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Brownian Motion, the Gaussian Lévy Process
Deconstructing Brownian Motion: My construction of Brownian motion is
based on an idea of Lévy’s; and in order to explain Lévy’s idea, I will begin with
the following line of reasoning.

Assume that {B(t) : t ≥ 0} is a Brownian motion in RN . That is, {B(t) : t ≥
0} starts at 0, has independent increments, any increment B(s+ t)−B(s) has
distribution γ0,tI, and the paths t B(t) are continuous. Next, given n ∈ N, let
t Bn(t) be the polygonal path obtained from t B(t) by linear interpolation
during each time interval [m2−n, (m+ 1)2−n]. Thus,

Bn(t) = B(m2−n) + 2n
(
t−m2−n

)(
B
(
(m+ 1)2−n

)
−B(m2−n)

)
for m2−n ≤ t ≤ (m + 1)2−n. The distribution of {B0(t) : t ≥ 0} is very
easy to understand. Namely, if Xm,0 = B(m) −B(m − 1) for m ≥ 1, then the
Xm,0’s are independent, standard normal RN -valued random variables, B0(m) =∑

1≤m≤n Xm,0, and B0(t) = (m− t)B0(m− 1) + (t−m+ 1)B0(m) for m− 1 ≤
t ≤ m. To understand the relationship between successive Bn’s, observe that
Bn+1(m2−n) = Bn(m2−n) for all m ∈ N and that

Xm,n+1 ≡ 2
n
2 +1
(
Bn+1

(
(2m− 1)2−n−1

)
−Bn

(
(2m− 1)2−n−1

))
= 2

n
2 +1

(
B
(
(2m− 1)2−n−1

)
−

B
(
m2−n

)
+ B

(
(m− 1)2−n

)
2

)
= 2

n
2

[(
B
(
(2m− 1)2−n−1

)
−B

(
(m− 1)2−n

))
−
(
B
(
m2−n

)
−B

(
(2m− 1)2−n−1

))]
,

and therefore {Xm,n+1 : m ≥ 1} is again a sequence of independent standard
normal random variables. What is less obvious is that {Xm,n : (m,n) ∈ Z+×N}
is also a family of independent random variables. In fact, checking this requires
us to make essential use of the fact that we are dealing with Gaussian random
variables.

In preparation for proving the preceding independence assertion, say that
G ⊆ L2(P;R) is a Gaussian family if G is a linear subspace and each element
of G is a centered (i.e., mean value 0), R-valued Gaussian random variable.
My interest in Gaussian families at this point is that the linear span G(B) of{(

ξ,B(t)
)
RN : t ≥ 0 and ξ ∈ RN

}
is one. To see this, simply note that, for any

0 = t0 < t1 < · · · tn and ξ1, . . . , ξn ∈ RN ,
n∑

m=1

(
ξm,B(tm)

)
RN =

n∑
`=1

(
n∑

m=`

(
ξm,B(t`)−B(t`−1)

)
RN

)
RN
,

which, as a linear combination of independent centered Gaussians, is itself a
centered Gaussian.

The crucial fact about Gaussian families is the content of the next lemma.
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Lemma 1. Suppose that G ⊆ L2(P;R) is a Gaussian family. Then the closure
of G in L2(P;R) is again a Gaussian family. Moreover, for any S ⊆ G, S is
independent of S⊥∩G, where S⊥ is the orthogonal complement of S in L2(P;R).

Proof: The first assertion is easy since Gaussian random variables are closed
under convergence in probability.

