
Solution Set #4

(3.1.9)

(i): Just follow the outline.

(ii): The fact that f(−x) = f(x) is a consequence of the general fact that if A is a bounded operator
on a complex Hilbert space H and if (ξ, Aξ)H ∈ R for all ξ ∈ H, then A is Hermitian (i.e., A = A∗).
To prove this, note that

R 3
(
(ξ + η), A(ξ + η)

)
H
− (ξ, Aξ)H − (η,Aη)H = (ξ, Aη)H + (η,Aξ)H ,

and therefore that

0 = Im
(
(ξ, Aη)H + (η,Aξ)H

)
= (ξ, Aη)H − (Aη, ξ)H + (η,Aξ)H − (Aξ, η)H .

Applying this with ξ replaced by
√
−1 ξ, one also has

(ξ, Aη)H + (Aη, ξ)H − (η,Aξ)H − (Aξ, η)H = 0.

Adding these gives (ξ, Aη)H = (Aξ, η)H , which says that A is Hermitian. Now apply this to H = C2

and A =

(
1 f(x)

f(−x) 1

)
.

To see that |f(x)| ≤ 1, note that since

(
1 f(x)

f(−x) 1

)
is a non-negative, Hermitian matrix, its

determinant is non-negative.

(iii) and (iv): There is nothing to do in (iii). As for (iv), note that, as non-negative definite function
that is 1 at the origin, f = µ̂ for some µ ∈M1(RN ) if it is continuous, in which case, by Lemma 2.3.3
says that µn =⇒ µ. Conversely, if µn =⇒ µ, then f = µ̂ and is therefore continuous.

(3.1.11) To see that f is non-negative definite, let {h1, . . . , hn} ⊆ H be given, and choose an orthonor-

mal set {e1, . . . , en} ⊆ H whose span L contains {h1, . . . , hn}. Next, define g(ξ) = f
(∑n

j=1 ξjej

)
for

ξ = (ξ1, . . . , ξn) ∈ Rn. Then g(ξ) = e−
1
2 |ξ|

2

= γ̂n0,1(ξ), and therefore g is non-negative definite. Because

f(h) = g(ξ) when h ∈ L and ξ =
(
(h, e1)H , . . . , (h, en)H

)
, it follows that

((
f(hi − hh)

))
1≤i,j≤n is a

non-negative definite matrix.
To complete the program, choose an orthonormal sequence {en : n ≥ 1} in H. By the preceding, we

know that, for each n ≥ 1, γn0,1 is the distribution under µ of h ∈ H 7−→
(
(h, e1)H , . . . , (h, en)H

)
∈ Rn.

Thus ∫
H

e−‖h‖
2
H µ(dh) = lim

n→∞

∫
Rn
e−

1
2 |ξ|

2

γn0,1(dξ) = lim
n→∞

(∫
R
e−ξ

2

γ0,1(dξ)

)n
= 0.

(3.1.12)

(i) Let A be the matrix in the hint and ξ the vector in Rn all of whose components equal 1. Then
(ξ, Aξ)Cn = n+ 2

∑
1≤k<`≤n f

(
(`− k)R

)
< n− n(n− 1)α < 0.

(ii) Suppose that µ has an atom, and set β = µ ? µ̆, where µ̆(Γ) = µ(−Γ). Then β is symmetric and

has an atom at 0. In addition, β̂(ξ) = |µ̂(ξ)|2, and so β̂(ξ) −→ 0 as |ξ| → ∞ if and only if µ̂(ξ) does.

Now set p = β({0}) and ν = β−pδ0
q . Then p ∈ (0, 1], ν is symmetric, and β̂(ξ) = p + qν̂(ξ). If p = 1,

then it is clear that β̂(ξ) ≡ 1. If p ∈ (0, 1) and β̂(ξ) −→ 0, then ν̂(ξ) ←→ −pq < 0, which contradicts

(i).
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(iii) For any p ∈ (0, 1), µ̂p(ξ) =
∏∞
n=1

(
pe
√
−1 2−nξ + q

)
, and therefore µp(2

mπ) = µp(π) for all

m ∈ Z+. Furthermore, pe
√
−1η + q 6= 0 and for any ν ∈ R, and∣∣pe√−12−nξ + q − 1

∣∣ ≤ 2−n|ξ| for ξ ∈ R.

