
Solution Set # 6

(4.3.10)

(i): If {B(t) : t ≥ 0} is a Brownian motion, 0 = t0 < · · · < t`, and ξ1, . . . , ξ` ∈ RN , then

∑̀
k=1

(
ξk,B(tk)

)
RN =

∑̀
k=1

(
Ξk,B(tk)−B(tk−1)

)
RN ,

where Ξk =
∑`
j=k ξj . Therefore,

∑`
k=1

(
ξk,B(tk)

)
RN is a sum of mutually independent, centered

Gaussian random variable and, as such, is a centered Gaussian random variable. Thus, the span of
{(ξ,B(t))RN : t ≥ 0 & ξ ∈ RN} is a Gaussian family. In addition, if t′ ≥ t, then because B(t′)−B(t)
is independent of B(t),

EP[(ξ′,B(t′)
)
RN
(
ξ,B(t)

)
RN
]

= EP[(ξ′,B(t′)−B(t)
)
RN
(
ξ,B(t)

)
RN
]

+ EP[(ξ′,B(t)
)
RN
(
ξ,B(t)

)
RN
]

= t(ξ′, ξ)RN .

Conversely, if {X(t) : t ≥ 0} has the stated properties, then, for any 0 ≤ s ≤ t, τ ∈ [0, s], and
ξ,η ∈ RN ,

EP[(ξ,X(t)−X(s))RN (η,X(τ)
)
RN = τ(ξ,η)RN − τ(ξ,η)RN = 0,

and so X(t)−X(s) is independent of σ
(
{X(τ) : τ ∈ [0, s]}

)
. In addition,

EP[(ξ,X(t)−X(s))2RN
]

= (t− 2s+ s)|ξ|2 = (t− s)|ξ|2,

and so X(t) −X(s) is a centered Gaussian random variable with covariance (t − s)I. Hence, {X(t) :
t ≥ 0} is a Brownain motion.

(ii) & (iii): The first of these follows from (i) by taking X(t) = OB(t), and second by taking

X(t) = λ−
1
2 B(λt).

(4.3.11)

(i): By (i) in Exercise 4.3.10, {X(t) : t > 0} is a Gaussian family satisfying

EP[(ξ′,X(t′))RN (ξ,X(t))RN
]

= t ∧ t′(ξ, ξ′)RN for all t, t′ ≥ 0 and ξ, ξ′ ∈ RN .

Thus, {X(t) : t > 0} has the same distribution as a Brownian motion restricted to time interval (0,∞),
and therefore, with probability 1, limt→0 X(t) = 0. Knowing this, the rest is just an application of (i)
in Exercise 4.3.10.

(ii): This is a trivial application of (i).

(4.3.12)

(i): Since

P

(
sup
t∈[0,T ]

|B(t)| ≥ R

)
≤ N max

e∈SN−1
P

(
sup
t∈[0,T ]

∣∣(e,B(t)
)
RN
∣∣ ≥ N− 1

2R

)
,

it suffices to treat the case whenN = 1, and, by Brownian scaling, when T = 1. Thus, let {B(t) : t ≥ 0}
be an R-valued Brownian motion. Since B(m2−n) =

∑m
k=1

(
B(k2−n)−B((k−1)2−n)

)
, Theorem 1.4.13

says that

P
(

max
1≤m≤2n

|B(k2−n)| ≥ R
)
≤ 2P

(
|B(1)| ≥ R

)
.



Hence, since

P
(
‖B‖[0,1] ≥ R

)
= lim
r↗R

P
(
‖B‖[0,1] > r

)
and P

(
‖B‖[0,1] > R

)
≤ lim
n→∞

P
(

max
1≤m≤2n

|B(k2−n)| ≥ R
)
,

all that remains is the show that P
(
B(1) ≥ R

)
≤ 1

2e
−R2

2 . Because
∫∞
R
e−

x2

2 dx ≤ R−1e−
R2

2 , this is

obvious when R ≥
√

2
π . To prove it when 0 < R ≤

√
2
π , note that P

(
B(1) ≥ R

)
= 1

2−P
(
0 ≤ B(1) ≤ R

)
and therefore that it suffices to check that

1 ≤ e−R2

2 +

√
2

π

∫ R

0

e−
x2

2 dx for 0 ≤ R ≤
√

2

π
.

Finally, observe that the righthand side is a non-decreasing functin of R ∈
[
0,
√

2
π

]
.

(ii) & (iii): Part (iii) follows immediately from (ii), and the verification of (ii) can be done by the
outlined argument.

(4.3.15) Just follow the steps suggested.

(4.3.19) Because

B(1)2 =

n∑
m=1

(
B
(
m
n

)
−B

(
m−1
n

))(
B
(
m
n

)
+B

(
m−1
n

))
=

n∑
m=1

(
B
(
m
n

)
−B

(
m−1
n

))2
+ 2

n∑
m=1

B
(
m−1
n

)(
B
(
m
n

)
−B

(
m−1
n

))
=

n∑
m=1

(
B
(
m
n

)
−B

(
m−1
n

))2
− 2

n∑
m=1

B
(
m
n

)(
B
(
m
n

)
−B

(
m−1
n

))
,

the first two equations follow. To prove the third, start in the same way as above and thereby arrive
at

B(1)2 − 2

n∑
m=1

B
(
2m−1
2n

)(
B
(
m
n

)
−B

(
m−1
n

))
=

n∑
m=1

(
B
(
m
n

)
−B

(
2m−1
2n

))(
B
(
m
n

)
−B

(
m−1
n

))
−

n∑
m=1

(
B
(
2m−1
2n

)
−B

(
m−1
n

))(
B
(
m
n

)
−B

(
m−1
n

))
=

n∑
m=1

(
B
(
m
n

)
−B

(
2m−1
2n

))2
−

n∑
m=1

(
B
(
2m−1
2n

)
−B

(
m−1
n

))2
Finally, proceed as in the proof of Theorem 4.3.5 to see that each of the sums in the final line tend to
1
2 P-almost surely.

(5.1.16) Because X −ΠLX ⊥ L, X −ΠLX is independent of ΣL. Thus, EP[X, A] = EP[ΠLX, A
]

for

all A ∈ ΣL, and so, since ΠLX is ΣL-measurable, ΠLX = EP[X ∣∣ΣL].


