Solution Set #1

(1.1.9) (i) This is really just an application of Fubini's Theorem. Namely, let μ_i be the distribution of X_i . Then $\mathbb{P}((X_1, X_2) \in \Gamma) = \mu_1 \times \mu_2(\Gamma)$ for $\Gamma \in \mathcal{B}_1 \times \mathcal{B}_2$, and so, by Fubini's Theorem,

$$\mathbb{E}^{\mathbb{P}}[F(X_1, X_2)] = \int_{E_2} \left(\int_{E_2} F(x_1, x_2) \,\mu_1(dx_1) \right) \mu_2(dx_2) = \mathbb{E}^{\mathbb{P}}[f(X_2)]$$

when F is bounded. When F is non-negative, the same conclusion follows from Tonelli's Theorem. Thus the general case follows by linearity.

(ii) First, by writing $X_i = X_i^+ - X_i^-$, reduce to the case when the X_i 's are non-negative. Next, assuming non-negativity, use induction and (i) to complete the proof.

(iii) Because E is second countable, the Borel field \mathcal{B}_{E^2} equals $\mathcal{B}_E \times \mathcal{B}_E$. In particular, because it is closed in E^2 , the diagonal $\Delta = \{(x, y) \in E^2 : x = y\} \in \mathcal{B}_E \times \mathcal{B}_E$. Thus, if μ and ν are Borel probability measures on E and if μ is non-atomic, then

$$\mu \times \nu(\Delta) = \int \left(\int \mathbf{1}_{\Delta}(x, y) \, \mu(dx) \right) \nu(dy) = \int \mu(\{y\}) \, \nu(dy) = 0$$

Applying this to the distributions of X_m and X_n for $m \neq n$, one sees that $\mathbb{P}(X_m = X_n) = 0$ and therefore that

$$\mathbb{P}(X_m = X_n \text{ for some } m \neq n) \le \sum_{m=1}^{\infty} \sum_{n \neq m} \mathbb{P}(X_m = X_n) = 0.$$

(1.1.12) The first part is Theorem 2.1.13 in my book Essentials of Integration Theory for Analysis. To prove the second part, let $n \geq 2$ and distinct i_1, \ldots, i_n be given, let \mathcal{F}_1 be the set of $A_1 \in \mathcal{F}$ such that (1.1.1) holds for all $A_2 \in \mathcal{C}_1, \ldots, A_n \in \mathcal{C}_n$. Show that \mathcal{F}_1 is a λ -system that contains \mathcal{C}_1 , and conclude that $\mathcal{F}_1 \supseteq \sigma(\mathcal{C}_1)$. Next, given $2 \leq m \leq n$, assume that (1.1.1) holds if $A_i \in \sigma(\mathcal{C}_i)$ for $1 \leq i < m$ and $A_i \in \mathcal{C}_i$ for $m \leq i \leq n$, and take \mathcal{F}_m to be the set of $A_m \in \mathcal{F}$ such that (1.1.1) holds whenever $A_i \in \sigma(\mathcal{C}_i)$ for $1 \leq i < m$ and $A_i \in \mathcal{C}_i$ for $m < i \leq n$. Show that \mathcal{F}_m is a λ -system that contains \mathcal{C}_m and therefore $\sigma(\mathcal{C}_m)$. Now apply induction to complete the proof.

(1.1.13)

(i) The "only if" assertion is trivial. To prove the "if" assertion, first observe that

(*)
$$\mathbb{E}^{\mathbb{P}}[f_1(X_1)\cdots f_n(X_n)] = \mathbb{E}^{\mathbb{P}}[f_1(X_1)]\cdots \mathbb{E}^{\mathbb{P}}[f_n(X_n)]$$

for all bounded, Borel measurable f_1, \ldots, f_n if it holds for continuous ones. Indeed, this follows from the fact that if f_1, \ldots, f_n are bounded, Borel measurable functions, then, for each $1 \le m \le n$ one can find a uniformly bounded sequences $\{\varphi_{m,k} : k \ge 1\} \subseteq C(\mathbb{R}; \mathbb{R})$ such that $\varphi_{m,k} \circ X_m \longrightarrow f_m \circ X_m \mathbb{P}$ almost surely. Next, note that, by the hypothesis and linearity, (*) holds when the f_m are polynomials. Finally, assume that the f_m 's are continuous, and apply Weirstrasse to find sequences $\{p_{m,k} : k \ge 1\}$ of polynomials such that $p_{m,k} \longrightarrow f_m$ uniformly on an interval in which the X_m 's take their values, and conclude that (*) holds.

(ii) Just follow the hint.

(1.1.14) See § 8.2.3 in my book Essential of Integration Theory for Analysis.

(1.1.16) There is very little to do here. The X_i 's are \mathbb{P} -indendent if and only if

$$\mathbf{X}_* \mathbb{P} \big(\Gamma_{i_1} \times \cdots \times \Gamma_{i_n} \big) = \prod_{m=1}^n \mathbb{P} \big(X_{i_m} \in \Gamma_{i_m} \big)$$

for all $n \geq 2$, distinct $i_1, \ldots, i_n \in \mathcal{I}$, and $\Gamma_{i_1} \in \mathcal{B}_{i_1}, \ldots, \Gamma_{i_n} \in \mathcal{B}_{i_n}$.

(1.2.12) & (1.2.13) Because

$$\mathbb{P}(S_n = k) = e^{-n} \sum_{k_1 + \dots + k_n = k} \frac{t^k}{k_1! \cdots k_n!} = \frac{t^k e^{-n}}{k!} = \sum_{k_1 + \dots + k_n = k} \binom{k}{k_1 \dots k_n} = \frac{(tn)^k e^{-n}}{k!},$$

 S_n is a Poisson random variable with mean value nt. Hence, $e^{-nt} \sum_{0 \le k \le nT} = \mathbb{P}(\overline{S_n} \le T)$. By the Weak Law of Large Numbers, for each T

$$\mathbb{P}(\overline{S_n} \le T) \longrightarrow \begin{cases} 1 & \text{if } T > t \\ 0 & \text{if } T < t, \end{cases}$$

and this completes (1.2.12). To handle (1.2.13), first remember that a function of bounded variation is the difference of two non-decreasing functions. Thus, it is enough to treat the case when F is non-decreasing. Given a non-decreasing F, let μ be the Borel measure on $[0, \infty)$ determined by $\mu([0, t]) = F(t)$. Next, set

$$p_n^T(t) = e^{-nt} \sum_{0 \le k \le nT} \frac{(nt)^k}{k!}.$$

Then $0 \le p_n^T(t) \le 1$ and, by (1.2.12), $\lim_{n\to\infty} p_n^T(t)$ equals 1 if t < T and 0 if t > T. Finally, suppose that F is continuous at T. Then $\mu(\{T\}) = 0$, and therefore

$$\sum_{k \le nT} \frac{(-nt)^k}{k!} [D^k \varphi](n) = \int_{(0,\infty)} p_n^T(t) \,\mu(dt) = \int_{[0,T)} p_n^T(t) \,\mu(dt) + \int_{(T,\infty)} p_n^T(t$$

By Lebesgue's Dominated Convergence Theorem

$$\int_{(0,T)} p_n^T(t) \,\mu(dt) \longrightarrow \mu\big([0,T)\big) = \mu\big([0,T]\big) = F(T)$$

and $\int_{(T,\infty)} p_n^T(t) \mu(dt) \longrightarrow 0$ as $n \to \infty$.