
Homework #5

Exercise 4.4:

(i) Because A(t)−A(s) is non-negative definite,

|Aij(t)−Aij(s)| ≤
(
Aii(t)−Aii(s)

) 1
2
(
Ajj(t)−Ajj(s)

) 1
2

≤
(
Aii(t)−Aii(s)

)
+
(
Ajj(t)−Ajj(s)

)
2

≤ Trace
(
A(t)−A(s)

)
for 0 ≤ s < t. Hence, Aij( · ) is absolutely continuous, and so, if a(t) =

((
Ȧij

))
1≤i,j≤N ,

then A(t) =
∫ t

0
a(τ) dt, from which it is clear that a can be chosen so that it is non-

negative definite. Finally, since∫ t

s

Trace
(
a(τ)

)
dτ = Trace

(
A(t)−A(s)

)
≤ t− s,

it follows that a can be chosen so that Trace
(
a(t)

)
≤ 1.

(ii)–(iv) Just follow the outline.

Exercise 5.1: Set M(t) = ψ(t) − x −
∫ t

0
b
(
ψ(τ)

)
dτ . Then

(
M(t),Bt,Px

)
is a

continuous, local RN -valued martingale and A ≡
((
〈Mi,Mj〉

))
1≤i,j≤N = 0. Hence,

since
(
|M(t)|2 − Trace

(
A(t)

)
,Bt,Px

)
is a martingale, EP[|M(t)|2

]
= 0.

Exercise 5.2: Note that dE(t) = −E(t)
(
β(t), dB(t)

)
RN , and then apply Itô’s

formula to see that, for any ϕ ∈ C∞c (RN ;R),

d
(
E(t)ϕ

(
X(t)

))
= E(t)

(
∇ϕ
(
X(t)

)
− β(t), dB(t)

)
RN

+
1

2
E(t)∆ϕ

(
X(t)

)
dt,

and therefore that(
E(t)ϕ

(
X(t)

)
− 1

2

∫ t

0

E(τ)∆ϕ
(
X(τ)

)
dτ,Ft,P

)
is a martingale. Thus, if 0 ≤ s < t and A ∈ Fs, then

EP̃
[
ϕ
(
X(t)

)
− ϕ

(
X(s)

)
A
]

= EP
[
E(t)ϕ

(
X(t)

)
− E(s)ϕ

(
X(s)

)
A
]

=
1

2

∫ t

s

EP
[
E(τ)∆ϕ

(
X(τ)

)
, A
]
dτ =

1

2

∫ t

s

EP
[
E(t)∆ϕ

(
X(τ)

)
, A
]
dτ

=
1

2
EP̃
[∫ t

s

∆ϕ
(
X(τ)

)
dτ, A

]
,

which means that (
ϕ
(
X(t)

)
− 1

2

∫ t

0

∆ϕ
(
X(τ)

)
dτ,Ft, P̃

)
is a martingale and therefore that

(
X(t),Ft, P̃

)
is a Brownian motion.

Exercise 5.3: By following the outline, one arrives at the conclusion that

W(e ≤ 1) ≥ W
(
w(t) ≥ −1 for t ∈ [0, 1]

)
> 0.

Thus

EW
[
exp

(∫ t

0

w(τ)2 dw(τ)− 1

2

∫ 2

0

w(τ)4 dτ

)]
=W(e > t) < 1.

Exercise 5.7:
1



2

(i) By Theorem 3.5.3, we know that the span of

R⊕ {Ĩ(m)
g⊗m(∞) : m ≥ 1 & g ∈ L2([0,∞);R)}

is dense in L2(W;R), and from this it is clear that the span of

R⊕ {Ĩ(m)

(ḟ)⊗m
(∞) : m ≥ 1 & f ∈ H1(RN )

(
(0,∞);R

)
}

is also dense there. Futher, by Exercise 3.6, Ĩ
(m)

(ḟ)⊗m
(∞) = Hm

(
I(ḟ); ‖ḟ‖2H1(RN )

)
for

m ≥ 1. Hence P
(
W(RN );R

)
is dense in L2(W;R), and from this it is easy to show

that P
(
W(RN );H

)
is dense in L2(W;H). Finally, (5.6.1) is a simple application

of the chain rule and the fact that DI(ḟ) = f .

