Homework #1
Exercise 1.1: It is a simple calculus exercise to check that if dyu = %Au and
v(t,x) = u(= =y - e~'x), then 0,v = Lv. Thus, if ¢ € C(RV;R) and
1—e 2t
v(t,x) = / e(¥)g <2,y - etX> dy,
RN
then dyv = Lo in (0,00) x RY and limy g v(t, -) = ¢. Therefore,
d
dr

(wit—=mr,),P(1,x,-)) =0 for 7 € (0,1),
and so
(t, x) = /RN e(y) P(t,x,dy).

176—2t

Equivalently P(t,x,dy) = g(:=5—,y — e 'x).

Exercise 1.2: To prove (%), suppose that ¢ € .Z(R";C). Then ¢ € .7 (R"Y;C)
and

supn|(e” = ® — 1)3(&)] < |U(E)]Ip(&)].

n>1
Hence, by Parseval’s indentity, (i) & (ii), and Lebesgue’s dominated convergence
theorem,

20 () = 9(0) =n [ (HC ~D)g€)de — [ H-e1p() e
Since ¢ > ¢(0) = (gp,u%> > (0), it is clear that A satisfied the minimum

principle. Next suppose that ¢ € . (RY;C). Then ¢r(€) = RN @(RE), and so, by
(ii) and Lebesgue’s dominated convergence theorem,

om)¥ don =R [ (-€)p(Re)dE = [ H-RTp(€) dg — 0

as R — oco. Hence, by Theorem 1.1.1, there is a Lévy system (m,C, M) for which
(1.1.3) holds. Equivalently, for any ¢ € .%(RY;C),

Cop©de= [ ([ (1 - 14 oo )E v M) (6,

and so £ is given by the expression in (x).

~ A 4 .
Exercise 1.3: Because i = ()", ot = e % on B(0,r), and therefore, by unique-

ness, f =nli.
n

RN

Next, using the power series for log, one sees that
S > 1
1 < — <1~ 1—2m <21 —z]if |1 -2 < =
IogZI_mZ=1 pa—— Zlmzzjol A" <2 —2|if 1 - 2| < 5

Hence [€(€)] < 2|1 — (&)| < 1 for [€] < r, and so, since Re(((£)) < 0,

11— FT(E)] = |1 ex®)| < O L g ie) <
n n n

Let e € SN~ be given. By averaging the inequality

=) = [ (1= cosple.y)a oy (d)
1



2

with respect to p € [0, 7], one sees that
1 sinr(e,y)ry
- > 1l-—— dy) > R : >R
22 L (TR ) m 2 st (1 ey) 2 1),

where

t>T

= g (1)

Since sint = fJCOSTdT <t and “tit — 0ast— o0, s(T') >0forall T >0, and
therefore we now know that

i ({y (e y)en] = RY) < —-

ns(rR)’

Hence, since, for any p > 0,
17z (pe)| < /N\l — eV | s (dy) < pR+2p1 ({y : |(e,y)] > R}),
R
by taking R = 4—1p, we have that

_ 1 2
SUP|1*H%(€)| < Z+

l€1<p ns (ﬁ)
and therefore that (xx) holds. In particular, this means that ¢ admits a continuous
extention to the whole of RY such that i1 = ent.

Since |£(£)] < 2n|1 — ﬁ%({)| if [1- ﬁ::%(ﬁ)} < %, (x) implies that [((€)] < n
if |€] < p and n > (ST ) By using the Taylor series for sin, it is easy to check
S\1p

\ 2P
that limy ot 2(1 — 32¢) = 1, and therefore there exists a Ty € (0,1] such that

1—sint > % for t € (0,7Tp]. Hence, s(T) > (T A1)? Wthre € = & A s(Tp). Finally,
suppose that |§| > 7 and choose n > 1 so that n > % >n—1. Then [((&)| < n,
and so one can find a C' < oo such that [£(¢)| < C(1 + [€|?) for all £ € RV,

Exercise 1.4: Begin with the observation that, because of the rotation invariance
of Lebesgue measure,

WEYRy 141 _
~ e 1 5 N
13 RN\{O}( B0,1)(Y)(&Y)r >| N1

is a function of |£|. Next let e € S¥~! and p > 0. Then

ip(e . dy
/RN\{O} (e Pley)en 1 — 2013(0,1)(}’)(9,)’)RN> 7\y|N+1

dy
= lim cos p(e, -1
0 \y|zr( e yar 1) MR
) . dy
+i (sinp(e,y)ex — plpo,1)(¥)(e:¥)ey) —vat
lyI=r lyl

= plim cos(e,y)rn — 1 = p/ cos(e,y)py — 1) —=—.

N0 Iylzr( R ) y| N+ RN\{O}( R ) y| N+

Thus, if

-1
dy
c=— cos(€,Y)ry — 1) —=—
</]RN\{0}( ( J ) |Y|N+1>
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and M (dy) = clg~\ f0} MdTyﬂ, then the ¢ corresponding to the Lévy system (0,0, M)
is given by (&) = —|€|.

Turning to the second part, use the quadratic formula to see that 3 =
and therefore that

-+ dab
2b

It =bldr 4+ ———dr.

bV 712 + 4ab

Since the coefficient in the second term is odd and 72 + 2ab = b%t + “—:, this means

that , \
e —a —a
/ theF o g = © /e_é dr = V2T "
0 b R b

from which

follows when one differentiates with respect to a.

12
Because 7o ,1(§) = e~ 1 , it follows that

oo 2
t/ 7_36_37’@ dr = V2me 18l
0

Hence, if

t s g2
Pt(dy):E/O e 7 0,r1(dy) dr,

then 13,5(5) = e "¢l and, after a making the change of variables 7 — %, one sees
that
Py(dy) = I
U v ey

Finally, since, on the one hand,

Ple)—1 2 / eleyn — J l/ cos(e,y)gy — 1
RN ( RN

C e ey @ )T en Jee (2 4 fy )
2 dy
—_— — cos(e,y)py — 1) ———,
(O = 1) o
and, on the other hand,
Pi(e) -1 “t—1
1(e) _ ¢ 1

as t \, 0, it follows that ¢ = 2

wn "



