Homework #°5

Exercise 4.4:
(i) Because A(t) — A(s) is non-negative definite,

[435(8) = Ay (5)] < (Ault) = Ai(9))* (455(0) = 455 (5)
< (Asi(t) — Aisl(s)) + (Aj;(t) — Aj;(s))

- 2
for 0 < s < t. Hence, A;;( ) is absolutely continuous, and so, if a(t) = ((Aij))1§i,j§N7

then A(t) = fot a(7) dt, from which it is clear that a can be chosen so that it is non-

negative definite. Finally, since

SIS

< Trace(A(t) — A(s))

/ Trace(a()) dr = Trace(A(t) — A(s)) <t — s,

it follows that a can be chosen so that Trace(a(t)) < 1.
(ii)—(iv) Just follow the outline.

Exercise 5.1: Set M(t) = - x— fo b(y(7))dr. Then (M(t),B;,Px) is a
continuous, local RY-valued martlngale and A = (((MZ, M; >)) 1<ij<N = = 0. Hence,

since (|M(t)|> — Trace(A(t)), B:,Px) is a martingale, E¥ [|M (¢)[?] = 0.

Exercise 5.2: Note that dE(t) = —E(t)(8(t),dB(t))
formula to see that, for any p € C°(RY;R),

d(E®e(X(1)) = B (Ve (X (1) - B1).dB®)_ + %E(t)m(xu)) dt,
and therefore that
<E(t)<p(X(t)) - %/o E(T)A(p(X(T)) dr, ft,]P’>
is a martingale. Thus, if 0 < s <t and A € Fg, then

EP[o(X (1) = ¢ (X(5) A] = B [E@)o(X (1) - E(s)p(X(5)) 4]
1

- 2/tEP[ Dap(x(n), A ar = 5 [ B [EO86(X0), 4] ar
*EP U Ap(X(r)) dr, A}

which means that
< — */ ASO dT ft, >

is a martingale and therefore that ( t), Ft, ) is a Brownian motion.

g and then apply It0’s

Exercise 5.3: By following the outline, one arrives at the conclusion that
W(e<1)>W(w(t) > —1for t € [0,1]) > 0.

EWY {exp (/Otw(T)de(T) - ;/jw(T)“dT)] =W(e>t) <1

Exercise 5.7:

Thus



(i) By Theorem 3.5.3, we know that the span of

Ra {17 (00) : m >1& g € L(0,0); R)}

ge™
is dense in L?(W;R), and from this it is clear that the span of

Ro{I (f)®m(oo): m>1& fe H'(RY)((0,00);R)}

is also dense there. Futher, by Exercise 3.6, I(m) (00) = Hy (I(f); Hf”Hl(]RN ) for

( )®7n
m > 1. Hence 2 (W(R™);R) is dense in L?(W;R), and from this it is easy to show

that &2(W(RY); H) is dense in L?(W; H). Finally, (5.6.1) is a simple application
of the chain rule and the fact that DI(f) = f.

(ii) By (3.1.6),
(T, D®) =B [Dp® (T, h) g1 (eny| = EV[®(I(h) — Dp) (¥, h)y]

= ((I(il) — Dy)(¥, h)m

L2(W;H (RY))

, q>) .
L2(WR)

(iii) Suppose that ® € Dom(D) and ® € Dom(D "), and choose {®,, : n > 1} C
2(W(RY); R) so that ®,, — @ in L*(W;R) and D®,, — D® in L?(W; H1 Ny).
Then

(2, D)

.
L2(W;R) nh_fﬂo (®n, D" W) L2(WiR)

= lim (D®,, V)

R oo L2(W;HL(RN)) — (D2, w)

L2(W;H (RN )

(iv) It suffices to treat the case when ¥ = G(I(fl), . 7I(f.L))h, where G is a
polynomial and [|h]| 1 (gvy = 1. In that case,

3

> 1) (W, he) ey = G(I(fr), - I(fu)T ( (h, hk)Hl(RN)hk> :
k=1 k

=1
Since ZZ:l(h’ hk)Hl(]RN)hk — hin LQ([O, OO); RN), 1 (Z::l(h7 hk)Hl(RN)hk) —
I(h) is LP(W;R) for all p € [1,00), and therefore

D () (W, h) ey — I(R) (W, h) vy in L2V R).
k=1

Next,

n L
Zth (O, hi) vy = > (hy b)) (Z(f@ahk)Hl(]RN)amgG(I(fl)a~~~aI(fL))>
k=1

k=1 (=1
L . .
— Z fg, Hl(RN)awG(I(fl), - ,I(fL)) = Dh(\I/, h)Hl(RN)
(=1

in L2(W;R).