Turning to the second part, what I must show is that if X1, . . . , Xn ∈ S and
X ′1, . . . , X

′
n ∈ S⊥ ∩G, then

EP

[
n∏

m=1

e
√
−1 ξmXm

n∏
m=1

e
√
−1 ξ′mX

′
m

]
= EP

[
n∏

m=1

e
√
−1 ξmXm

]
EP

[
n∏

m=1

e
√
−1 ξ′mX

′
m

]
for any choice of {ξm : 1 ≤ m ≤ n} ∪ {ξ′m : 1 ≤ m ≤ n} ⊆ R. But the
expectation value on the left is equal to

exp

−1

2
EP

( n∑
m=1

(
ξmXm + ξ′mX

′
m

))2


= exp

−1

2
EP

( n∑
m=1

ξmXm

)2
− 1

2
EP

( n∑
m=1

ξ′mX
′
m

)2


= EP

[
n∏

m=1

e
√
−1 ξmXm

]
EP

[
n∏

m=1

e
√
−1 ξ′mX

′
m

]
,

since EP[XmX
′
m′ ] = 0 for all 1 ≤ m,m′ ≤ n. �

Armed with Lemma 1, we can now check that {Xm,n : (m,n) ∈ Z+ × N} is
independent. Indeed, since, for all (m,n) ∈ Z+ × N and ξ ∈ RN ,

(
ξ,Xm,n

)
RN a

member of the Gaussian family G(B), all that we have to do is check that, for
each (m,n) ∈ Z+ × N, ` ∈ N, and (ξ,η) ∈ (RN )2,

EP[(ξ,Xm,n+1

)
RN
(
η,B(`2−n)

)
RN
]

= 0.

But, since, for s ≤ t, B(s) is independent of B(t)−B(s),

EP[(ξ,B(s)
)
RN
(
η,B(t)

)
RN
]

= EP[(ξ,B(s)
)
RN
(
η,B(s)

)
RN
]

= s
(
ξ,η

)
RN

and therefore

2−
n
2−1EP[(ξ,Xm,n+1

)
RN
(
η,B(`2−n)

)
RN
]

= EP
[(

ξ,B
(
(2m− 1)2−n−1

))
RN

(
η,B(`2−n)

)
RN

]
− 1

2
EP
[(

ξ,B
(
m2−n

)
+ B

(
(m− 1)2−n

))
RN

(
η,B(`2−n)

)
RN

]
= 2−n

(
ξ,η

)
RN

[(
m− 1

2

)
∧ `− m ∧ `+ (m− 1) ∧ `

2

]
= 0.
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Lévy’s Construction of Brownian Motion: Lévy’s idea was to invert the
reasoning just given. That is, start with a family {Xm,n : (m,n) ∈ Z+ × N} of
independent N(0, I)-random variables. Next, define {Bn(t) : t ≥ 0} inductively
so that t  Bn(t) is linear on each interval [(m − 1)2−n,m2−n], B0(m) =∑

1≤`≤m X`,0, m ∈ N, Bn+1(m2−n) = Bn(m2−n) for m ∈ N, and

Bn+1

(
(2m− 1)2−n

)
= Bn

(
(2m− 1)2−n−1

)
+ 2−

n
2−1Xm,n+1 for m ∈ Z+.

If Brownian motion exists, then the distribution of {Bn(t) : t ≥ 0} is the
distribution of the process obtained by polygonalizing it on each of the intervals
[(m − 1)2−n,m2−n], and so the limit limn→∞Bn(t) should exist uniformly on
compacts and should be Brownian motion.

To see that this procedure works, one must first verify that the preceding
definition of {Bn(t) : t ≥ 0} gives a process with the correct distribution. That
is, we need to show that

{
Bn

(
(m+1)2−n

)
−Bn

(
m2−n

)
: m ∈ N

}
is a sequence of

independent N(0, 2−nI)-random variables. But, since this sequence is contained
in the Gaussian family spanned by {Xm,n : (m,n) ∈ Z+ × N}, Lemma 1 says
that we need only show that

EP
[(

ξ,Bn

(
(m+ 1)2−n

)
−Bn

(
m2−n

))
RN

×
(
ξ′,Bn

(
(m′ + 1)2−n

)
−Bn

(
m′2−n

))
RN

]
= 2−n

(
ξ, ξ′

)
RN δm,m′

for ξ, ξ′ ∈ RN and m, m′ ∈ N. When n = 0, this is obvious. Now assume that
it is true for n, and observe that

