s)\right)^{\frac{1}{2}} \le \frac{\left(A_{ii}(t) - A_{ii}(s)\right) + \left(A_{jj}(t) - A_{jj}(s)\right)}{2} \le \operatorname{Trace}\left(A(t) - A(s)\right)$$

for $0 \leq s < t$. Hence, $A_{ij}(\cdot)$ is absolutely continuous, and so, if $a(t) = \left(\left(\dot{A}_{ij}\right)\right)_{1 \leq i,j \leq N}$, then $A(t) = \int_0^t a(\tau) dt$, from which it is clear that a can be chosen so that it is non-negative definite. Finally, since

$$\int_{s}^{t} \operatorname{Trace}(a(\tau)) d\tau = \operatorname{Trace}(A(t) - A(s)) \leq t - s,$$

it follows that a can be chosen so that $\operatorname{Trace}(a(t)) \leq 1$.

(ii)-(iv) Just follow the outline.

Exercise 5.1: Set $M(t) = \psi(t) - \mathbf{x} - \int_0^t b(\psi(\tau)) d\tau$. Then $(M(t), \mathcal{B}_t, \mathbb{P}_{\mathbf{x}})$ is a continuous, local \mathbb{R}^N -valued martingale and $A \equiv ((\langle M_i, M_j \rangle))_{1 \leq i,j \leq N} = 0$. Hence, since $(|M(t)|^2 - \operatorname{Trace}(A(t)), \mathcal{B}_t, \mathbb{P}_{\mathbf{x}})$ is a martingale, $\mathbb{E}^{\mathbb{P}}[|M(t)|^2] = 0$.

Exercise 5.2: Note that $dE(t) = -E(t)(\beta(t), dB(t))_{\mathbb{R}^N}$, and then apply Itô's formula to see that, for any $\varphi \in C_c^{\infty}(\mathbb{R}^N; \mathbb{R})$,

$$d\Big(E(t)\varphi\big(X(t)\big)\Big) = E(t)\Big(\nabla\varphi\big(X(t)\big) - \beta(t), dB(t)\Big)_{\mathbb{R}^N} + \frac{1}{2}E(t)\Delta\varphi\big(X(t)\big)\,dt,$$

and therefore that

$$\left(E(t)\varphi(X(t)) - \frac{1}{2}\int_0^t E(\tau)\Delta\varphi(X(\tau))\,d\tau, \mathcal{F}_t, \mathbb{P}\right)$$

is a martingale. Thus, if $0 \leq s < t$ and $A \in \mathcal{F}_s$, then

$$\mathbb{E}^{\tilde{P}}\left[\varphi(X(t)) - \varphi(X(s))A\right] = \mathbb{E}^{\mathbb{P}}\left[E(t)\varphi(X(t)) - E(s)\varphi(X(s))A\right]$$
$$= \frac{1}{2}\int_{s}^{t}\mathbb{E}^{\mathbb{P}}\left[E(\tau)\Delta\varphi(X(\tau)), A\right]d\tau = \frac{1}{2}\int_{s}^{t}\mathbb{E}^{\mathbb{P}}\left[E(t)\Delta\varphi(X(\tau)), A\right]d\tau$$
$$= \frac{1}{2}\mathbb{E}^{\tilde{\mathbb{P}}}\left[\int_{s}^{t}\Delta\varphi(X(\tau))d\tau, A\right],$$

which means that

$$\left(\varphi(X(t)) - \frac{1}{2} \int_0^t \Delta\varphi(X(\tau)) \, d\tau, \mathcal{F}_t, \tilde{\mathbb{P}}\right)$$

is a martingale and therefore that $(X(t), \mathcal{F}_t, \mathbb{P})$ is a Brownian motion.