Hence, µ̂p never vanishes. Finally, µ̂(π) = (q − p)
∏∞
n=2

(
pe
√
−1 2−nπ + q

)
= (q − p)µ̂p

(
p
2

)
. Thus, if

p 6= q, µp(ξ) cannot tend to 0 at infinity.

(3.2.23) Let f : CN × RN −→ C be a Borel measurable function with the properties that it bounded
on compacts and f( · ,x) is analytic for each x ∈ RN . If M ∈ M2(RN ), then, for each n ≥ 2,
ξ  Fn(ξ) ≡

∫
1
n<|x|≤n

f(ξ,x)M(dx) is an analytic function on CN . To see this, simply check that

derivatives of Fn are given by the integrals of the corresponding derivatives of f and therefore that Fn
satisfies the Cauchy–Riemann equations. Next, assume that sup|ξ|≤R |f(ξ, · )| is M -integrable of each

R > 0, and set F (ξ) =
∫
f(ξ,x)M(dx). Then Fn −→ F uniformly on compacts, and therefore F is

analytic on CN .
Without loss in generality, take η = 1

B(0,1)
. Applying the preceding to

ξ  F (ξ) ≡
∫
RN

(
e(ξ,x)RN−1−(ξ,x)RN − 1− 1

B(0,1)
(x)(ξ,x)RN

)
M(dx)

=

∫
RN

∫
|x|≤1

(
e(ξ,x)RN−1−(ξ,x)RN

)
M(dx) +

∫
|x|>1

(
e(ξ,x)RN−1 − 1

)
M(dx),

we see that F is analytic on CN . Hence, since `µ(−
√
−1ξ) = (ξ,m)RN + 1

2

(
ξ,Cξ

)
RN + F (ξ) when

ξ is pure imaginary, it follows that (ξ,m)RN + 1
2

(
ξ,Cξ

)
RN + F (ξ) is the necessarily unique analytic

extension of ξ  `µ(−
√
−1ξ) to CN .

Because µ = γm,C ? ν, where ν̂(ξ) = exp
(
F (
√
−1ξ) and, at the same time,∫

RN
e(ξ,x)RN γm,C(dx) = e(m,ξ)RN+ 1

2 (ξ,Cξ)RN for all ξ ∈ CN ,

all that remains is to show that∫
RN

sup
|ξ|≤R

∣∣e(ξ,x)RN ∣∣ ν(dx) <∞ for all R > 0,

and obviously this reduces to checking that
∫
RN e

(ξ,x)RN ν(dx) < ∞ for each ξ ∈ RN . To this end, set

Mr(dx) = 1(r,∞)(|x|)M(dx) and mr =
∫
r<|x|≤1 xM(dx). Then νr ≡ δ−mr

? ΠMr
=⇒ µ as r ↘ 0,

and therefore ∫
RN
e(ξ,x)RN ν(dx) ≤ sup

r∈(0,1]

∫
RN
e(ξ,x)RN νr(dx) for all ξ ∈ RN .

Finally,∫
e(ξ,x)RN ΠMr

(dx) = e−Mr(RN )
∞∑
n=0

∫
RN
e(ξ,x)RN M∗nr (dx) = exp

(∫
RN

(
e(ξ,x) − 1

)
Mr(dx)

)
,

and so ∫
e(ξ,x)RN νr(dx) = exp

(∫
|x|>r

(
e(ξ,x)RN − 1− 1

B(0,1)
(x)(ξ,x)RN

)
M(dx)

)
,

which is bounded independent of r ∈ (0, 1] and ξ in bounded subsets of RN .
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(3.2.25)

(i) Since δmµ ? πMr

(
(−∞, 0)

)
= πMr

(
(−∞,−mµ)

)
≤ πMr

(
(−∞, 0)

)
and δmµ ? πMr =⇒ µ, it

suffices to show that πMr

(
(−∞, 0)

)
= 0. But

πMr

(
(−∞, 0)

)
= e−M

r(R)
∞∑
n=0

(Mr)?n
(
(−∞, 0)

)
n!

,

and it easy to see that Mr
(
(−∞, 0)

)
= 0 implies that (Mr)?n

(
(−∞, 0)

)
= 0 for all n ≥ 0.