Exercise 5.8:



3

(i) The only assertion here that needs comment is the final one. Thus, suppose
that ® € Dom(£), and choose {®,, : n > 1} C Z(W(RY);R) so that ®,, — @
and L&, — L® in L>(W;R). Then, for 1 <m < n,

2
HD‘I)H mHLZ(W;Hl(RN)) = (0 — P, L(Pn
S| Pn — @2 owir) 1£Prn — LPp || L20wiR) 5

and therefore {D®,, : n > 1} converges in L?(W; H*(RY)). Hence ® € Dom(D),
D®, — D® in L*(W; H'(R")), and

Pi)) 2wy

||D(I)H%2(W;H1(RN)) = nh_ffgo ||D‘I’n||2L2(W;H1(RN))
= WILH;Q(¢H’ ,C(I) )Lz(W R) ((I) E(I))LZ(W ]R)

from which the asserted result follows by polarization.
(ii) This is an immediate consequence of (5.6.2).

(iii) By following the outline, one arrives at H, = mH,,_; for m > 1. Hence,
since *H,,—1(x) — H,_1 = H,,, it follows that zH/ (x) — H! () = mHy,(z).
Finally, since Hm(x, a) = a’® H,,(a"2z), this leads to 20, H,, (, a)—ad2H,, (z,a) =

(1v) By Theorem 3.5.3, we know that R @ {I}glm( ) . f € HY(RY)} is dense in

Z(m) | and, by Exercise 3.6, we know that I}g,)n( ) = Hn (I(f ), I £11% RN)) Next,
set ® = H,, (I(f ), I £1132 ]RN)) and choose an orthonormal basis {h,, : m > 1}
with hy = 72— Then

HfHHl(RN)

LO = I(h1) Dy, ® — D} @ = I(h1)(f, h1) s 2y O Hon (I(F), | £ 132 ()
— (fs 1) @y O3 Hn (I(h), £ 11 )
= 1(/)0u Hon (T(F), 1 F 301 cvy) = (1517 vy 02 Hon (TCF), 11111 vy )
= mHo (1), 1131 @) -
Now suppose that
(@t 0> 1) € span(R & (H (1) 1)) < S € HARY)))

and that ®, — ® in L?(W;R). Then £L®,, = m®, — m® in L?(W;R) and
so ® € Dom(L) and L& = m®. Conversely, suppose that & € Dom(L) and that
LD =m®. If U e Z™ then

m(CI), \I/)LQ(W;]R) = (E(p, \P)LQ(W;R) = ((p, E\If) L2(W;R) = ’Il((I), lIl)LQ(W;]R)a

and so either m = n or (®,V)r2yr) = 0. Hence ¢ € Z(m) " Finally, ob-
serve that for any a > 0 and m > 1, 0, Hyp,(x,a) = mHp,_1(x,a) follows from
Hy(2,0) = % Hy(a”2x) and H}, = mH,, 1. Thus, if & = Hy (I(f), | [ gy )

then Dy ® = m(f, h)Hl(RN)Hm_l( (f ) Hf||H1(RN ) and so
LDyp® = m(f,h)p1@~y(m — 1)Hm—1(1(f)7 ||f||2H1(]RN)) = (m —1)Dy®.

Starting from this, it is an easy matter to check that LD, ® = (m — 1) D, ® for all
dezm,



(v) Suppose that ® € L?(W;R) and that

(%) Z m2 |z @22,z < 00

m=0
Set @, = > _ Mz ®. Then ®, — ®in L2 (W;R) and L&P,, = > _  mIlzm P.
Thus, because of (x), we know that L&, — Y>> mIlm® in L*(W;R), ® €
Dom(L) and L& =" °_ mlIl ;) ®.
Next suppose that ® € Dom(L). Then, for any ¥ € LZ2(W;R),
(HZ(m)cq)7 \IJ>L2(W;]R) = (‘C(I)J HZ("") \I}) @, EHZ(’") \I/)
=m(®, I P)

and so Il ;m) L& = mIl,;m)P. Hence,

L2(WR) ( L2(W;R)

I (m) @, W)

L2(WR) — m( L2(WR)

Z M2z @72 iy = [1L@I72(wm) < 00

m=0