Exercise 5.3: By following the outline, one arrives at the conclusion that

$$\mathcal{W}(\mathfrak{e} \leq 1) \geq \mathcal{W}(w(t) \geq -1 \text{ for } t \in [0,1]) > 0.$$

Thus

$$\mathbb{E}^{\mathcal{W}}\left[\exp\left(\int_{0}^{t} w(\tau)^{2} dw(\tau) - \frac{1}{2} \int_{0}^{2} w(\tau)^{4} d\tau\right)\right] = \mathcal{W}(\mathfrak{e} > t) < 1.$$

Exercise 5.7:

(i) By Theorem 3.5.3, we know that the span of

$$\mathbb{R} \oplus \{ \tilde{I}_{g^{\otimes m}}^{(m)}(\infty) : \ m \ge 1 \ \& \ g \in L^2([0,\infty);\mathbb{R}) \}$$

is dense in $L^2(\mathcal{W}; \mathbb{R})$, and from this it is clear that the span of

$$\mathbb{R} \oplus \{ \tilde{I}_{(\dot{f})^{\otimes m}}^{(m)}(\infty) : m \ge 1 \& f \in H^1(\mathbb{R}^N) \big((0,\infty); \mathbb{R} \big) \}$$

is also dense there. Futher, by Exercise 3.6, $\tilde{I}_{(\dot{f})\otimes m}^{(m)}(\infty) = H_m(I(\dot{f}); \|\dot{f}\|_{H^1(\mathbb{R}^N)}^2)$ for $m \geq 1$. Hence $\mathscr{P}(\mathbb{W}(\mathbb{R}^N); \mathbb{R})$ is dense in $L^2(\mathcal{W}; \mathbb{R})$, and from this it is easy to show that $\mathscr{P}(\mathbb{W}(\mathbb{R}^N); H)$ is dense in $L^2(\mathcal{W}; H)$. Finally, (5.6.1) is a simple application of the chain rule and the fact that $DI(\dot{f}) = f$.

(**ii**) By (3.1.6),

$$\begin{split} \left(\Psi, D\Phi\right)_{L^2(\mathcal{W}; H^1(\mathbb{R}^N))} &= \mathbb{E}^{\mathcal{W}} \left[D_h \Phi(\Psi, h)_{H^1(\mathbb{R}^N)} \right] = \mathbb{E}^{\mathcal{W}} \left[\Phi \left(I(\dot{h}) - D_h \right) (\Psi, h)_H \right] \\ &= \left(\left(I(\dot{h}) - D_h \right) (\Psi, h)_H, \Phi \right)_{L^2(\mathcal{W}; \mathbb{R})}. \end{split}$$

(iii) Suppose that $\Phi \in \text{Dom}(D)$ and $\Phi \in \text{Dom}(D^{\top})$, and choose $\{\Phi_n : n \ge 1\} \subseteq \mathscr{P}(\mathbb{W}(\mathbb{R}^N);\mathbb{R})$ so that $\Phi_n \longrightarrow \Phi$ in $L^2(\mathcal{W};\mathbb{R})$ and $D\Phi_n \longrightarrow D\Phi$ in $L^2(\mathcal{W};H^1(\mathbb{R}^N))$. Then

$$(\Phi, D^{\top}\Psi)_{L^{2}(\mathcal{W};\mathbb{R})} = \lim_{n \to \infty} (\Phi_{n}, D^{\top}\Psi)_{L^{2}(\mathcal{W};\mathbb{R})} = \lim_{n \to \infty} (D\Phi_{n}, \Psi)_{L^{2}(\mathcal{W};H^{1}(\mathbb{R}^{N}))} = (D\Phi, \Psi)_{L^{2}(\mathcal{W};H^{1}(\mathbb{R}^{N}))}.$$

(iv) It suffices to treat the case when $\Psi = G(I(\dot{f}_1), \ldots, I(\dot{f}_L))h$, where G is a polynomial and $||h||_{H^1(\mathbb{R}^N)} = 1$. In that case,

$$\sum_{k=1}^{n} I(\dot{h}_{k})(\Psi, h_{k})_{H^{1}(\mathbb{R}^{N})} = G(I(\dot{f}_{1}), \dots, I(\dot{f}_{L}))I\left(\sum_{k=1}^{n} (h, h_{k})_{H^{1}(\mathbb{R}^{N})}\dot{h}_{k}\right).$$