(ii) Because

γ0,σ2 ? ν
(
(−∞, 0)

)
=

∫
R
ν
(
−∞,−y)

)
γ0,σ2(dy)

and ν
(
−∞,−y)

)
> 0 for sufficiently negative y’s, it is clear that γ0,σ2 ? ν

(
(−∞, 0)

)
> 0 for all

ν ∈M1(R) and σ > 0.

(iii) Because µ = µ?n1
n

and

ν1 ? ν2
(
(−∞, 0)

)
≥
∫
(−∞,0)

ν1
(
(−∞,−y)

)
ν2(dy) ≥ ν1

(
(−∞, 0)

)
ν2
(
(−∞, 0)

)
for all ν1, ν2 ∈M1(R), µ

(
(−∞, 0)

)
≥ µ 1

n

(
(−∞, 0)

)n
. Thus, by Theorem 3.2.22,∫

R
ϕ(y)Mµ(dy) = lim

n→∞
n

∫
R
ϕ(y)µ 1

n
(dy) = 0

for any ϕ ∈ S (R;C) which is compactly supported in (−∞, 0), and from this it is clear that
Mµ

(
(−∞, 0)

)
= 0. Moreover, for any ϕ ∈ S (R;R) which is compactly supported in (0,∞) and satisfies

0 ≤ ϕ(0) ≤ η0(y) for y ≥ 0, another application of Theorem 3.2.22 shows that mη0
µ ≥

∫
R ϕ(y)M(dy),

from which it follows that mη0
µ ≥

∫
R
η0(y)yM(dy) and therefore both that mη0

µ ≥ 0 and that
M ∈M1(R). Finally, one can now use Exercise 3.2.24 to also conclude that mµ ≥ 0.

(iv) Let µ be the distribution of |X|, and suppose that µ ∈ I(R). Clearly µ
(
(−∞, 0)

)
= 0, and

therefore, by the preceding, we would know that µ = δm ?πM , where m ≥ 0 and πM is the generalized
Poisson measure for some M ∈M1(R) which is supported on [0,∞). Given r ≥ 1, define Mr as in (i)
and set Mr = M −Mr. Then µ = (δm ? πMr ) ? πMr , and so

µ
(
[r,∞)

)
=

∫
[0,∞)

πMr

(
[r −m− y,∞)

)
πMr

(dy) ≥ πMr

(
[r,∞)

)
= 1− e−M([r,∞)) ≥M

(
[r,∞)

)
e−M([1,∞)),

and therefore M
(
[r,∞)

)
≤ eM([1,∞))µ

(
[r,∞)

)
≤ Ce− r

2

2 , where C = 2eM([1,∞)). Thus, M satisfies the
condition in Exercise 3.2.23, and therefore

2e
ξ2

2 ≥
∫
R
eξy µ(dy) = exp

[
ξm+

∫
(0,∞)

(
eξy − 1

)
M(dy)

]

for all ξ ≥ 0, which is possible only if M = 0. But if M = 0, then µ = δm, which it certainly cannot.
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(3.2.26) Only (ii) needs comment. To deal with (ii), note that

`µt(ξ) = t lim
s↘0

µ̂s(ξ)− 1

s
= lim
s↘0

t lim
s↘0

1

sΓ(s)

∫ ∞
0

(
e
√
−1 ξx − 1

)
e−xxs

dx

x
=

∫ ∞
0

(
e
√
−1 ξx − 1

)
e−x

dz

x
,

since sΓ(s) = Γ(s+ 1) −→ 1 and s↘ 0.

(3.3.13) Let βt be the measure on the righthand side. Then

β̂t(ξ) =

∫
[0,∞)

ϕ̂0,2τI(ξ) ν
α
2 (dτ) = ν̂

α
2
t (|ξ|2) = e−t|ξ|

α

.

(3.3.14)

(i) Since ∫
0

∞e
√
−1ξτhα(τ) dτ =

∫ ∞
0

e
√
−1ξτναt (dτ) = exp

(
−t
(

ξα√
−1

))
for ξ ∈ R

and both sides extend continuously to the open upper half of the complex plain as analytic functions,
it follows that their extensions are equal. In particular, this shows that the Laplace transform of
hαt is e−tλ

α

. At the same time, a simple change of variables show that the Laplace transform of

τ  t−
1
αh1(t−

1
α τ) is also equal to e−tλ

α

, and therefore, hαt (τ) = t−
1
αhα(t−

1
α τ).

(ii) Follow the hint.
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