Solution Set #7

(5.2.36) Just follow the outline.

(5.2.38) First note that $\mathbb{E}^{\mathbb{P}}[A_{\infty}] = \lim_{n \to \infty} \mathbb{E}^{\mathbb{P}}[X_n] - \mathbb{E}^{\mathbb{P}}[X_0] < \infty$. Thus, since $0 \leq A_n \leq A_{n+1}$, $\{A_n : n \geq 0\}$ is uniformly integrable. Next, because the sequence formed by summing the members of two uniformly integrable sequences of functions is again uniformly integrable, it follows that $\{M_n : n \geq 0\}$ is also uniformly integrable. Thus, if $M_{\infty} = \lim_{n \to \infty} M_n$ (a.s., \mathbb{P}), $M_n = \mathbb{E}^{\mathbb{P}}[M_{\infty} | \mathcal{F}_n]$, and so $X_n = \mathbb{E}^{\mathbb{P}}[M_{\infty} | \mathcal{F}_n] + A_n$ (a.s., \mathbb{P}) for all $n \geq 0$.

Now let ζ be a stopping time. Given $A \in \mathcal{F}_{\zeta}$, $B \cap \{\zeta \leq n\} \in \mathcal{F}_{n \wedge \zeta}$ and therefore Hunt's theorem implies that

$$\mathbb{E}^{\mathbb{P}}[M_{n\wedge\zeta}, B\cap\{\zeta\leq n\}] = \mathbb{E}^{\mathbb{P}}[M_{\infty}, B\cap\{\zeta\leq n\}] \text{ and } \mathbb{E}^{\mathbb{P}}[|M_{n\wedge\zeta}|, B\cap\{\zeta\leq n\}] \leq \mathbb{E}^{\mathbb{P}}[|M_{\infty}|, B\cap\{\zeta\leq n\}].$$

In particular, as

$$\sup_{m \ge 0} \mathbb{E}^{\mathbb{P}} \left[|M_{m \land \zeta}|, |M_{m \land \zeta}| > R \right] = \sup_{m \ge 0} \mathbb{E}^{\mathbb{P}} \left[|M_{\infty}|, |M_{m \land \zeta}| > R \right] \le \mathbb{E}^{\mathbb{P}} \left[|M_{\infty}|, \sup_{n \ge 0} |M_{n}| \ge R \right] \longrightarrow 0$$

as $R \to \infty$, since, by Doob's inequality, $\mathbb{P}\left(\sup_{n\geq 0} |M_n| \geq R\right) \leq R^{-1} \mathbb{E}^{\mathbb{P}}[|M_{\infty}|]$. Hence, $\{M_{n\wedge\zeta} : n \geq 0\}$ is uniformly integrable, and so

$$\mathbb{E}^{\mathbb{P}}[M_{\zeta}, B \cap \{\zeta < \infty\}] = \lim_{n \to \infty} \mathbb{E}^{\mathbb{P}}[M_{n \wedge \zeta}, B \cap \{\zeta \le n\}] = \mathbb{E}^{\mathbb{P}}[M_{\infty}, B \cap \{\zeta < \infty\}]$$

for $B \in \mathcal{F}_{\zeta}$, which means that $\mathbb{E}^{\mathbb{P}}[M_{\zeta}, B] = \mathbb{E}^{\mathbb{P}}[M_{\infty}, B]$ for all $B \in \mathcal{F}_{\zeta}$ and therefore that $M_{\zeta} = \mathbb{E}^{\mathbb{P}}[M_{\infty} | \mathcal{F}_{\zeta}]$ (a.s, \mathbb{P}).

Knowing the preceding, we have $X_{\zeta} = \mathbb{E}^{\mathbb{P}}[M_{\infty} | \mathcal{F}_{\zeta}] + A_{\zeta}$ (a.s., \mathbb{P}) for all stopping times ζ . Thus, if $\zeta \leq \zeta'$ and $B \in \mathcal{F}_{\zeta}$, then, since $\mathcal{F}_{\zeta} \subseteq \mathcal{F}_{\zeta'}$,

$$\mathbb{E}^{\mathbb{P}}[X_{\zeta}, B] = \mathbb{E}^{\mathbb{P}}[M_{\infty}, A] + \mathbb{E}^{\mathbb{P}}[A_{\zeta}, B] = \mathbb{E}^{\mathbb{P}}[M_{\zeta'}, B] + \mathbb{E}^{\mathbb{P}}[A_{\zeta}, B],$$

and so $\mathbb{E}^{\mathbb{P}}[X_{\zeta'} | \mathcal{F}_{\zeta}] = X_{\zeta} + \mathbb{E}^{\mathbb{P}}[A_{\zeta'} - A_{\zeta} | \mathcal{F}_{\zeta}]$ (a.s., \mathbb{P}).

(5.2.41) Just follow the outline.

(i) Let $Z = \frac{\mathbb{P}[\Sigma + \mathbb{Q}]\Sigma}{d\mu}$. Then $\frac{\mathbb{P}[\Sigma]}{d\mu} = X_{\Sigma}Z$, $\frac{\mathbb{Q}[\Sigma]}{d\mu} = Y_{\Sigma}Z$, and so

$$\int \left(\frac{\mathbb{P} \upharpoonright \Sigma}{d\mu}\right)^{\frac{1}{2}} \left(\frac{\mathbb{Q} \upharpoonright \Sigma}{d\mu}\right)^{\frac{1}{2}} d\mu = \int X_{\Sigma}^{\frac{1}{2}} Y_{\Sigma}^{\frac{1}{2}} Z d\mu = \int \int X_{\Sigma}^{\frac{1}{2}} Y_{\Sigma}^{\frac{1}{2}} d(\mathbb{P} + \mathbb{Q}).$$

Finally, since $\mathbb{P} \upharpoonright \Sigma \perp \mathbb{Q} \upharpoonright \Sigma \iff X_{\Sigma}Y_{\Sigma} = 0$ (a.s., $\mathbb{P} + \mathbb{Q}$), it is obvious that $\mathbb{P} \upharpoonright \Sigma \perp \mathbb{Q} \upharpoonright \Sigma \iff (\mathbb{P}, \mathbb{Q})_{\Sigma} = 0$.

