Homework #4

Exercise 3.7:

(i) Because $\sigma(\{\beta(t): t \ge 0\})$ is independent of $\sigma(\{B(t): t \ge 0\})$,

$$\mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T} (f(t), dZ(t))_{\mathbb{R}^{N}}\right)^{2}\right] = \mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} (f(t), \sigma\sigma^{\top}(t)f(t))_{\mathbb{R}^{N}} dt\right] + \mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T} (f(t), \beta(t))_{\mathbb{R}^{N}} dt\right)^{2}\right].$$

Hence,

$$\mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T} \left(f(t), dZ(t)\right)_{\mathbb{R}^{N}}\right)^{2}\right] \geq \kappa^{2} \|f\|_{L^{2}\left([0,T];\mathbb{R}^{N}\right)}^{2}$$

and

$$\mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T} \left(f(t), dZ(t)\right)_{\mathbb{R}^{N}}\right)\right] \leq \left(\kappa^{-2} + \mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T} |\beta(t)|^{2} dt\right]\right) \|f\|_{L^{2}([0,T];\mathbb{R}^{N})}^{2}.$$

(ii) Clearly L_T is a linear subspace. Next, let $\{f_n : n \ge 1\} \subseteq L^2([0,T]; \mathbb{R}^N)$, set $X_n = \int_0^T (f_n(t), dZ(t))_{\mathbb{R}^N}$, and suppose that $X_n \longrightarrow X$ in $L^2([0,T]; \mathbb{R}^N)$. By the lower bound in (i), one sees that $\{f_n : n \ge 1\}$ is Cauchy convergent in $L^2([0,T]; \mathbb{R}^N)$ and therefore that there exists an $f \in L^2([0,T]; \mathbb{R}^N)$ to which it converges. Since this means that $X_n \longrightarrow \int_0^T (f(t), dZ(t))_{\mathbb{R}^N}$, it follows that $X \in L_T$ and therefore that L_T is closed. In addition, by taking $f(t) = \mathbf{1}_{[0,t]}\sigma(t)^{-1}\boldsymbol{\xi}$ one sees that $(\boldsymbol{\xi}, Z(t))_{\mathbb{R}^N} \in L_T$ for all $t \in [0,T]$ and $\boldsymbol{\xi} \in \mathbb{R}^N$. Finally, suppose that L is a closed, linear subspace that contains $(\boldsymbol{\xi}, Z(t))_{\mathbb{R}^N}$ for all $t \in [0,T]$ and $\boldsymbol{\xi} \in \mathbb{R}^N$. If $f : [0,T] \longleftrightarrow \mathbb{R}^N$ has locally bounded variation, then $\int_0^T (f(t), dZ(t))_{\mathbb{R}^N}$ is a Riemann-Stieltjes integral and its Riemann sum approximations are in L. Thus $\int_0^T (f(t), dZ(t))_{\mathbb{R}^N} \in L$ when f has locally bounded variation, and so it is also in L for every $f \in L^2([0,T]; \mathbb{R}^N)$. Hence, $L_T \subseteq L$.

(iii) Riemann sum approximations make it obvious that $(\boldsymbol{\xi}, Z(t))_{\mathbb{R}^N} \in \mathfrak{G}$ of all $(t, \boldsymbol{\xi}) \in [0, \infty) \times \mathbb{R}^N$ if σ has locally bounded variation and β is continuous as a function of t. Therefore, since \mathfrak{G} is closed, the same is true in general. Hence, by Exercise 2.1, for any $X \in \mathfrak{G}$ and T > 0,

$$\mathbb{E}^{\mathbb{P}}\left[X \mid \sigma\left(\{Z(t) : t \in [0,T]\}\right)\right] = \Pi_{\mathbf{1} \oplus L_T} X,$$

and, by (ii)

$$\Pi_{1\oplus L_T} X = m_{T,X} + \int_0^T \left(f_{T,X}(t), dZ(t) \right)_{\mathbb{R}^N}$$

for some $m_{T,X} \in \mathbb{R}$ and $f_{T,X} \in L^2([0,T];\mathbb{R}^N)$.

Exercise 4.1: If $\mathbb{E}^{\mathbb{P}}[|M(t \wedge \zeta_k)|^p] \leq C(t) < \infty$ for some p > 1 and all $t \geq 0$ and $k \geq 1$, then, for each $t \geq 0$, $\{M(t \wedge \zeta_k) : k \geq 1\}$ is uniformly *P*-integrable and therefore $M(t \wedge \zeta_k) \longrightarrow M(t)$ in $L^1(P; \mathbb{R})$. Hence the martingale property for

 $\{M(t) : t \ge 0\}$ is inherited from that for the $\{M(t \land \zeta_k) : t \ge 0\}$'s. Next, assume that $M(t) \ge 0$ for all $t \ge 0$. If $0 \le s < t$ and $A \in \mathcal{F}_s$, then, by Fatou's lemma,

$$\mathbb{E}^{\mathbb{P}}\big[M(t), A\big] \leq \lim_{k \to \infty} \mathbb{E}^{\mathbb{P}}\big[M(t \land \alpha_k), A\big] = \lim_{k \to \infty} \mathbb{E}^{\mathbb{P}}\big[M(s \land \zeta_k), A\big] = \mathbb{E}^{\mathbb{P}}\big[M(s), A\big],$$

and so $(M(t), \mathcal{F}_t, \mathbb{P})$ is a supermartingale. Moreover, $\mathbb{E}^{\mathbb{P}}[M(t)] = E^{\mathbb{P}}[M(0)]$ if and only if $\mathbb{E}^{\mathbb{P}}[M(t)] = E^{\mathbb{P}}[M(t \wedge \zeta_k)]$ for all $k \geq 1$, and therefore $M(t \wedge \zeta_k) \longrightarrow M(t)$ if $L^1(\mathbb{P}; \mathbb{R})$ if and only if $\mathbb{E}^{\mathbb{P}}[M(t)] = E^{\mathbb{P}}[M(0)]$.

