The Lévy-Khinchine Formula

Given the characterization of linear functionals that satisfy the minimum principle and are quasi-local, it is quite easy to derive the Lévy-Khinchine formula.

Let $\mu \in \mathbf{M}_{1}\left(\mathbb{R}^{N}\right)$ be infinitely devisable in the sence that, for each $n \geq 1$, there is a $\mu_{\frac{1}{n}} \in \mathbf{M}_{1}\left(\mathbb{R}^{N}\right)$ such that $\mu=\mu_{\frac{1}{n}}^{* n}$. To prove that there is a Lévy system $(\mathbf{m}, \mathbf{C}, M)$ such that $\hat{\mu}=e^{\ell}$ where
$\ell(\boldsymbol{\xi})=i(\mathbf{m}, \boldsymbol{\xi})_{\mathbb{R}^{N}}-\frac{1}{2}(\boldsymbol{\xi}, \mathbf{C} \boldsymbol{\xi})_{\mathbb{R}^{N}}+\int_{\mathbb{R}^{N}}\left(e^{i(\boldsymbol{\xi}, \mathbf{y})_{\mathbb{R}^{N}}}-1-i \mathbf{1}_{B(\mathbf{0}, 1)}(\mathbf{y})(\boldsymbol{\xi}, \mathbf{y})_{\mathbb{R}^{N}}\right) M(d \mathbf{y})$,
it suffices to show that
(i) $\hat{\mu}$ never vanishes
(ii) If $\ell \in C\left(\mathbb{R}^{N} ; \mathbb{C}\right)$ is determined by $\ell(\mathbf{0})=1$ and $\hat{\mu}=e^{\ell}$, then $|\ell(\boldsymbol{\xi})| \leq$ $C\left(1+|\boldsymbol{\xi}|^{2}\right)$ for some $C<\infty$.
Indeed, (i) guarantees that the ℓ described in (ii) exists and is unique. Further, because $\hat{\mu}=\left(\widehat{\mu_{\frac{1}{n}}}\right)^{n}$, (i) guarantees that $\widehat{\mu_{\frac{1}{n}}}$ never vanishes, and clearly $\frac{1}{n} \ell$ is the unique choice of $\ell_{\frac{1}{n}} \in C\left(\mathbb{R}^{N} ; \mathbb{C}\right)$ such that $\ell_{\frac{1}{n}}(\mathbf{0})=0$ and $\widehat{\mu_{\frac{1}{n}}}=e^{\ell_{\frac{1}{n}}^{n}}$. Hence, using (ii) and Parseval's Identity, one sees, that

$$
A \varphi \equiv \lim _{n \rightarrow \infty} n\left(\left\langle\varphi, \mu_{\frac{1}{n}}\right\rangle-\varphi(\mathbf{0})\right)=(2 \pi)^{-N} \int_{\mathbb{R}^{N}} \ell(-\boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d \boldsymbol{\xi}
$$

for $\mathscr{S}\left(\mathbb{R}^{N} ; \mathbb{C}\right)$. Obviously A satisfies the minimum principle. In addition, if $\varphi \in \mathscr{S}\left(\mathbb{R}^{N} ; \mathbb{C}\right)$, then
$(2 \pi)^{N} A \varphi_{R}=R^{N} \int_{\mathbb{R}^{N}} \ell(-\boldsymbol{\xi}) \hat{\varphi}(R \boldsymbol{\xi}) d \boldsymbol{\xi}=\int_{\mathbb{R}^{N}} \ell\left(-R^{-1} \boldsymbol{\xi}\right) \hat{\varphi}(\boldsymbol{\xi}) d \boldsymbol{\xi} \longrightarrow 0 \quad$ as $R \rightarrow \infty$.
Thus A is quasi-local. As a consequence, there exists a $(\mathbf{m}, \mathbf{C}, M)$ such that

$$
\begin{aligned}
A \varphi=(2 \pi)^{-N} \int_{\mathbb{R}^{N}}(& (\mathbf{m}, \boldsymbol{\xi})_{\mathbb{R}^{N}}-\frac{1}{2}(\boldsymbol{\xi}, \mathbf{C} \boldsymbol{\xi})_{\mathbb{R}^{N}} \\
& \left.+\int_{\mathbb{R}^{N}}\left(e^{i(\boldsymbol{\xi}, \mathbf{y})_{\mathbb{R}^{N}}}-1-i \mathbf{1}_{B(\mathbf{0}, 1)}(\mathbf{y})(\boldsymbol{\xi}, \mathbf{y})_{\mathbb{R}^{N}}\right) M(\mathbf{y})\right) \hat{\varphi}(\boldsymbol{\xi}) d \boldsymbol{\xi}
\end{aligned}
$$

