Solution Set # 6

(4.3.10

i): If {B(t): t > 0} is a Brownian motion, 0 =ty < --- < t;, and &1,...,& € RV, then
() ) ) ) ) b
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where B = Zgzk &;. Therefore, Zizl (Sk,B(tk))RN is a sum of mutually independent, centered
Gaussian random variable and, as such, is a centered Gaussian random variable. Thus, the span of
{(&,B(t))pv : t>0& E € RN} is a Gaussian family. In addition, if ¢’ > ¢, then because B(t') — B(t)
is 1ndependent of B(t),

E7[(&.B(t) (& B(1)) ]
=E[(& . B(t") = B(t)) g (& B(1)) g ] +ET[(€',B(1)) v (6, B(2)) ] = (€', €)rv
Conversely, if {X(¢) : ¢ > 0} has the stated properties, then, for any 0 < s < ¢, 7 € [0, s], and

£&neRY,
EF[(&,X(t) — X(s))pn (0, X(7)) g = T(€, M)y — T(&, M)ry =0,

and so X(t) — X(s) is independent of o ({X(7) : 7 € [0,s]}). In addition,

E7[(&,X () = X(s)av] = (t = 25 + 5)[€* = (¢ — 9) €],
and so X(t) — X(s) is a centered Gaussian random variable with covariance (¢t — s)I. Hence, {X(¢) :
t > 0} is a Brownain motion.
(ii) & (iii): The first of these follows from (i) by taking X(t) = OB(t), and second by taking
X(t) = A 2B(\t).

(4.3.11)

(i): By (i) in Exercise 4.3.10, {X(t) : ¢ > 0} is a Gaussian family satisfying
EF[(&,X(¥))an (&, X()an] =t At/ (€, )pv forall t,#' >0 and &,¢" € RY.

Thus, {X(¢) : ¢t > 0} has the same distribution as a Brownian motion restricted to time interval (0, co),
and therefore, with probability 1, lim;_,q X(¢) = 0. Knowing this, the rest is just an application of (i)
in Exercise 4.3.10.

(ii): This is a trivial application of (i).

(4.3.12
(i): Since

P| sup [B(t)[>R| <N max P| sup |(e,B(t ‘>N_§R
te[0,T] e€SN 1 te[0,T)

it suffices to treat the case when N = 1, and, by Brownian scaling, when 7' = 1. Thus, let {B(¢) : t > 0}
be an R-valued Brownian motion. Since B(m2™") = >" | (B(k27")—B((k—1)2™")), Theorem 1.4.13
says that

IP’( max |B(k27")| > R) < 2P(|B(1)| > R).

1<m<2n



Hence, since
P(IBllo.y 2 B) = lim P(|Bllo,y > r) and (|| By > R) < lim P ( max |B(k27")| > R> :

1<m<2

R2

all that remains is the show that P(B(1) > R) < ie~ "z . Because [ e_% dr < R‘le_RT2, this is
2 R

obvious when R > \/g To prove it when 0 < R < \/g, note that P(B(l) > R) = %—IP’(O <B(1) < R)
and therefore that it suffices to check that

2 [2 (B . 2
136_%—1— / e 2 dx forOSRS\/>.
T Jo s

Finally, observe that the righthand side is a non-decreasing functin of R € [O, \/g} .

(ii) & (iii): Part (iii) follows immediately from (ii), and the verification of (ii) can be done by the
outlined argument.

(4.3.15) Just follow the steps suggested.

(4.3.19) Because
B0 = 3 (B(2) - B22) (3(2) + B(22)
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Finally, proceed as in the proof of Theorem 4.3.5 to see that each of the sums in the final line tend to
% P-almost surely.

(5.1.16) Because X —II; X L L, X —II. X is independent of ;. Thus, EF[X, A] = EF[II, X, A] for
all A€ Xy, and so, since I X is ¥-measurable, IT, X = EF[X | S, ].



