## Homework \#4

## Exercise 3.7:

(i) Because $\sigma(\{\beta(t): t \geq 0\})$ is independent of $\sigma(\{B(t): t \geq 0\})$,

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T}(f(t), d Z(t))_{\mathbb{R}^{N}}\right)^{2}\right]=\mathbb{E}^{\mathbb{P}} {\left[\int_{0}^{T}\left(f(t), \sigma \sigma^{\top}(t) f(t)\right)_{\mathbb{R}^{N}} d t\right] } \\
&+\mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T}(f(t), \beta(t))_{\mathbb{R}^{N}} d t\right)^{2}\right]
\end{aligned}
$$

Hence,

$$
\mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T}(f(t), d Z(t))_{\mathbb{R}^{N}}\right)^{2}\right] \geq \kappa^{2}\|f\|_{L^{2}\left([0, T] ; \mathbb{R}^{N}\right)}^{2}
$$

and

$$
\mathbb{E}^{\mathbb{P}}\left[\left(\int_{0}^{T}(f(t), d Z(t))_{\mathbb{R}^{N}}\right)\right] \leq\left(\kappa^{-2}+\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T}|\beta(t)|^{2} d t\right]\right)\|f\|_{L^{2}\left([0, T] ; \mathbb{R}^{N}\right)}^{2}
$$

(ii) Clearly $L_{T}$ is a linear subspace. Next, let $\left\{f_{n}: n \geq 1\right\} \subseteq L^{2}\left([0, T] ; \mathbb{R}^{N}\right)$, set $X_{n}=\int_{0}^{T}\left(f_{n}(t), d Z(t)\right)_{\mathbb{R}^{N}}$, and suppose that $X_{n} \longrightarrow X$ in $L^{2}\left([0, T] ; \mathbb{R}^{N}\right)$. By the lower bound in (i), one sees that $\left\{f_{n}: n \geq 1\right\}$ is Cauchy convergent in $L^{2}\left([0, T] ; \mathbb{R}^{N}\right)$ and therefore that there exists an $f \in L^{2}\left([0, T] ; \mathbb{R}^{N}\right)$ to which it converges. Since this means that $X_{n} \longrightarrow \int_{0}^{T}(f(t), d Z(t))_{\mathbb{R}^{N}}$, it follows that $X \in L_{T}$ and therefore that $L_{T}$ is closed. In addition, by taking $f(t)=\mathbf{1}_{[0, t]} \sigma(t)^{-1} \boldsymbol{\xi}$ one sees that $(\boldsymbol{\xi}, Z(t))_{\mathbb{R}^{N}} \in L_{T}$ for all $t \in[0, T]$ and $\boldsymbol{\xi} \in \mathbb{R}^{N}$. Finally, suppose that $L$ is a closed, linear subspace that contains $(\boldsymbol{\xi}, Z(t))_{\mathbb{R}^{N}}$ for all $t \in[0, T]$ and $\boldsymbol{\xi} \in \mathbb{R}^{N}$. If $f:[0, T] \longleftrightarrow \mathbb{R}^{N}$ has locally bounded variation, then $\int_{0}^{T}(f(t), d Z(t))_{\mathbb{R}^{N}}$ is a Riemann-Stieltjes integral and its Riemman sum approximations are in $L$. Thus $\int_{0}^{T}(f(t), d Z(t))_{\mathbb{R}^{N}} \in L$ when $f$ has locally bounded variation, and so it is also in $L$ for every $f \in L^{2}\left([0, T] ; \mathbb{R}^{N}\right)$. Hence, $L_{T} \subseteq L$.
(iii) Riemann sum approximations make it obvious that $(\boldsymbol{\xi}, Z(t))_{\mathbb{R}^{N}} \in \mathfrak{G}$ of all $(t, \boldsymbol{\xi}) \in[0, \infty) \times \mathbb{R}^{N}$ if $\sigma$ has locally bounded variation and $\beta$ is continuous as a function of $t$. Therefore, since $\mathfrak{G}$ is closed, the same is true in general. Hence, by Exercise 2.1, for any $X \in \mathfrak{G}$ and $T>0$,

$$
\mathbb{E}^{\mathbb{P}}[X \mid \sigma(\{Z(t): t \in[0, T]\})]=\Pi_{1 \oplus L_{T}} X,
$$

and, by (ii)