Bn+1(m2−n)−Bn+1

(
(2m− 1)2−n−1

)
=

Bn(m2−n)−Bn

(
(m− 1)2−n

)
2

− 2−
n
2−1Xm,n+1

and

Bn+1

(
(2m− 1)2−n−1

)
−Bn+1

(
(m− 1)2−n

)
=

Bn(m2−n)−Bn

(
(m− 1)2−n

)
2

+ 2−
n
2−1Xm,n+1.

Using these expressions and the induction hypothesis, it is easy to check the
required equation.

Second, and more challenging, we must show that, P-almost surely, these
processes are converging uniformly on compact time intervals. For this purpose,
consider the difference t  Bn+1(t) − Bn(t). Since this path is linear on each
interval [m2−n−1, (m+ 1)2−n−1],

max
t∈[0,2L]

∣∣Bn+1(t)−Bn(t)
∣∣ = max

1≤m≤2L+n+1

∣∣Bn+1(m2−n−1)−Bn(m2−n−1)
∣∣

= 2−
n
2−1 max

1≤m≤2L+n
|Xm,n+1| ≤ 2−

n
2−1

2L+n∑
m=1

|Xm,n+1|4
 1

4

.
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Thus, by Jensen’s Inequality,

EP[‖Bn+1 −Bn‖[0,2L]

]
≤ 2−

n
2−1

2L+n∑
m=1

EP[|Xm,n+1|4
] 1

4

= 2−
n−L−4

4 CN ,

where CN ≡ EP[|X1,0|4
] 1

4 <∞.
Starting from the preceding, it is an easy matter to show that there is a

measurable B : [0,∞)×Ω −→ RN such that B(0) = 0, B( · , ω) ∈ C
(
[0,∞);RN )

for each ω ∈ Ω, and ‖Bn − B‖[0,t] −→ 0 both P-almost surely and in L1(P;R)

for every t ∈ [0,∞). Furthermore, since B(m2−n) = Bn(m2−n) P-almost surely
for all (m,n) ∈ N2, it is clear that

{
B
(
(m + 1)2−n

)
−B(m2−n) : m ≥ 0

}
is a

sequence of independent N(0, 2−nI)-random variables for all n ∈ N. Hence, by
continuity, it follows that {B(t) : t ≥ 0} is a Brownian motion.

We have now completed the Lévy’s construction, but, before moving on, it is
only proper to recognize that, clever as his method is, Lévy was not the first to
construct a Brownian motion. Instead, it was N. Wiener who was the first. In
fact, his famous1 1923 article “Differential Space” in J. Math. Phys. #2 contains
three different approaches.

Lévy’s Construction in Context: There are elements of Lévy’s construction
that admit interesting generalizations, perhaps the most important of which is
Kolmogorov’s Continuity Criterion.

Theorem 2. Suppose that {X(x) : x ∈ [0, R]N} is a family of random vari-
ables taking values in a Banach space B, and assume that, for some p ∈ [1,∞),
C <∞, and r ∈ (0, 1],

E
[
‖X(y)−X(x)‖pB

] 1
p ≤ C|y − x|

N
p +r for all x, y ∈ [0, R]N .

Then there exists a family {X̃(x) : x ∈ [0, R]N} of random variables such

that X(x) = X̃(x) P-almost surely for each x ∈ [0, R]N and x ∈ [0, R]N 7−→
X̃(x, ω) ∈ B is continuous for all ω ∈ Ω. In fact, for each α ∈ [0, r), there is a
K <∞, depending only on N , p, r, and α, such that

E

 sup
x,y∈[0,R]N

x6=y

(
‖X̃(y)− X̃(x)‖B
|y − x|α

)p
1
p

≤ KR
N
p +r−α.

