
Solution Set #7

(5.2.36) Just follow the outline.

(5.2.38) First note that EP[A∞] = limn→∞ EP[Xn] − EP[X0] < ∞. Thus, since 0 ≤ An ≤ An+1,
{An : n ≥ 0} is uniformly integrable. Next, because the sequence formed by summing the members
of two uniformly integrable sequences of functions is again uniformly integrable, it follows that {Mn :
n ≥ 0} is also uniformly integrable. Thus, if M∞ = limn→∞Mn (a.s.,P), Mn = EP[M∞ | Fn], and so
Xn = EP[M∞ | Fn] +An (a.s.,P) for all n ≥ 0.

Now let ζ be a stopping time. Given A ∈ Fζ , B ∩ {ζ ≤ n} ∈ Fn∧ζ and therefore Hunt’s theorem
implies that

EP[Mn∧ζ , B∩{ζ ≤ n}] = EP[M∞, B∩{ζ ≤ n}] and EP[|Mn∧ζ |, B∩{ζ ≤ n}] ≤ EP[|M∞|, B∩{ζ ≤ n}].

In particular, as

sup
m≥0

EP[|Mm∧ζ |, |Mm∧ζ | > R
]

= sup
m≥0

EP[|M∞|, |Mm∧ζ | > R
]
≤ EP

[
|M∞|, sup

n≥0
|Mn| ≥ R

]
−→ 0

as R→∞, since, by Doob’s inequality, P
(
supn≥0 |Mn| ≥ R

)
≤ R−1EP[|M∞|]. Hence, {Mn∧ζ : n ≥ 0}

is uniformly integrable, and so

EP[Mζ , B ∩ {ζ <∞}
]

= lim
n→∞

EP[Mn∧ζ , B ∩ {ζ ≤ n}] = EP[M∞, B ∩ {ζ <∞}]

for B ∈ Fζ , which means that EP[Mζ , B
]

= EP[M∞, B] for all B ∈ Fζ and therefore that Mζ =

EP[M∞ | Fζ ] (a.s,P).
Knowing the preceding, we have Xζ = EP[M∞ | Fζ ] + Aζ (a.s.,P) for all stopping times ζ. Thus, if

ζ ≤ ζ ′ and B ∈ Fζ , then, since Fζ ⊆ Fζ′ ,

EP[Xζ , B
]

= EP[M∞, A]+ EP[Aζ , B] = EP[Mζ′ , B
]

+ EP[Aζ , B],
and so EP[Xζ′ | Fζ ] = Xζ + EP[Aζ′ −Aζ | Fζ ] (a.s.,P).

(5.2.41) Just follow the outline.

(5.2.42)

(i) Let Z = P�Σ+Q�Σ
dµ . Then P�Σ

dµ = XΣZ, Q�Σ
dµ = YΣZ, and so∫ (

P � Σ

dµ

) 1
2
(
Q � Σ

dµ

) 1
2

dµ =

∫
X

1
2

ΣY
1
2

Σ Z dµ =

∫ ∫
X

1
2

ΣY
1
2

Σ d(P + Q).

Finally, since P � Σ ⊥ Q � Σ ⇐⇒ XΣYΣ = 0 (a.s.,P + Q), it is obvious that P � Σ ⊥ Q � Σ ⇐⇒
(P,Q)Σ = 0.

(ii) Assume, without loss in generality, that F =
∨∞
n=0 Fn, and set µ = P+Q

2 , X = dP
dµ , and Y = dQ

dµ .

Then it is an easy matter to check that Xn ≡ Eµ[X | Fn] = dP�Fn
dµ�Fn and Yn ≡ EP[Y | Fn] = dQ�Fn

dµ�Fn
(a.s.,µ). Further, without loss in generality, take X, Y , the Xn’s, and Yn’s all to be non-negative.

By Corollary 5.2.4, Xn −→ X and Yn −→ Y in L1(µ;R), and so, since (b
1
2 − a 1

2 )2 ≤ |b − a| for any

a, b ∈ [0,∞), X
1
2
n −→ X

1
2 and Yn −→ Y

1
2 in L2(µ;R). Hence, X

1
2
n Y

1
2
n −→ X

1
2Y

1
2 in L1(µ;R), and

therefore

(P,Q)Fn = Eµ[X
1
2
n Y

1
2
n ] −→ Eµ[X

1
2Y

1
2 ] = (P, Q)F .

(iii) Simply take µ = P and note that (P,Q)Fn = EP[
√
Xn].



(iv) Set

hσ,a,b(x) =
dγb,σ2

dγa,σ2

= e
a2−b2

2σ2 e
(b−s)x
σ2 .

Then, for any p ∈ (0,∞),∫
hpσ,a,b dγa,σ2 =

∫
hpσ,a,b(x+ a) γ0,σ2(dx) = e

p(b−a)2

2σ2

∫
e
p(b−a)x
σ2 γ0,σ2(dx) = e

p(p−1)(b−a)2

2σ2 .

Now set Ω = RN, Fn = σ
({
ω : ωm ∈ Γ} : 0 ≤ m ≤ n & Γ ∈ BR

}
, F =

∨∞
n+0 Fn, P =∏∞

n=0 γan,σ2 , and Q =
∏∞
n=0 γbn,σ2 . Then Xn(ω) ≡ dQ�Fn

dQ�Fn (ω) =
∏n
m=0 hσm,am,bm(ωm), and so

EP[Xp
n] = exp

(
p(p−1)

2

∑n
m=0

(bm−am)2

σ2
m

)
. Hence,

∑∞
m=0

(bm−am)2

σ2
m

= ∞ =⇒ limn→∞ EP[
√
Xn] −→ 0

and
∑∞
m=0

(bm−am)2

σ2
m

<∞ =⇒ supn≥0 EP[X2
n] <∞. In the first case Q ⊥ P and in the second Q� P.

Reversing the roles of the an’s and bn’s, one sees that, in the second case P� Q as well.