$$
\Pi_{1 \oplus L_{T}} X=m_{T, X}+\int_{0}^{T}\left(f_{T, X}(t), d Z(t)\right)_{\mathbb{R}^{N}}
$$

for some $m_{T, X} \in \mathbb{R}$ and $f_{T, X} \in L^{2}\left([0, T] ; \mathbb{R}^{N}\right)$.
Exercise 4.1: If $\mathbb{E}^{\mathbb{P}}\left[\left|M\left(t \wedge \zeta_{k}\right)\right|^{p}\right] \leq C(t)<\infty$ for some $p>1$ and all $t \geq 0$ and $k \geq 1$, then, for each $t \geq 0,\left\{M\left(t \wedge \zeta_{k}\right): k \geq 1\right\}$ is uniformly $P$-integrable and therefore $M\left(t \wedge \zeta_{k}\right) \longrightarrow M(t)$ in $L^{1}(P ; \mathbb{R})$. Hence the martingale property for
$\{M(t): t \geq 0\}$ is inherited from that for the $\left\{M\left(t \wedge \zeta_{k}\right): t \geq 0\right\}$ 's. Next, assume that $M(t) \geq 0$ for all $t \geq 0$. If $0 \leq s<t$ and $A \in \mathcal{F}_{s}$, then, by Fatou's lemma,

$$
\mathbb{E}^{\mathbb{P}}[M(t), A] \leq \lim _{k \rightarrow \infty} \mathbb{E}^{\mathbb{P}}\left[M\left(t \wedge \alpha_{k}\right), A\right]=\lim _{k \rightarrow \infty} \mathbb{E}^{\mathbb{P}}\left[M\left(s \wedge \zeta_{k}\right), A\right]=\mathbb{E}^{\mathbb{P}}[M(s), A]
$$

and so $\left(M(t), \mathcal{F}_{t}, \mathbb{P}\right)$ is a supermartingale. Moreover, $\mathbb{E}^{\mathbb{P}}[M(t)]=E^{\mathbb{P}}[M(0)]$ if and only if $\mathbb{E}^{\mathbb{P}}[M(t)]=E^{\mathbb{P}}\left[M\left(t \wedge \zeta_{k}\right)\right]$ for all $k \geq 1$, and therefore $M\left(t \wedge \zeta_{k}\right) \longrightarrow M(t)$ if $L^{1}(\mathbb{P} ; \mathbb{R})$ if and only if $\mathbb{E}^{\mathbb{P}}[M(t)]=E^{\mathbb{P}}[M(0)]$.

Exercise 4.2: Without loss in generality, we will assume that $\left(M_{1}(t), \mathcal{F}_{t}, \mathbb{P}\right)$ and $\left(M_{1}(t), \mathcal{F}_{t}, \mathbb{P}\right)$ are martingales. In addition, by Corollary 4.3.4, we know that $\left\langle M_{1}, M_{2}\right\rangle$ does not depend on which filtration $M_{1}$ and $M_{2}$ are martingales with respect to, and so we can assume that $\mathcal{F}_{t}=\sigma\left(\left\{\left(M_{1}(\tau), M_{2}(\tau)\right): \tau \in[0, t]\right\}\right)$. Now suppose that $A_{i} \in \sigma\left(\left\{M_{i}(\tau): \tau \in[0, s]\right\}\right)$. Then, for $t>s$, when $M_{1}(\cdot)$ is independent of $M_{2}(\cdot)$,

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[M_{1}(t) M_{2}(t), A_{1} \times A_{2}\right] & =\mathbb{E}^{\mathbb{P}}\left[M_{1}(t), A_{1}\right] \mathbb{E}^{\mathbb{P}}\left[M_{2}(t), A_{2}\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[M_{1}(s), A_{1}\right] \mathbb{E}^{\mathbb{P}}\left[M_{2}(s), A_{2}\right]=\mathbb{E}^{\mathbb{P}}\left[M_{1}(s) M_{2}(s), A_{1} \times A_{2}\right],
\end{aligned}
$$

and so, since

$$
\mathcal{F}_{s}=\sigma\left(\left\{M_{1}(\tau): \tau \in[0, s]\right\}\right) \times \sigma\left(\left\{M_{2}(\tau): \tau \in[0, s]\right\}\right)
$$