1 Wiener’s article is remarkable, but I must admit that I have never been convinced that it is
complete. Undoubtedly, my skepticism are more a consequence of my own ineptitude than of

his.
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Proof: First note that, by sm easy rescaling argument, it suffices to treat the
case when R = 1.

Given n ≥ 0, set2

Mn = max
k,m∈NN∩[0,2n]N
‖m−k‖∞=1

∥∥X(m2−n)−X
(
k2−n

)∥∥
B
,

and observe that

E
[
Mp
n

] 1
p ≤ E


 ∑

k,m∈NN∩[0,2n]N
‖m−k‖∞=1

∥∥X(m2−n)−X
(
k2−n

)∥∥p
B


1
p



≤

 ∑
k,m∈NN∩[0,2n]N
‖m−k‖∞=1

E
[∥∥X(m2−n)−X

(
k2−n

)∥∥p
B

]


1
p

≤ K2−nr,

where K = C(2N)
1
p .

Let n ≥ 1 be given. Because Xn(x) − Xn−1(x) is a multilinear function on
each cude m2−n + [0, 2−n]N ,

sup
x,y∈[0,1]N

‖Xn(y)−Xn−1(x)‖B = max
m∈NN∩[0,2n]N

{
‖Xn(m2−n)−Xn−1(m2−n)‖B

}
.

Since Xn(m2−n) = X(m2−n) and either Xn−1(m2−n) = X(m2−n) or

Xn−1(m2−n) =
∑

k∈NN∩[0,2n]
‖k−m‖∞=1

θm.kX(k2−n),

where the θm,k’s are non-negative and sum to 1, it follows that

sup
x,y∈[0,1]N

‖Xn(y)−Xn−1(x)‖B ≤Mn

and therefore that

E

[
sup

x,y∈[0,1]N
‖Xn(y)−Xn−1(x)‖pB

] 1
p

≤ K2−nr.

2 Given x ∈ RN , ‖x‖∞ = max1≤j≤N |xj |.
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Hence

E

[
sup
n′>n

sup
x,y∈[0,1]N

‖Xn′(y)−Xn(x)‖pB

] 1
p

≤ K

1− 2−r
2−nr,

and so there exists a measurable map X̃ : [0, 1]N × Ω −→ B such that x  
X̃(x, ω) is continuous for each ω ∈ Ω and

E

[
sup

x∈[0,1]N
‖X̃(x)−Xn(x)‖pB

] 1
p

≤ K

1− 2−r
2−nr.

Furthermore, X̃(x) = X(x) a.s. if x = m2−n for some n ≥ 0 and m ∈ NN ∩
[0, 2n]N . Hence, since x X̃(x) is continuous and

E
[
‖X([2nx]2−n)−X(x)‖pB

] 1
p ≤ C2−n(

N
p +r),

it follows that X(x) = X̃(x) a.s. for all x ∈ [0, 1]N .

Finally, to prove the final estimate, suppose that 2−n−1 < |y − x| ≤ 2−n.
Then

‖Xn(y)−Xn(x)‖B ≤ N
1
2 2n|x− y|Mn,

and so

‖X̃(y)− X̃(x)‖B ≤ 2 sup
ξ∈[0,1]N

‖X̃(ξ)−Xn(ξ)‖B +N
1
2 2n|x− y|Mn.

Hence, by the preceding,

E

 sup
x,y∈[0,1]N

2−n−1<|y−x|≤2−n

(
‖X̃(y)− X̃(x)‖B
|y − x|α

)p
1
p

≤ K ′2−n(r−α),

where K ′ = 4K
1−2−r + 2N

1
2K, and therefore

E


 sup

x,y∈[0,1]N
y 6=x

‖X̃(y)− X̃(x)‖B
|y − x|α


p

1
p

≤ K ′

1− 2−(r−α)
. �
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Corollary 3. Assume that there is a p ∈ [1,∞), β > N
p , and C < ∞ such

that

E
[
‖X̃(y)− X̃(x)‖pB

] 1
p ≤ C|y − x|β for all x, y ∈ [0,∞)N .

