
Homework #1

Exercise 1.1: It is a simple calculus exercise to check that if ∂tu = 1
2∆u and

v(t,x) = u
(
1−e−2t

2 ,y − e−tx
)
, then ∂tv = Lv. Thus, if ϕ ∈ C(RN ;R) and

v(t,x) =

∫
RN

ϕ(y)g

(
1− e−2t

2
,y − e−tx

)
dy,

then ∂tv = Lv in (0,∞)× RN and limt↘0 v(t, · ) = ϕ. Therefore,

d

dτ
〈v(t− τ, · ), P (τ,x, · )〉 = 0 for τ ∈ (0, t),

and so

v(t,x) =

∫
RN

ϕ(y)P (t,x, dy).

Equivalently P (t,x, dy) = g
(
1−e−2t

2 ,y − e−tx
)
.

Exercise 1.2: To prove (∗∗), suppose that ϕ ∈ S (RN ;C). Then ϕ̂ ∈ S (RN ;C)
and

sup
n≥1

n
∣∣(e− i

n `(ξ) − 1
)
ϕ̂(ξ)

∣∣ ≤ |`(ξ)||ϕ̂(ξ)|.

Hence, by Parseval’s indentity, (i) & (ii), and Lebesgue’s dominated convergence
theorem,

(2π)Nn
(
〈ϕ, µ 1

n
〉 − ϕ(0)

)
= n

∫
RN

(
e
i
n `(−ξ) − 1

)
ϕ̂(ξ) dξ −→

∫
RN

`(−ξ)ϕ̂(ξ) dξ.

Since ϕ ≥ ϕ(0) =⇒ 〈ϕ, µ 1
n
〉 ≥ ϕ(0), it is clear that A satisfied the minimum

principle. Next suppose that ϕ ∈ S (RN ;C). Then ϕ̂R(ξ) = RN ϕ̂(Rξ), and so, by
(ii) and Lebesgue’s dominated convergence theorem,

(2π)NAϕR = RN
∫
RN

`(−ξ)ϕ̂(Rξ) dξ =

∫
RN

`(−R−1ξ)ϕ̂(ξ) dξ −→ 0

as R →∞. Hence, by Theorem 1.1.1, there is a Lévy system (m, C,M) for which
(1.1.3) holds. Equivalently, for any ϕ ∈ S (RN ;C),∫
RN

`(−ξ)ϕ̂(ξ) dξ =

∫
RN

(∫
RN

(
e−i(ξ,y)RN − 1 + i1B(0,1)(y)(ξ,y)RN M(dy)

)
ϕ̂(ξ) dξ,

and so ` is given by the expression in (∗).

Exercise 1.3: Because µ̂ = (µ̂ 1
n

)n, µ̂ = e
n` 1

n on B(0, r), and therefore, by unique-

ness, ` = n` 1
n

.

Next, using the power series for log, one sees that

| log z| ≤
∞∑
m=1

|1− z|m

m
≤ |1− z|

∞∑
m=0

|1− z|m ≤ 2|1− z| if |1− z| ≤ 1

2
.

Hence |`(ξ)| ≤ 2|1− µ̂(ξ)| ≤ 1 for |ξ| ≤ r, and so, since Re
(
`(ξ)

)
≤ 0,∣∣1− µ̂ 1

n
(ξ)
∣∣ =

∣∣1− e 1
n `(ξ)

∣∣ ≤ |`(ξ)|
n
≤ 1

n
for |ξ| ≤ r.

Let e ∈ SN−1 be given. By averaging the inequality∣∣1− µ̂ 1
n

(ρe)
∣∣ ≥ ∫

RN

(
1− cos ρ(e,y)RN µ 1

n
(dy)

1



2

with respect to ρ ∈ [0, r], one sees that

1

n
≥
∫
RN

(
1− sin r(e,y)RN

r(e,y)RN

)
µ 1
n

(dy) ≥ s(rR)µ 1
n

(
{y : |(e,y)| ≥ R}

)
,

where

s(T ) ≡ inf
t≥T

(
1− sin t

t

)
.

Since sin t =
∫ t
0

cos τ dτ < t and sin t
t −→ 0 as t → ∞, s(T ) > 0 for all T > 0, and

therefore we now know that

µ 1
n

(
{y : |(e,y)RN | ≥ R}

)
≤ 1

ns(rR)
.

