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The Lévy-Khinchine Formula

Given the characterization of linear functionals that satisfy the minimum prin-
ciple and are quasi-local, it is quite easy to derive the Lévy-Khinchine formula.

Let µ ∈M1(RN ) be infinitely devisable in the sence that, for each n ≥ 1, there
is a µ 1

n
∈ M1(RN ) such that µ = µ∗n1

n

. To prove that there is a Lévy system

(m,C,M) such that µ̂ = e` where

`(ξ) = i(m, ξ)RN − 1
2 (ξ,Cξ)RN +

∫
RN

(
ei(ξ,y)RN − 1− i1B(0,1)(y)(ξ,y)RN

)
M(dy),

it suffices to show that

(i) µ̂ never vanishes
(ii) If ` ∈ C(RN ;C) is determined by `(0) = 1 and µ̂ = e`, then |`(ξ)| ≤

C
(
1 + |ξ|2

)
for some C <∞.

Indeed, (i) guarantees that the ` described in (ii) exists and is unique. Further,
because µ̂ = (µ̂ 1

n
)n, (i) guarantees that µ̂ 1

n
never vanishes, and clearly 1

n` is the

unique choice of ` 1
n
∈ C(RN ;C) such that ` 1

n
(0) = 0 and µ̂ 1

n
= e

` 1
n . Hence,

using (ii) and Parseval’s Identity, one sees, that

Aϕ ≡ lim
n→∞

n
(
〈ϕ, µ 1

n
〉 − ϕ(0)

)
= (2π)−N

∫
RN
`(−ξ)ϕ̂(ξ) dξ

for S (RN ;C). Obviously A satisfies the minimum principle. In addition, if
ϕ ∈ S (RN ;C), then

(2π)NAϕR = RN
∫
RN
`(−ξ)ϕ̂(Rξ) dξ =

∫
RN
`(−R−1ξ)ϕ̂(ξ) dξ −→ 0 as R→∞.

Thus A is quasi-local. As a consequence, there exists a (m,C,M) such that

Aϕ = (2π)−N
∫
RN

(
i(m, ξ)RN − 1

2 (ξ,Cξ)RN

+

∫
RN

(
ei(ξ,y)RN − 1− i1B(0,1)(y)(ξ,y)RN

)
M(y)

)
ϕ̂(ξ) dξ.

To verify that (i) and (ii) hold, begin by observing that

|1− µ̂(ξ)| ≥ Re
(
1− µ̂(ξ)

)
=

∫
RN

(
1− cos(ξ,y)

)
µ(dy),

and therefore that, for any e ∈ SN−1,

sup
|ξ|≤r

|1−µ̂(ξ)| ≥ 1

r

∫
RN

(∫ r

0

(
1− cos t(ξ,y)

)
dt

)
µ(dy) =

∫
RN

(
1− sin r(e,y)RN

r(e,y)RN

)
µ(dy).
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Hence, if s(T ) ≡ inf |t|≥T

(
1− sin r(e,y)RN

r(e,y)RN

)
for T > 0, then, s > 0 and, for any

R > 0,

(*) sup
|ξ|≤r

|1− µ̂(ξ)| ≥ s(rR)µ
(
{y : |(e,y)RN | ≥ R}

)
.

Now choose r > 0 so that sup|ξ|≤r |1− µ̂(ξ)| ≤ 1
2 . Then, since |1− z| ≤ 1

2 =⇒
| log z| ≤ 2|1− z|, |`(ξ)| ≤ 1, and so

|1− µ̂ 1
n

(ξ)| =
∣∣1− e `(ξ)n ∣∣ ≤ 1

n

for |ξ| ≤ r. Applying (*) with µ replaced by µ 1
n

and using this estimate, we

have that, for any R > 0,

1

n
≥ s(rR)µ 1

n

(
{y : |(e,y)RN | ≥ R}

)
,

which, because

|1− µ̂ 1
n

(ρe)| ≤ ρR+ 2µ 1
n

(
{y : |(e,y)RN | ≥ R}

)
,

means that

sup
|ξ|≤ρ

|1− µ̂ 1
n

(ξ)| ≤ ρR+
2

ns(rR)
for all (ρ,R) ∈ (0,∞).

In particularly, by taking R = 1
4ρ , we get

sup
|ξ|≤ρ

|1− µ̂ 1
n

(ξ)| ≤ 1

4
+

2

ns
(
r
4ρ

) ,
and so, for all ρ > 0,

(**) sup
|ξ|≤ρ

|1− µ̂ 1
n

(ξ)| ≤ 1

2
if n ≥ 8

s
(
r
4ρ

) .
From (**), it is clear that, for each ρ > 0, there is an n such that |µ̂ 1

n
(ξ)| ≥ 1

2 and

therefore |µ̂(ξ)| ≥ 2−n for |ξ| ≤ ρ, and this completes the proof of (i). Finally,
from (**), |`(ξ)| ≤ n if |ξ| ≤ ρ and n ≥ 8

s
(
r
4ρ

) . Since there is an ε such that

s(T ) ≥ εT 2 for T ∈ (0, 1], it follows that

|`(ξ)| ≤ 1 +
128|ξ|2

εr2
.


