
Homework Assignment #2

Exercise 2.1:

(i) Suppose that {Yn : n ≥ 1} ⊆ G and that Yn −→ Y in L2(P;R). Then
mn ≡ EP[Yn] −→ m ≡ EP [Y ] and Vn ≡ Var(Yn) −→ V ≡ Var(Y ), and therefore

EP[eiξY ] = lim
n→∞

EP[eiξYn] = lim
n→∞

eiξmn+ ξ2

2 Vn = eiξm+ ξ2

2 V .

Thus Y is Gaussian, and so G is a Gaussian family. The remaining assertions are
trivial.

(ii) Clearly σ(L) = σ(L̃). Next,

X −Π1⊕LX = X̃ + EP[X]−Π1⊕LX̃ − EP[X] = X̃ −Π1⊕LX̃.

Since L̃ ⊆ 1⊕L, we will know that Π1⊕LX̃ = ΠL̃X̃ once we show that X̃−ΠL̃X̃ ⊥
1⊕ L. But 1 ⊥ L̃. Thus if Y ∈ 1⊕ L and Ỹ = Y − EP[Y ], then Ỹ ∈ L̃ and so

EP[(X̃ −ΠL̃X̃)Y ] = EP[(X̃ −ΠL̃X̃)Ỹ
]

+ EP[Y ]EP[X̃ −ΠL̃X̃
]

= 0.

Finally, by Lemma 2.1.1, X̃ −ΠL̃X̃ is independent of σ(L̃) = σ(L).

Exercise 2.2: Let G be the centered Gaussian family generated by {B(t) : t ≥ 0}.
Since {(

ξ,B(T )
)
RN : ξ ∈ RN

}
∪
{(
ξ, θT (t)

)
RN : t ≥ 0 & t ≥ 0

}
⊆ G,

the independence of B(T ) from σ
(
{θT (t) : t ≥ 0}

)
follows from

EP
[(
ξ,B(T )

)
RN
(
η, θT (t)

)]
= (ξ, η)RN

(
T ∧ t− ThT (t)

)
= 0.

Next,

EP
[
Φ◦B(T ), B(T ) ∈ Γ

]
= EP

[
Φ◦
(
θT+hTB(T )

)]
=

∫
Γ

EP
[
Φ◦
(
θT+hTy

)]
γ0,T I(dy).

Exercise 2.3: If 0 ≤ s < t, then B(t)−B(s) is independent of Fs and therefore

EP[Eξ(t)∣∣Fs] = Eξ(s)e
− ξ

2

2 (t−s)EP[eξ(B(t)−B(s))
∣∣Fs] = Eξ(s).

The reasoning given shows that P
(
‖B( · )‖[0,t] ≥ R

)
≤ 2 exp

(
−ξR + tξ2

2

)
for all

ξ ≥ 0, and so the P
(
‖B( · )‖[0,t] ≥ R

)
≤ 2e−

R2

2t follows when one takes ξ = R
t .

When N ≥ 2, observe that ‖B( · )‖[0,t] ≤ N
1
2 max1≤j≤N ‖B( · )j‖[0,t], and therefore

P
(
‖B( · )‖[0,t] ≥ R

)
≤ P

(
max

1≤j≤N
‖B( · )j‖[0,t] ≥ N

1
2R

)
≤ N max

1≤j≤N
P
(
‖B( · )j‖[0,t] ≥ N

1
2R
)
≤ 2Ne−

R2

2Nt .

Exerise 2.4: Set B̆(0) = 0 and B̆(t) = tB
(

1
t

)
for t > 0. Then

(
B̆(t),F 1

t
,P
)

is a

Brownian motion, and so

lim
t→∞

B(t)

t
= lim
t↘0

B̆(t) = 0.

1
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If A is orthogonal, then {TAw(t) : t ≥ 0} generates a centered, Gaussian family
with same coveriance as {w(t) : t ≥ 0} and therefore has the same distribution. If
A is not orthogonal, then, as n→∞,

2n∑
m=1

(
TAw(m2−n)− TAw((m− 1)2−n)

)
⊗
(
TAw(m2−n)− TAw((m− 1)2−n)

)
tends to AA> 6= I W-almost surely, and therefore (TA)∗W ⊥W.

Exercise 2.5:

(i) If
(
X(t),Ft,P

)
is a Brownian motion, then the argument given above in

Exercise 2.2 shows that
(
ei(ξ,X(t))RN+

|ξ|2
2 ,Ft,P

)
is a martingale. Conversely, if it is

a martingale, then

EP[ei(ξ,X(t)−X(s))RN
∣∣Fs] = e−

|ξ|2
2 (t−s),

and so
(
X(t),Ft,P

)
is a Brownian motion.