(ii) By (3.1.6),(
Ψ, DΦ

)
L2(W;H1(RN ))

= EW
[
DhΦ(Ψ, h)H1(RN )

]
= EW

[
Φ
(
I(ḣ)−Dh

)
(Ψ, h)H

]
=
((
I(ḣ)−Dh

)
(Ψ, h)H ,Φ

)
L2(W;R)

.

(iii) Suppose that Φ ∈ Dom(D) and Φ ∈ Dom(D>), and choose {Φn : n ≥ 1} ⊆
P(W(RN );R) so that Φn −→ Φ in L2(W;R) andDΦn −→ DΦ in L2

(
W;H1(RN )

)
.

Then(
Φ, D>Ψ

)
L2(W;R) = lim

n→∞

(
Φn, D

>Ψ
)
L2(W;R)

= lim
n→∞

(
DΦn,Ψ

)
L2(W;H1(RN ))

=
(
DΦ,Ψ

)
L2(W;H1(RN ))

.

(iv) It suffices to treat the case when Ψ = G
(
I(ḟ1), . . . , I(ḟL)

)
h, where G is a

polynomial and ‖h‖H1(RN ) = 1. In that case,

n∑
k=1

I(ḣk)(Ψ, hk)H1(RN ) = G
(
I(ḟ1), . . . , I(ḟL)

)
I

(
n∑

k=1

(h, hk)H1(RN )ḣk

)
.

Since
∑n

k=1(h, hk)H1(RN )ḣk −→ h in L2([0,∞);RN ), I
(∑n

k=1(h, hk)H1(RN )ḣk

)
−→

I(ḣ) is Lp(W;R) for all p ∈ [1,∞), and therefore

n∑
k=1

I(ḣk)(Ψ, hk)H1(RN ) −→ I(ḣ)(Ψ, h)H1(RN ) in L2(W;R).

Next,

n∑
k=1

Dhk
(Ψ, hk)H1(RN ) =

n∑
k=1

(h, hk)H1(RN )

(
L∑

`=1

(f`, hk)H1(RN )∂x`
G
(
I(ḟ1), . . . , I(ḟL)

))

−→
L∑

`=1

(f`, h)H1(RN )∂x`
G
(
I(ḟ1), . . . , I(ḟL)

)
= Dh(Ψ, h)H1(RN )

in L2(W;R).

Exercise 5.8:
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(i) The only assertion here that needs comment is the final one. Thus, suppose
that Φ ∈ Dom(L), and choose {Φn : n ≥ 1} ⊆ P

(
W(RN );R

)
so that Φn −→ Φ

and LΦn −→ LΦ in L2(W;R). Then, for 1 ≤ m < n,∥∥DΦn −DΦm

∥∥2
L2(W;H1(RN ))

=
(
Φn − Φm,L(Φn − Φm)

)
L2(W;R)

≤ ‖Φn − Φm‖L2(W;R)‖LΦn − LΦm‖L2(W;R),

and therefore {DΦn : n ≥ 1} converges in L2(W;H1(RN )). Hence Φ ∈ Dom(D),
DΦn −→ DΦ in L2

(
W;H1(RN )

)
, and

‖DΦ‖2L2(W;H1(RN )) = lim
n→∞

‖DΦn‖2L2(W;H1(RN ))

= lim
n→∞

(
Φn,LΦn

)
L2(W;R) = (Φ,LΦ)L2(W;R),

from which the asserted result follows by polarization.

(ii) This is an immediate consequence of (5.6.2).

(iii) By following the outline, one arrives at H ′m = mHm−1 for m ≥ 1. Hence,
since xHm−1(x) − H ′m−1 = Hm, it follows that xH ′m(x) − H ′′m(x) = mHm(x).

Finally, sinceHm(x, a) = a
m
2 Hm(a−

1
2x), this leads to x∂xHm(x, a)−a∂2xHm(x, a) =

mHm(x, a).