Hence, since, for any ρ > 0,∣∣1− µ̂ 1
n

(ρe)
∣∣ ≤ ∫

RN

∣∣1− eiρ(e,y)RN ∣∣µ 1
n

(dy) ≤ ρR+ 2µ 1
n

(
{y : |(e,y)| ≥ R}

)
,

by taking R = 1
4ρ , we have that

sup
|ξ|≤ρ

∣∣1− µ̂ 1
n

(ξ)
∣∣ ≤ 1

4
+

2

ns
(
r
4ρ

)
and therefore that (∗∗) holds. In particular, this means that ` admits a continuous

extention to the whole of RN such that µ̂ 1
n

= e
1
n `.

Since |`(ξ)| ≤ 2n
∣∣1 − µ̂ 1

n
(ξ)
∣∣ if

∣∣1 − µ̂ 1
n

(ξ)
∣∣ ≤ 1

2 , (∗∗) implies that |`(ξ)| ≤ n

if |ξ| ≤ ρ and n ≥ 8

s
(
r
4ρ

) . By using the Taylor series for sin, it is easy to check

that limt↘0 t
−2(1 − sin t

t

)
= 1

6 , and therefore there exists a T0 ∈ (0, 1] such that

1− sin t
t ≥

t2

12 for t ∈ (0, T0]. Hence, s(T ) ≥ ε(T ∧ 1)2 where ε = 1
12 ∧ s(T0). Finally,

suppose that |ξ| ≥ r
4 and choose n ≥ 1 so that n ≥ 16|ξ|2

εr2 > n− 1. Then |`(ξ)| ≤ n,

and so one can find a C <∞ such that |`(ξ)| ≤ C(1 + |ξ|2) for all ξ ∈ RN .

Exercise 1.4: Begin with the observation that, because of the rotation invariance
of Lebesgue measure,

ξ  
∫
RN\{0}

(
ei(ξ,y)RN − 1− i1B(0,1)(y)(ξ,y)RN

) dy)

|y|N+1

is a function of |ξ|. Next let e ∈ SN−1 and ρ > 0. Then∫
RN\{0}

(
eiρ(e,y)RN − 1− iρ1B(0,1)(y)(e,y)RN

) dy

|y|N+1

= lim
r↘0

∫
|y|≥r

(
cos ρ(e,y)RN − 1

) dy

|y|N+1

+ i

∫
|y|≥r

(
sin ρ(e,y)RN − ρ1B(0,1)(y)(e,y)RN

) dy

|y|N+1

= ρ lim
r↘0

∫
|y|≥r

(
cos(e,y)RN − 1

) dy

|y|N+1
= ρ

∫
RN\{0}

(
cos(e,y)RN − 1

) dy

|y|N+1
.

Thus, if

c = −

(∫
RN\{0}

(
cos(e,y)RN − 1

) dy

|y|N+1

)−1



3

andM(dy) = c1RN\{0}
dy
|y|N+1 , then the ` corresponding to the Lévy system (0, 0,M)

is given by `(ξ) = −|ξ|.
Turning to the second part, use the quadratic formula to see that t

1
2 = τ+

√
τ2+4ab
2b

and therefore that
t−

1
2 dt = b−1dτ +

τ

b
√
τ2 + 4ab

dτ.

Since the coefficient in the second term is odd and τ2 + 2ab = b2t+ a2

t , this means
that ∫ ∞

0

t−
1
2 e−

a2

2t −
b2t
2 dt =

e−ab

b

∫
R
e−

τ2

2 dτ =

√
2πe−ab

b
,

from which ∫ ∞
0

t−
3
2 e−

a2

2t −
b2t
2 dt =

√
2πe−ab

a
follows when one differentiates with respect to a.

Because γ̂0,τI(ξ) = e−
τ|ξ|2

2 , it follows that

t

∫ ∞
0

τ−
3
2 e−

t2

2τ γ̂0,τI dτ =
√

2πe−t|ξ|.

Hence, if

Pt(dy) =
t√
2π

∫ ∞
0

τ−
3
2 e−

t2

2τ γ0,τI(dy) dτ,

then P̂t(ξ) = e−t|ξ|, and, after a making the change of variables τ → 1
τ , one sees

that

Pt(dy) =
1

ωN

t

(t2 + |y|2)
N+1

2

dy.

Finally, since, on the one hand,

P̂t(e)− 1

t
=

2

ωN

∫
RN

ei(e,y)RN − 1

(t2 + |y|2|)N+1
2

dy =
2

ωN

∫
RN

cos(e,y)RN − 1

(t2 + |y|2|)N+1
2

dy

−→ 2

ωN

∫
RN

(
cos(e,y)RN − 1

) dy

|y|N+1
,

and, on the other hand,

P̂t(e)− 1

t
=
e−t − 1

t
−→ −1

as t↘ 0, it follows that c = 2
ωN

.