Then, for each for each γ > β,

lim
|x|→∞

X(x)

|x|γ
= 0 a.s..

Proof: Take α = 0 in Theorem 2. Then

E

[(
sup

x∈[2n−1,2n]N

‖X̃(x)− X̃(0)‖B
|x|γ

)p] 1
p

≤ 2−γ(n−1)E

[
sup

x∈[0,2nn]N
‖X̃(x)− X̃(0)‖pB

] 1
p

≤ 2γK2(β−γ)n,

and so

E

[(
sup

x∈[2m−1,∞)N

‖X̃(x)− X̃(0)‖B
|x|γ

)p] 1
p

≤ 2γK

1− 2β−γ
2(β−γ)m. �

Wiener Measure and Brownian Motion: Given a probability space (Ω,F ,P),
a non-decreasing family {Ft : t ≥ 0} of sub-σ-algebras, and a family {B(t) : t ≥
0} of RN -valued random variables, one says that

(
B(t),Ft,P

)
is an RN -valued

Brownian motion if

(i) P-almost surely, B(0) = 0 and t B(t) is continuous.
(ii) For each s ≥ 0, B(s) is Fs-measurable, and, for t > s, B(t) − B(s) is

independent of Fs and has distribution γ0,(t−s)I.

Endow C
(
[0,∞);RN

)
with the topology of uniform convergence on compacts.

Equivalently, if the metrice ρ on C
(
[0,∞);RN

)
is defined by

ρ(w1, w2) =

∞∑
m=1

2−m
‖w2 − w1‖[0,m]

1 + ‖w2 − w1‖[0,m]

for w1, w2 ∈ C
(
[0,∞);RN

)
, then we are giving C

(
[0,∞);RN

)
the topology de-

termined by ρ. It is an elementary exercise to show that this metric space
is separable and complete. Furtheremore, the associated Borel field B is the
smallest σ-algebra σ

(
{w(t) : t ≥ 0}

)
for which all the maps w  w(t) are

measurable. Indeed, since w  w(t) is continuous, it is Borel measurable, and
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therefore σ
(
{w(t) : t ≥ 0}

)
⊆ B. To prove the opposite inclusion, begin by ob-

serving that every open subset of C
(
[0,∞);RN

)
can be written as the countable

union of sets of the form BT (w) = {w′ : ‖w′ − w‖[0,T ] ≤ r}. Since

BT (w) =
⋂

t∈Q∩[0,T ]

{w′ : |w′(t)− w(t)| ≤ r} ∈ σ
(
{w(t) : t ≥ 0}

)
,

where Q denotes the set of rational numbers, there is nothing more to do.
In view of the preceding, we know that two Borel, probability measures µ1

and µ2 on C
(
[0,∞);RN

)
are equal if, for all n ≥ 1 and 0 ≤ t1 < · · · < tn,

the distribution of w  
(
w(t1), . . . , w(tn)

)
is the same under µ1 and µ2. In

particular, the measure induced on C
(
[0,∞);RN

)
by one Brownian motion is

the same as that induced by any other Brownian motion. Namely, if µ is such
a measure, then µ

(
{w : w(0) = 0}

)
= 1 and, for each 0 ≤ s < t, w(t)− w(s) is

independent of Bs ≡ σ
(
{w(τ) : τ ∈ [0, s]}

)
and has distribution γ0,(t−s)I. Hence,

for any n ≥ 1 and 0 = t0 < t1 < · · · < tn, w(t1) − w(t0), . . . , w(tn) − w(tn−1)
are mutually independent and the mth one has distribution γ0,(tm−tm−1)I. This
unique measure is called Wiener measure, and I will use W is denote it.