(ii) By Hunt’s stopping time theorem,

EP[ei(ξ,B(t+ζ))RN+
|ξ|2
2 (t+ζ)

∣∣Fs+ζ] = ei(ξ,B(s+ζ))RN+
|ξ|2
2 (s+ζ).

Thus, since ζ and B(ζ) are Fs+ζ-measurable,

EP[ei(ξ,B(t+ζ)−B(ζ))RN+
|ξ|2
2 t
∣∣Fs+ζ] = ei(ξ,B(s+ζ)−B(ζ))RN+

|ξ|2
2 s,

and so, by (i),
(
B(t+ ζ)−B(ζ),Ft+ζ ,P

)
is a Brownian motion.

(iii) Let A ∈ Fs, and check that A ∩ {ζ > s} ∈ Fs∧ζ ⊆ Fs ∩Ft∧ζ . Using Hunt’s
stopping time theorem, one has

EP[ei(ξ,B̌(t))RN+
|ξ|2
2 t, A

]
= EP[ei(ξ,2B(s∧ζ)−B(t))RN+

|ξ|2
2 t, A ∩ {ζ ≤ s}

]
+ EP[ei(ξ,2B(t∧ζ)−B(t))RN+

|ξ|2
2 t, A ∩ {ζ > s}

]
= EP[ei(ξ,2B(s∧ζ)−B(s))RN+

|ξ|2
2 s, A ∩ {ζ ≤ s}

]
+ EP[ei(ξ,B(t∧ζ))RN+

|ξ|2
2 t∧ζ , A ∩ {ζ > s}

]
= EP[ei(ξ,B̌(s))RN+

|ξ|2
2 s, A ∩ {ζ ≤ s}

]
+ EP[ei(ξ,B(s))RN+

|ξ|2
2 s, A ∩ {ζ > s}

]
= EP[ei(ξ,B̌(s))RN+

|ξ|2
2 s, A

]
.

Hence, by (i),
(
B̌(t),Ft,P

)
is a Brownian motion.

(iv) & (v) Just follow the steps outlined.

(vi) Since
(
B(t)N+1,Ft,P

)
is an R-valued Brownian motion, we know from (v)

that P(ζ ≤ t) = 2P
(
B(t)N+1 ≥ a

)
. In particular, this means that ζ < ∞ (a.s.,P).

Further, because {B(t)N+1 : t ≥ 0} is independent of {B(t)j : 1 ≤ j ≤ N & 1 ≤
j ≤ N}, the calulation in Exercise 1.4 justifies to

P(X ∈ Γ) =

∫ ∞
0

P
((
B(t)1, . . . , B(t)N

)
∈ Γ
)
P(ζ ∈ dt)

2a√
2π

∫ ∞
0

t−
3
2 e−

1
2t γ0,tI(Γ) dt =

2a

ωN

∫
Γ

(
a2 + |y|2

)−N+1
2 dy.
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Exercise 2.6: Set Bm,n = B(m2−n) and ∆m,n = Bm+1,n −Bm,n. Clearly,

B2
m+1,n −B2

m,n = ∆2
m,n + 2Bm,n∆m,n = −∆2

m,n + 2Bm+1,n∆m,n.

From these, one has

B(1)2 =

2n−1∑
m=0

∆2
m,n+2

2n−1∑
m=0

Bm,n∆m,n and B(1)2 = −
2n−1∑
m=0

∆2
m,n+2

2n−1∑
m=0

Bm+1,n∆m,n,

and so, by (2.1.2), the first and third equations are proved. To prove the second
equation, note that

B2
m+1,n −B2

m,n − 2B2m+1,n+1∆m,n =
(
Bm+1,n +Bm,n − 2B2m+1,n+1

)
∆m,n

= ∆2m+1,n+1∆m,n −∆2m,n+1∆m,n = ∆2
2m+1,n+1 −∆2

2m,n+1.

Next, proceeding in exactly the same way as in the derivation of (2.1.2), one sees
that

lim
n→∞

2n−1∑
m=0

∆2
2m+1,n+1 =

1

2
= lim
n→∞

2n−1∑
m=0

∆2
2m,n+1,

and therefore, after another application of (2.1.2), that

B(1)2 = 2 lim
n→∞

2n−1∑
m=0

B2m+1,n+1∆m,n.