$\left(M_{1}(t) M_{2}(t), \mathcal{F}_{t}, \mathbb{P}\right)$ is a martingale and therefore $\left\langle M_{1}, M_{2}\right\rangle=0$.
To produce an example in which $\left\langle M_{1}, M_{2}\right\rangle=0$ but $M_{1}(\cdot)$ is not independent of $M_{2}(\cdot)$, let $\left(B(t), \mathcal{F}_{t}, \mathbb{P}\right)$ be an $\mathbb{R}^{2}$-valued Brownian motion, and set $M_{1}(t)=$ $\int_{0}^{t} B_{1}(\tau) d B_{1}(\tau)$ and $M_{2}(t)=\int_{0}^{t} B_{1}(\tau) d B_{2}(\tau)$. Then $\left\langle M_{1}, M_{2}\right\rangle(t)=B_{1}(t)^{2}\left\langle B_{1}, B_{2}\right\rangle(t)=$ 0 . If $M_{1}(\cdot)$ were independent of $M_{2}(\cdot)$, then $\mathbb{E}^{\mathbb{P}}\left[M_{1}(1) M_{2}(1)\right]$ would be 0 . However, $M_{1}(t)=\frac{B_{1}(t)^{2}-t}{2}$ and

$$
M_{2}(1)^{2}=2 \int_{0}^{1} M_{2}(\tau) B_{1}(\tau) d B_{2}(\tau)+\int_{0}^{1} B_{1}(\tau)^{2} d \tau
$$

Thus,

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P}}\left[M_{1}(1) M_{2}(1)^{2}\right]=\int_{0}^{1} \mathbb{E}^{\mathbb{P}}\left[M_{1}(1) B_{1}(\tau)^{2}\right] d \tau=\int_{0}^{1} \mathbb{E}^{\mathbb{P}}\left[M_{1}(\tau) B_{1}(\tau)^{2}\right] d \tau \\
& =\frac{1}{2} \int_{0}^{1} \mathbb{E}^{\mathbb{P}}\left[B_{1}(\tau)^{4}\right] d \tau-\frac{1}{2} \int_{0}^{1} \mathbb{E}^{\mathbb{P}}\left[B_{1}(\tau)^{2}\right] d \tau=\frac{3}{2} \int_{0}^{1} \tau^{2} d \tau-\frac{1}{2} \int_{0}^{1} \tau d \tau=\frac{1}{4},
\end{aligned}
$$

whereas $\mathbb{E}^{\mathbb{P}}\left[M_{1}(1) M_{2}(1)^{2}\right]$ would be 0 if $M_{1}(\cdot)$ were independent of $M_{2}(\cdot)$.
Finally, let $M_{j}$ be the martingale part of $X_{j}$. Then the martingale part of $\varphi \circ X$ is

$$
\sum_{j=1}^{N} \int_{0}^{t} \partial_{j} \varphi \circ X(\tau) d M_{j}(\tau)
$$

and so

$$
\left.\left\langle\varphi_{1} \circ X, \varphi_{2} \circ X\right\rangle(t)=\sum_{j_{1}, j_{2}=1}^{N} \int_{0}^{t}\left(\partial_{x_{j_{1}}} \varphi_{1}\right) \circ X(\tau) \partial_{x_{j_{2}}} \varphi_{2}\right) \circ X(\tau) d\left\langle X_{j_{1}}, X_{j_{2}}\right\rangle(\tau) .
$$

## Exercise 4.3:

(i) To reduce to the case when $M$ and $\langle\langle M\rangle\rangle$ are bounded, set $\zeta_{n}=\inf \{t \geq 0$ : $|M(t)| \vee\langle\langle M\rangle\rangle(t) \geq n\}$ and $M_{n}(t)=M\left(t \wedge \zeta_{n}\right)$. If $\mathbb{E}^{\mathbb{P}}\left[|M(t)|^{p}\right]<\infty$, then, by Hunt's stopping time theorem, for fixed $t \geq 0,\left(M_{n}(t), \mathcal{F}_{t \wedge \zeta_{n}}, \mathbb{P}\right)$ is a discrete parameter martingale, and therefore, by Doob's inequality, $\mathbb{E}^{\mathbb{P}}\left[\sup _{n \geq 1}\left|M_{n}(t)\right|^{p}\right]<\infty$. Hence, by the monotone convergence and Lebesgue's dominated convergence theorems, (4.6.1) for $M_{n}$ would imply it for $M$. When $\mathbb{E}^{\mathbb{P}}\left[|M(t)|^{p}\right]=\infty$, (4.2.6) is trivial.
(ii) Just follow the outline.