Exercise 4.2: Without loss in generality, we will assume that $(M_1(t), \mathcal{F}_t, \mathbb{P})$ and $(M_1(t), \mathcal{F}_t, \mathbb{P})$ are martingales. In addition, by Corollary 4.3.4, we know that $\langle M_1, M_2 \rangle$ does not depend on which filtration M_1 and M_2 are martingales with respect to, and so we can assume that $\mathcal{F}_t = \sigma(\{(M_1(\tau), M_2(\tau)) : \tau \in [0, t]\})$. Now suppose that $A_i \in \sigma(\{M_i(\tau) : \tau \in [0, s]\})$. Then, for t > s, when $M_1(\cdot)$ is independent of $M_2(\cdot)$,

$$\begin{split} \mathbb{E}^{\mathbb{P}} \big[M_1(t) M_2(t), \, A_1 \times A_2 \big] &= \mathbb{E}^{\mathbb{P}} \big[M_1(t), \, A_1 \big] \mathbb{E}^{\mathbb{P}} \big[M_2(t), \, A_2 \big] \\ &= \mathbb{E}^{\mathbb{P}} \big[M_1(s), \, A_1 \big] \mathbb{E}^{\mathbb{P}} \big[M_2(s), \, A_2 \big] = \mathbb{E}^{\mathbb{P}} \big[M_1(s) M_2(s), \, A_1 \times A_2 \big], \end{split}$$

and so, since

$$\mathcal{F}_s = \sigma\big(\{M_1(\tau) : \tau \in [0,s]\}\big) \times \sigma\big(\{M_2(\tau) : \tau \in [0,s]\}\big),$$

 $(M_1(t)M_2(t), \mathcal{F}_t, \mathbb{P})$ is a martingale and therefore $\langle M_1, M_2 \rangle = 0$.

To produce an example in which $\langle M_1, M_2 \rangle = 0$ but $M_1(\cdot)$ is not independent of $M_2(\cdot)$, let $(B(t), \mathcal{F}_t, \mathbb{P})$ be an \mathbb{R}^2 -valued Brownian motion, and set $M_1(t) = \int_0^t B_1(\tau) \, dB_1(\tau)$ and $M_2(t) = \int_0^t B_1(\tau) \, dB_2(\tau)$. Then $\langle M_1, M_2 \rangle(t) = B_1(t)^2 \langle B_1, B_2 \rangle(t) = 0$. If $M_1(\cdot)$ were independent of $M_2(\cdot)$, then $\mathbb{E}^{\mathbb{P}}[M_1(1)M_2(1)]$ would be 0. However, $M_1(t) = \frac{B_1(t)^2 - t}{2}$ and

$$M_2(1)^2 = 2\int_0^1 M_2(\tau)B_1(\tau) \, dB_2(\tau) + \int_0^1 B_1(\tau)^2 \, d\tau.$$

Thus,

$$\mathbb{E}^{\mathbb{P}}[M_1(1)M_2(1)^2] = \int_0^1 \mathbb{E}^{\mathbb{P}}[M_1(1)B_1(\tau)^2] d\tau = \int_0^1 \mathbb{E}^{\mathbb{P}}[M_1(\tau)B_1(\tau)^2] d\tau$$
$$= \frac{1}{2}\int_0^1 \mathbb{E}^{\mathbb{P}}[B_1(\tau)^4] d\tau - \frac{1}{2}\int_0^1 \mathbb{E}^{\mathbb{P}}[B_1(\tau)^2] d\tau = \frac{3}{2}\int_0^1 \tau^2 d\tau - \frac{1}{2}\int_0^1 \tau d\tau = \frac{1}{4},$$

whereas $\mathbb{E}^{\mathbb{P}}[M_1(1)M_2(1)^2]$ would be 0 if $M_1(\cdot)$ were independent of $M_2(\cdot)$.

Finally, let M_j be the martingale part of X_j . Then the martingale part of $\varphi \circ X$ is

$$\sum_{j=1}^{N} \int_{0}^{t} \partial_{j} \varphi \circ X(\tau) \, dM_{j}(\tau),$$

and so

$$\langle \varphi_1 \circ X, \varphi_2 \circ X \rangle(t) = \sum_{j_1, j_2=1}^N \int_0^t (\partial_{x_{j_1}} \varphi_1) \circ X(\tau) \partial_{x_{j_2}} \varphi_2) \circ X(\tau) \, d\langle X_{j_1}, X_{j_2} \rangle(\tau).$$

Exercise 4.3:

(i) To reduce to the case when M and $\langle\!\langle M \rangle\!\rangle$ are bounded, set $\zeta_n = \inf\{t \ge 0 : |M(t)| \lor \langle\!\langle M \rangle\!\rangle(t) \ge n\}$ and $M_n(t) = M(t \land \zeta_n)$. If $\mathbb{E}^{\mathbb{P}}[|M(t)|^p] < \infty$, then, by Hunt's stopping time theorem, for fixed $t \ge 0$, $(M_n(t), \mathcal{F}_{t \land \zeta_n}, \mathbb{P})$ is a discrete parameter martingale, and therefore, by Doob's inequality, $\mathbb{E}^{\mathbb{P}}[\sup_{n\ge 1} |M_n(t)|^p] < \infty$. Hence, by the monotone convergence and Lebesgue's dominated convergence theorems, (4.6.1) for M_n would imply it for M. When $\mathbb{E}^{\mathbb{P}}[|M(t)|^p] = \infty$, (4.2.6) is trivial.

(ii) Just follow the outline.