To verify that (i) and (ii) hold, begin by observing that

$$
|1-\hat{\mu}(\boldsymbol{\xi})| \geq \mathfrak{R e}(1-\hat{\mu}(\boldsymbol{\xi}))=\int_{\mathbb{R}^{N}}(1-\cos (\boldsymbol{\xi}, \mathbf{y})) \mu(d \mathbf{y})
$$

and therefore that, for any $\mathbf{e} \in \mathbb{S}^{N-1}$,
$\sup _{|\boldsymbol{\xi}| \leq r}|1-\hat{\mu}(\boldsymbol{\xi})| \geq \frac{1}{r} \int_{\mathbb{R}^{N}}\left(\int_{0}^{r}(1-\cos t(\boldsymbol{\xi}, \mathbf{y})) d t\right) \mu(d \mathbf{y})=\int_{\mathbb{R}^{N}}\left(1-\frac{\sin r(\mathbf{e}, \mathbf{y})_{\mathbb{R}^{N}}}{r(\mathbf{e}, \mathbf{y})_{\mathbb{R}^{N}}}\right) \mu(d \mathbf{y})$.

Hence, if $s(T) \equiv \inf _{|t| \geq T}\left(1-\frac{\sin r(\mathbf{e}, \mathbf{y})_{\mathbb{R}^{N}}}{r(\mathbf{e}, \mathbf{y})_{\mathbb{R}^{N}}}\right)$ for $T>0$, then, $s>0$ and, for any $R>0$,

$$
\begin{equation*}
\sup _{|\boldsymbol{\xi}| \leq r}|1-\hat{\mu}(\boldsymbol{\xi})| \geq s(r R) \mu\left(\left\{\mathbf{y}:\left|(\mathbf{e}, \mathbf{y})_{\mathbb{R}^{N}}\right| \geq R\right\}\right) \tag{*}
\end{equation*}
$$

Now choose $r>0$ so that $\sup _{|\boldsymbol{\xi}| \leq r}|1-\hat{\mu}(\boldsymbol{\xi})| \leq \frac{1}{2}$. Then, since $|1-z| \leq \frac{1}{2} \Longrightarrow$ $|\log z| \leq 2|1-z|,|\ell(\boldsymbol{\xi})| \leq 1$, and so

$$
\left|1-\widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi})\right|=\left|1-e^{\frac{\ell(\boldsymbol{\xi})}{n}}\right| \leq \frac{1}{n}
$$

for $|\boldsymbol{\xi}| \leq r$. Applying $\left({ }^{*}\right)$ with μ replaced by $\mu_{\frac{1}{n}}$ and using this estimate, we have that, for any $R>0$,

$$
\frac{1}{n} \geq s(r R) \mu_{\frac{1}{n}}\left(\left\{\mathbf{y}:\left|(\mathbf{e}, \mathbf{y})_{\mathbb{R}^{N}}\right| \geq R\right\}\right)
$$

which, because

$$
\left|1-\widehat{\mu_{\frac{1}{n}}}(\rho \mathbf{e})\right| \leq \rho R+2 \mu_{\frac{1}{n}}\left(\left\{\mathbf{y}:\left|(\mathbf{e}, \mathbf{y})_{\mathbb{R}^{N}}\right| \geq R\right\}\right)
$$

means that

$$
\sup _{|\boldsymbol{\xi}| \leq \rho}\left|1-\widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi})\right| \leq \rho R+\frac{2}{n s(r R)} \quad \text { for all }(\rho, R) \in(0, \infty)
$$

In particularly, by taking $R=\frac{1}{4 \rho}$, we get

$$
\sup _{|\boldsymbol{\xi}| \leq \rho}\left|1-\widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi})\right| \leq \frac{1}{4}+\frac{2}{n s\left(\frac{r}{4 \rho}\right)}
$$

and so, for all $\rho>0$,

$$
\begin{equation*}
\sup _{|\boldsymbol{\xi}| \leq \rho}\left|1-\widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi})\right| \leq \frac{1}{2} \quad \text { if } n \geq \frac{8}{s\left(\frac{r}{4 \rho}\right)} \tag{}
\end{equation*}
$$

From $\left({ }^{* *}\right)$, it is clear that, for each $\rho>0$, there is an n such that $\left|\widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi})\right| \geq \frac{1}{2}$ and therefore $|\hat{\mu}(\boldsymbol{\xi})| \geq 2^{-n}$ for $|\boldsymbol{\xi}| \leq \rho$, and this completes the proof of (i). Finally, from $\left({ }^{* *}\right),|\ell(\boldsymbol{\xi})| \leq n$ if $|\boldsymbol{\xi}| \leq \rho$ and $n \geq \frac{8}{s\left(\frac{r}{4 \rho}\right)}$. Since there is an ϵ such that $s(T) \geq \epsilon T^{2}$ for $T \in(0,1]$, it follows that

$$
|\ell(\boldsymbol{\xi})| \leq 1+\frac{128|\boldsymbol{\xi}|^{2}}{\epsilon r^{2}}
$$