Since $\sum_{k=1}^{n} (h, h_k)_{H^1(\mathbb{R}^N)} \dot{h}_k \longrightarrow h \text{ in } L^2([0, \infty); \mathbb{R}^N), I\left(\sum_{k=1}^{n} (h, h_k)_{H^1(\mathbb{R}^N)} \dot{h}_k\right) \longrightarrow I(\dot{h})$ is $L^p(\mathcal{W}; \mathbb{R})$ for all $p \in [1, \infty)$, and therefore

$$\sum_{k=1}^{n} I(\dot{h}_k)(\Psi, h_k)_{H^1(\mathbb{R}^N)} \longrightarrow I(\dot{h})(\Psi, h)_{H^1(\mathbb{R}^N)} \text{ in } L^2(\mathcal{W}; \mathbb{R})$$

Next,

$$\sum_{k=1}^{n} D_{h_{k}}(\Psi, h_{k})_{H^{1}(\mathbb{R}^{N})} = \sum_{k=1}^{n} (h, h_{k})_{H^{1}(\mathbb{R}^{N})} \left(\sum_{\ell=1}^{L} (f_{\ell}, h_{k})_{H^{1}(\mathbb{R}^{N})} \partial_{x_{\ell}} G(I(\dot{f}_{1}), \dots, I(\dot{f}_{L})) \right)$$
$$\longrightarrow \sum_{\ell=1}^{L} (f_{\ell}, h)_{H^{1}(\mathbb{R}^{N})} \partial_{x_{\ell}} G(I(\dot{f}_{1}), \dots, I(\dot{f}_{L})) = D_{h}(\Psi, h)_{H^{1}(\mathbb{R}^{N})}$$

in $L^2(\mathcal{W};\mathbb{R})$.

Exercise 5.8:

(i) The only assertion here that needs comment is the final one. Thus, suppose that $\Phi \in \text{Dom}(\mathcal{L})$, and choose $\{\Phi_n : n \ge 1\} \subseteq \mathscr{P}(\mathbb{W}(\mathbb{R}^N);\mathbb{R})$ so that $\Phi_n \longrightarrow \Phi$ and $\mathcal{L}\Phi_n \longrightarrow \mathcal{L}\Phi$ in $L^2(\mathcal{W};\mathbb{R})$. Then, for $1 \le m < n$,

$$\begin{aligned} \left\| D\Phi_n - D\Phi_m \right\|_{L^2(\mathcal{W}; H^1(\mathbb{R}^N))}^2 &= \left(\Phi_n - \Phi_m, \mathcal{L}(\Phi_n - \Phi_m) \right)_{L^2(\mathcal{W}; \mathbb{R})} \\ &\leq \left\| \Phi_n - \Phi_m \right\|_{L^2(\mathcal{W}; \mathbb{R})} \left\| \mathcal{L}\Phi_n - \mathcal{L}\Phi_m \right\|_{L^2(\mathcal{W}; \mathbb{R})}, \end{aligned}$$

and therefore $\{D\Phi_n : n \geq 1\}$ converges in $L^2(\mathcal{W}; H^1(\mathbb{R}^N))$. Hence $\Phi \in \text{Dom}(D)$, $D\Phi_n \longrightarrow D\Phi$ in $L^2(\mathcal{W}; H^1(\mathbb{R}^N))$, and

$$\begin{split} \|D\Phi\|_{L^{2}(\mathcal{W};H^{1}(\mathbb{R}^{N}))}^{2} &= \lim_{n \to \infty} \|D\Phi_{n}\|_{L^{2}(\mathcal{W};H^{1}(\mathbb{R}^{N}))}^{2} \\ &= \lim_{n \to \infty} (\Phi_{n},\mathcal{L}\Phi_{n})_{L^{2}(\mathcal{W};\mathbb{R})} = (\Phi,\mathcal{L}\Phi)_{L^{2}(\mathcal{W};\mathbb{R})}, \end{split}$$

from which the asserted result follows by polarization.