(iv) By Theorem 3.5.3, we know that R⊕ {Ĩ(m)
f⊗m(∞) : f ∈ H1(RN )} is dense in

Z(m), and, by Exercise 3.6, we know that Ĩ
(m)
f⊗m(∞) = Hm

(
I(ḟ), ‖f‖2H1(RN )

)
. Next,

set Φ = Hm

(
I(ḟ), ‖f‖2H1(RN )

)
, and choose an orthonormal basis {hm : m ≥ 1}

with h1 = f
‖f‖H1(RN )

. Then

LΦ = I(ḣ1)Dh1
Φ−D2

h1
Φ = I(ḣ1)(f, h1)H1(RN )∂xHm

(
I(ḟ), ‖f‖2H1(RN )

)
− (f, h1)2H1(RN )∂

2
xHm

(
I(ḣ), ‖f‖2H1(RN )

)
= I(ḟ)∂xHm

(
I(ḟ), ‖f‖2H1(RN )

)
− ‖f‖2H1(RN )∂

2
xHm

(
I(ḟ), ‖f‖2H1(RN )

)
= mHm

(
I(ḟ), ‖f‖2H1(RN )

)
.

Now suppose that

{Φn : n ≥ 1} ⊆ span
(
R⊕ {Hm

(
I(ḟ), ‖f‖2H1(RN )

)
: f ∈ H1(RN )}

)
and that Φn −→ Φ in L2(W;R). Then LΦn = mΦn −→ mΦ in L2(W;R) and
so Φ ∈ Dom(L) and LΦ = mΦ. Conversely, suppose that Φ ∈ Dom(L) and that
LΦ = mΦ. If Ψ ∈ Z(n), then

m(Φ,Ψ)L2(W;R) =
(
LΦ,Ψ

)
L2(W;R) =

(
Φ,LΨ

)
L2(W;R) = n(Φ,Ψ)L2(W;R),

and so either m = n or (Φ,Ψ)L2(W;R) = 0. Hence Φ ∈ Z(m). Finally, ob-
serve that for any a ≥ 0 and m ≥ 1, ∂xHm(x, a) = mHm−1(x, a) follows from

Hm(x, a) = a
m
2 Hm(a−

1
2x) and H ′m = mHm−1. Thus, if Φ = Hm

(
I(ḟ), ‖f‖2H1(RN )

)
,

then DhΦ = m(f, h)H1(RN )Hm−1
(
I(ḟ), ‖f‖2H1(RN )

)
, and so

LDhΦ = m(f, h)H1(RN )(m− 1)Hm−1
(
I(ḟ), ‖f‖2H1(RN )

)
= (m− 1)DhΦ.

Starting from this, it is an easy matter to check that LDhΦ = (m− 1)DhΦ for all
Φ ∈ Z(m).
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(v) Suppose that Φ ∈ L2(W;R) and that

(∗)
∞∑

m=0

m2‖ΠZ(m)Φ‖2L2(W;RN ) <∞.

Set Φn =
∑n

m=0 ΠZ(m)Φ. Then Φn −→ Φ in L2(W;R) and LΦn =
∑n

m=0mΠZ(m)Φ.
Thus, because of (∗), we know that LΦn −→

∑∞
m=0mΠZ(m)Φ in L2(W;R), Φ ∈

Dom(L) and LΦ =
∑∞

m=0mΠZ(m)Φ.
Next suppose that Φ ∈ Dom(L). Then, for any Ψ ∈ L2(W;R),(

ΠZ(m)LΦ,Ψ
)
L2(W;R) =

(
LΦ,ΠZ(m)Ψ

)
L2(W;R) =

(
Φ,LΠZ(m)Ψ

)
L2(W;R)

= m
(
Φ,ΠZ(m)Ψ

)
L2(W;R) = m

(
ΠZ(m)Φ,Ψ

)
L2(W;R),

and so ΠZ(m)LΦ = mΠZ(m)Φ. Hence,
∞∑

m=0

m2‖ΠZ(m)Φ‖2L2(W;RN ) = ‖LΦ‖2L2(W;R) <∞.