(ii) Assume, without loss in generality, that $\mathcal{F} = \bigvee_{n=0}^{\infty} \mathcal{F}_n$, and set $\mu = \frac{\mathbb{P} + \mathbb{Q}}{2}$, $X = \frac{d\mathbb{P}}{d\mu}$, and $Y = \frac{d\mathbb{Q}}{d\mu}$. Then it is an easy matter to check that $X_n \equiv \mathbb{E}^{\mu}[X | \mathcal{F}_n] = \frac{d\mathbb{P} | \mathcal{F}_n}{d\mu | \mathcal{F}_n}$ and $Y_n \equiv \mathbb{E}^{\mathbb{P}}[Y | \mathcal{F}_n] = \frac{d\mathbb{Q} | \mathcal{F}_n}{d\mu | \mathcal{F}_n}$ (a.s., μ). Further, without loss in generality, take X, Y, the X_n 's, and Y_n 's all to be non-negative. By Corollary 5.2.4, $X_n \longrightarrow X$ and $Y_n \longrightarrow Y$ in $L^1(\mu; \mathbb{R})$, and so, since $(b^{\frac{1}{2}} - a^{\frac{1}{2}})^2 \leq |b - a|$ for any $a, b \in [0, \infty), X_n^{\frac{1}{2}} \longrightarrow X^{\frac{1}{2}}$ and $Y_n \longrightarrow Y^{\frac{1}{2}}$ in $L^2(\mu; \mathbb{R})$. Hence, $X_n^{\frac{1}{2}} Y_n^{\frac{1}{2}} \longrightarrow X^{\frac{1}{2}} Y^{\frac{1}{2}}$ in $L^1(\mu; \mathbb{R})$, and therefore

$$(\mathbb{P},\mathbb{Q})_{\mathcal{F}_n} = \mathbb{E}^{\mu}[X_n^{\frac{1}{2}}Y_n^{\frac{1}{2}}] \longrightarrow \mathbb{E}^{\mu}[X^{\frac{1}{2}}Y^{\frac{1}{2}}] = (\mathbb{P},Q)_{\mathcal{F}}.$$

(iii) Simply take $\mu = \mathbb{P}$ and note that $(\mathbb{P}, \mathbb{Q})_{\mathcal{F}_n} = \mathbb{E}^{\mathbb{P}}[\sqrt{X_n}]$.

(iv) Set

$$h_{\sigma,a,b}(x) = \frac{d\gamma_{b,\sigma^2}}{d\gamma_{a,\sigma^2}} = e^{\frac{a^2 - b^2}{2\sigma^2}} e^{\frac{(b-s)x}{\sigma^2}}.$$

Then, for any $p \in (0, \infty)$,

$$\int h_{\sigma,a,b}^p \, d\gamma_{a,\sigma^2} = \int h_{\sigma,a,b}^p (x+a) \, \gamma_{0,\sigma^2}(dx) = e^{\frac{p(b-a)^2}{2\sigma^2}} \int e^{\frac{p(b-a)x}{\sigma^2}} \, \gamma_{0,\sigma^2}(dx) = e^{\frac{p(p-1)(b-a)^2}{2\sigma^2}}.$$

Now set $\Omega = \mathbb{R}^{\mathbb{N}}$, $\mathcal{F}_n = \sigma(\{\omega : \omega_m \in \Gamma\} : 0 \leq m \leq n \& \Gamma \in \mathcal{B}_{\mathbb{R}}\}, \mathcal{F} = \bigvee_{n=0}^{\infty} \mathcal{F}_n, \mathbb{P} = \prod_{n=0}^{\infty} \gamma_{b_n,\sigma^2}$. Then $X_n(\omega) \equiv \frac{d\mathbb{Q}\upharpoonright \mathcal{F}_n}{d\mathbb{Q}\upharpoonright \mathcal{F}_n}(\omega) = \prod_{m=0}^n h_{\sigma_m,a_m,b_m}(\omega_m)$, and so $\mathbb{E}^{\mathbb{P}}[X_n^p] = \exp\left(\frac{p(p-1)}{2}\sum_{m=0}^n \frac{(b_m-a_m)^2}{\sigma_m^2}\right)$. Hence, $\sum_{m=0}^{\infty} \frac{(b_m-a_m)^2}{\sigma_m^2} = \infty \implies \lim_{n\to\infty} \mathbb{E}^{\mathbb{P}}[\sqrt{X_n}] \longrightarrow 0$ and $\sum_{m=0}^{\infty} \frac{(b_m-a_m)^2}{\sigma_m^2} < \infty \implies \sup_{n\geq 0} \mathbb{E}^{\mathbb{P}}[X_n^2] < \infty$. In the first case $\mathbb{Q} \perp \mathbb{P}$ and in the second $\mathbb{Q} \ll \mathbb{P}$. Reversing the roles of the a_n 's and b_n 's, one sees that, in the second case $\mathbb{P} \ll \mathbb{Q}$ as well.