Solution Set #5

(4.1.9) Let Σ be the collection of subsets of the form $\{\omega : (X_{i_1}(\omega), \ldots, X_{i_m}, \ldots) \in \Gamma\}$, where $\{i_m : m \geq 1\} \subseteq \mathcal{I}$ and $\Gamma \in \mathcal{B}^{\mathbb{Z}^+}$. Clearly Σ is a σ -algebra. Moreover, because

$$\left\{\omega: (X_{i_1}(\omega), \dots, X_{i_m}, \dots) \in \prod_{m=1}^{\infty} \Gamma_m\right\} = \bigcap_{m=1}^{\infty} \{\omega: X_{i_m}(\omega) \in \Gamma_m\} \in \mathcal{F}$$

for any $\{\Gamma_m : m \ge 1\} \subseteq \mathcal{B}$ and $\mathcal{B}^{\mathbb{Z}^+}$ is generated by sets of the form $\prod_{m=1}^{\infty} \Gamma_m$, it follows that $\Sigma \subseteq \mathcal{F}$. Conversely, for every $i \in \mathcal{I}$ and $\Gamma \in \mathcal{B}$, $\{\omega : X_i(\omega) \in \Gamma\} \in \Sigma$, and so $\mathcal{F} \subseteq \Sigma$.

Conversely, for every $i \in \mathcal{I}$ and $\Gamma \in \mathcal{B}$, $\{\omega : X_i(\omega) \in \Gamma\} \in \Sigma$, and so $\mathcal{F} \subseteq \Sigma$. Next, from the preceding, we know that, for any $\{i_m : m \ge 1\} \subseteq \mathcal{I}, \omega \rightsquigarrow (X_{i_1}(\omega), \ldots, X_{i_m}(\omega), \ldots)$ is \mathcal{F} -measurable into $(E^{\mathbb{Z}^+}, \mathcal{B}^{\mathbb{Z}^+})$. Hence, if $f : E^{\mathbb{Z}^+} \longrightarrow \mathbb{R}$ is $\mathcal{B}^{\mathbb{Z}^+}$ -measurable, then the function $\omega \rightsquigarrow f(X_{i_1}(\omega), \ldots, X_{i_m}(\omega), \ldots)$ is \mathcal{F} -measurable. Conversely, if $A \in \mathcal{F}$, then, by the preceding, $\mathbf{1}_A(\omega) = \mathbf{1}_{\Gamma}(X_{i_1}(\omega), \ldots, X_{i_m}(\omega), \ldots)$ for some $\{i_m : m \ge 1\} \subseteq \mathcal{I}$ and $\Gamma \in \mathcal{B}^{\mathbb{Z}^+}$. Thus, every \mathcal{F} measurable, simple function has the required form, and therefore, since every \mathcal{F} -measurable function is the pointwise limit of simple ones, every \mathcal{F} -measurable functions does also.

(4.1.12) Just follow the hint.

 $\underbrace{(4.2.19)}{\text{Because }N(n)} = \sum_{m=1}^{n} \left(N(m) - N(m-1) \right) \text{ and } \{N(m) - N(m-1) : m \ge 1\} \text{ is a sequence of mutually independent, identically distributed random integrable variables with mean value 1, the strong law implies that <math>\lim_{n\to\infty} \frac{N(n)}{n} = 1$ (a.s., \mathbb{P}). Next, because $t \rightsquigarrow N(t)$ is non-decreasing, $\sup_{t\in[n,n+1]} \frac{N(t)-N(n)}{t} \le \frac{N(n+1)-N(n)}{n}$, and therefore

$$\mathbb{P}\left(\sup_{t\in[n,n+1]}\frac{N(t)-N(n)}{t}\geq\epsilon\right)\leq\mathbb{P}\left(\frac{N(n+1)-N(n)}{n}\geq\epsilon\right)=\mathbb{P}(N(1)\geq n\epsilon)\leq\frac{\mathbb{E}^{\mathbb{P}}[N(1)^{2}]}{n^{2}\epsilon^{2}}=\frac{2}{n^{2}\epsilon^{2}}.$$

Hence, \mathbb{P} -almost surely, $\sup_{t \in [n, n+1]} \frac{N(t) - N(n)}{t} \leq \epsilon$ for all sufficiently large *n*'s, and so, \mathbb{P} -almost surely,

$$\overline{\lim_{t \to \infty}} \left| \frac{N(t)}{t} - \frac{N(\lfloor t \rfloor)}{\lfloor t \rfloor} \right| \le \epsilon + \overline{\lim_{t \to \infty}} \frac{N(\lfloor t \rfloor)}{t \lfloor t \rfloor} = \epsilon.$$

(4.2.20) If $t \rightsquigarrow Z(t)$ is \mathbb{P} -almost surely non-decreasing, then $Z(1) \ge 0$ (a.s., \mathbb{P}) and therefore, by Exercise 3.2.25, $M \in \mathfrak{M}_1(\mathbb{R}^N)$, $M((-\infty, 0)) = 0$, and $m \ge \int_{[-1,1]} y M(dy)$. Conversely, if $M \in \mathfrak{M}_1(\mathbb{R}^N)$, $M((-\infty, 0)) = 0$, and $m \ge \int_{[-1,1]} y M(dy)$, then, by Exercise 3.2.25, for each $0 \le s \le t < \infty$, $Z(t) - Z(s) \ge 0$ (a.s., \mathbb{P}). Hence, by right continuity, \mathbb{P} -almost surely, $Z(t) - Z(s) \ge 0$ for all $0 \le s \le t < \infty$.

(4.2.23) The reduction, described in (iv), to the case when $\nu(\{\mathbf{0}\}) = 0$ is easy. Thus, assume that $\nu(\{\mathbf{0}\}) = 0$ throughout. Then, $M(\{\mathbf{0}\}) = \nu(\{\mathbf{0}\}) = 0$, and, for each r > 0, $M(B(\mathbf{0}, r)\mathbb{C}) = \nu(\overline{B(\mathbf{0}, r)}) < \infty$. Hence, $M \in \mathfrak{M}_{\infty}(\mathbb{R}^N)$. Next, if $\{\Gamma_m : 1 \leq m \leq n\}$ are mutually disjoint Borel sets, then so are $\{F(\Gamma_m) : 1 \leq m \leq n\}$, and therefore $P(\Gamma_1, \cdot) = j(1, F(\Gamma_1), \cdot), \ldots, P(\Gamma_n, \cdot) = j(1, F(\Gamma_n), \cdot)$ are mutually independent random variables. Finally, for any $\Gamma \in \mathcal{B}_{\mathbb{R}^N}$, $P(\Gamma, \cdot) = j(1, F(\Gamma), \cdot)$ is a Poisson random variable with rate $M(F(\Gamma)) = \nu(\Gamma)$.