(ii) This is an immediate consequence of (5.6.2).

(iii) By following the outline, one arrives at $H'_m = mH_{m-1}$ for $m \ge 1$. Hence, since $xH_{m-1}(x) - H'_{m-1} = H_m$, it follows that $xH'_m(x) - H''_m(x) = mH_m(x)$. Finally, since $H_m(x,a) = a^{\frac{m}{2}}H_m(a^{-\frac{1}{2}}x)$, this leads to $x\partial_x H_m(x,a) - a\partial_x^2 H_m(x,a) = mH_m(x,a)$.

(iv) By Theorem 3.5.3, we know that $\mathbb{R} \oplus \{\tilde{I}_{f^{\otimes m}}^{(m)}(\infty) : f \in H^1(\mathbb{R}^N)\}$ is dense in $Z^{(m)}$, and, by Exercise 3.6, we know that $\tilde{I}_{f^{\otimes m}}^{(m)}(\infty) = H_m(I(\dot{f}), \|f\|_{H^1(\mathbb{R}^N)}^2)$. Next, set $\Phi = H_m(I(\dot{f}), \|f\|_{H^1(\mathbb{R}^N)}^2)$, and choose an orthonormal basis $\{h_m : m \geq 1\}$ with $h_1 = \frac{f}{\|f\|_{H^1(\mathbb{R}^N)}}$. Then

$$\mathcal{L}\Phi = I(\dot{h}_{1})D_{h_{1}}\Phi - D_{h_{1}}^{2}\Phi = I(\dot{h}_{1})(f,h_{1})_{H^{1}(\mathbb{R}^{N})}\partial_{x}H_{m}(I(\dot{f}), \|f\|_{H^{1}(\mathbb{R}^{N})}^{2}) - (f,h_{1})_{H^{1}(\mathbb{R}^{N})}^{2}\partial_{x}^{2}H_{m}(I(\dot{h}), \|f\|_{H^{1}(\mathbb{R}^{N})}^{2}) = I(\dot{f})\partial_{x}H_{m}(I(\dot{f}), \|f\|_{H^{1}(\mathbb{R}^{N})}^{2}) - \|f\|_{H^{1}(\mathbb{R}^{N})}^{2}\partial_{x}^{2}H_{m}(I(\dot{f}), \|f\|_{H^{1}(\mathbb{R}^{N})}^{2}) = mH_{m}(I(\dot{f}), \|f\|_{H^{1}(\mathbb{R}^{N})}^{2}).$$

Now suppose that

$$\{\Phi_n: n \ge 1\} \subseteq \operatorname{span}\left(\mathbb{R} \oplus \{H_m(I(\dot{f}), \|f\|_{H^1(\mathbb{R}^N)}^2): f \in H^1(\mathbb{R}^N)\}\right)$$

and that $\Phi_n \longrightarrow \Phi$ in $L^2(\mathcal{W}; \mathbb{R})$. Then $\mathcal{L}\Phi_n = m\Phi_n \longrightarrow m\Phi$ in $L^2(\mathcal{W}; \mathbb{R})$ and so $\Phi \in \text{Dom}(\mathcal{L})$ and $\mathcal{L}\Phi = m\Phi$. Conversely, suppose that $\Phi \in \text{Dom}(\mathcal{L})$ and that $\mathcal{L}\Phi = m\Phi$. If $\Psi \in Z^{(n)}$, then

$$m(\Phi,\Psi)_{L^2(\mathcal{W};\mathbb{R})} = \left(\mathcal{L}\Phi,\Psi\right)_{L^2(\mathcal{W};\mathbb{R})} = \left(\Phi,\mathcal{L}\Psi\right)_{L^2(\mathcal{W};\mathbb{R})} = n(\Phi,\Psi)_{L^2(\mathcal{W};\mathbb{R})},$$

and so either m = n or $(\Phi, \Psi)_{L^2(\mathcal{W};\mathbb{R})} = 0$. Hence $\Phi \in Z^{(m)}$. Finally, observe that for any $a \ge 0$ and $m \ge 1$, $\partial_x H_m(x, a) = mH_{m-1}(x, a)$ follows from $H_m(x, a) = a^{\frac{m}{2}} H_m(a^{-\frac{1}{2}}\mathbf{x})$ and $H'_m = mH_{m-1}$. Thus, if $\Phi = H_m(I(\dot{f}), \|f\|^2_{H^1(\mathbb{R}^N)})$, then $D_h \Phi = m(f, h)_{H^1(\mathbb{R}^N)} H_{m-1}(I(\dot{f}), \|f\|^2_{H^1(\mathbb{R}^N)})$, and so

$$\mathcal{L}D_h\Phi = m(f,h)_{H^1(\mathbb{R}^N)}(m-1)H_{m-1}(I(\dot{f}), \|f\|_{H^1(\mathbb{R}^N)}^2) = (m-1)D_h\Phi.$$

Starting from this, it is an easy matter to check that $\mathcal{L}D_h\Phi = (m-1)D_h\Phi$ for all $\Phi \in \mathbb{Z}^{(m)}$.

(v) Suppose that $\Phi \in L^2(\mathcal{W}; \mathbb{R})$ and that

(*)
$$\sum_{m=0}^{\infty} m^2 \|\Pi_{Z^{(m)}}\Phi\|_{L^2(\mathcal{W};\mathbb{R}^N)}^2 < \infty.$$

Set $\Phi_n = \sum_{m=0}^n \Pi_{Z^{(m)}} \Phi$. Then $\Phi_n \longrightarrow \Phi$ in $L^2(\mathcal{W}; \mathbb{R})$ and $\mathcal{L}\Phi_n = \sum_{m=0}^n m \Pi_{Z^{(m)}} \Phi$. Thus, because of (*), we know that $\mathcal{L}\Phi_n \longrightarrow \sum_{m=0}^\infty m \Pi_{Z^{(m)}} \Phi$ in $L^2(\mathcal{W}; \mathbb{R}), \Phi \in$ Dom(\mathcal{L}) and $\mathcal{L}\Phi = \sum_{m=0}^\infty m \Pi_{Z^{(m)}} \Phi$. Next suppose that $\Phi \in \text{Dom}(\mathcal{L})$. Then, for any $\Psi \in L^2(\mathcal{W}; \mathbb{R})$,

$$(\Pi_{Z^{(m)}} \mathcal{L}\Phi, \Psi)_{L^2(\mathcal{W};\mathbb{R})} = (\mathcal{L}\Phi, \Pi_{Z^{(m)}}\Psi)_{L^2(\mathcal{W};\mathbb{R})} = (\Phi, \mathcal{L}\Pi_{Z^{(m)}}\Psi)_{L^2(\mathcal{W};\mathbb{R})}$$
$$= m(\Phi, \Pi_{Z^{(m)}}\Psi)_{L^2(\mathcal{W};\mathbb{R})} = m(\Pi_{Z^{(m)}}\Phi, \Psi)_{L^2(\mathcal{W};\mathbb{R})},$$

and so $\Pi_{Z^{(m)}}\mathcal{L}\Phi = m\Pi_{Z^{(m)}}\Phi$. Hence,

$$\sum_{m=0}^{\infty} m^2 \|\Pi_{Z^{(m)}} \Phi\|_{L^2(\mathcal{W};\mathbb{R}^N)}^2 = \|\mathcal{L}\Phi\|_{L^2(\mathcal{W};\mathbb{R})}^2 < \infty.$$