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Solution Set #1

(1.1.9) (i) This is really just an application of Fubini’s Theorem. Namely, let µi be the distribution of
Xi. Then P

(
(X1, X2) ∈ Γ

)
= µ1 × µ2(Γ) for Γ ∈ B1 × B2, and so, by Fubini’s Theorem,

EP[F (X1, X2)
]

=

∫
E2

(∫
E2

F (x1, x2)µ1(dx1)

)
µ2(dx2) = EP[f(X2)

]
when F is bounded. When F is non-negative, the same conclusion follows from Tonelli’s Theorem.
Thus the general case follows by linearity.

(ii) First, by writing Xi = X+
i − X

−
i , reduce to the case when the Xi’s are non-negative. Next,

assuming non-negativity, use induction and (i) to complete the proof.
(iii) Because E is second countable, the Borel field BE2 equals BE × BE . In particular, because it

is closed in E2, the diagonal ∆ = {(x, y) ∈ E2 : x = y} ∈ BE × BE . Thus, if µ and ν are Borel
probability measures on E and if µ is non-atomic, then

µ× ν(∆) =

∫ (∫
1∆(x, y)µ(dx)

)
ν(dy) =

∫
µ({y}) ν(dy) = 0.

Applying this to the distributions of Xm and Xn for m 6= n, one sees that P(Xm = Xn) = 0 and
therefore that

P
(
Xm = Xn for some m 6= n

)
≤
∞∑

m=1

∑
n 6=m

P(Xm = Xn) = 0.

(1.1.12) The first part is Theorem 2.1.13 in my book Essentials of Integration Theory for Analysis. To
prove the second part, let n ≥ 2 and distinct i1, . . . , in be given, let F1 be the set of A1 ∈ F such that
(1.1.1) holds for all A2 ∈ C1, . . . , An ∈ Cn. Show that F1 is a λ-system that contains C1, and conclude
that F1 ⊇ σ(C1). Next, given 2 ≤ m ≤ n, assume that (1.1.1) holds if Ai ∈ σ(Ci) for 1 ≤ i < m
and Ai ∈ Ci for m ≤ i ≤ n, and take Fm to be the set of Am ∈ F such that (1.1.1) holds whenever
Ai ∈ σ(Ci) for 1 ≤ i < m and Ai ∈ Ci for m < i ≤ n. Show that Fm is a λ-system that contains Cm
and therefore σ(Cm). Now apply induction to complete the proof.

(1.1.13)
(i) The “only if” assertion is trivial. To prove the “if” assertion, first observe that

(*) EP[f1(X1) · · · fn(Xn)
]

= EP[f1(X1)
]
· · ·EP[fn(Xn)

]
for all bounded, Borel measurable f1, . . . , fn if it holds for continuous ones. Indeed, this follows from
the fact that if f1, . . . , fn are bounded, Borel measurable functions, then, for each 1 ≤ m ≤ n one can
find a uniformly bounded sequences {ϕm,k : k ≥ 1} ⊆ C(R;R) such that ϕm,k ◦Xm −→ fm ◦Xm P-
almost surely. Next, note that, by the hypothesis and linearity, (*) holds when the fm are polynomials.
Finally, assume that the fm’s are continuous, and apply Weirstrasse to find sequences {pm,k : k ≥ 1}
of polynomials such that pm,k −→ fm uniformly on an interval in which the Xm’s take their values,
and conclude that (*) holds.

(ii) Just follow the hint.

(1.1.14) See § 8.2.3 in my book Essential of Integration Theory for Analysis.
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(1.1.16) There is very little to do here. The Xi’s are P-indendent if and only if

X∗P
(
Γi1 × · · · × Γin

)
=

n∏
m=1

P
(
Xim ∈ Γim

)
for all n ≥ 2, distinct i1, . . . , in ∈ I, and Γi1 ∈ Bi1 , . . . ,Γin ∈ Bin .

(1.2.12) & (1.2.13) Because

P(Sn = k) = e−n
∑

k1+···+kn=k

tk

k1! · · · kn!
=
tke−n

k!
=

∑
k1+···+kn=k

(
k

k1 . . . kn

)
=

(tn)ke−n

k!
,

Sn is a Poisson random variable with mean value nt. Hence, e−nt
∑

0≤k≤nT = P(Sn ≤ T ). By the
Weak Law of Large Numbers, for each T

P(Sn ≤ T ) −→
{

1 if T > t

0 if T < t,

and this completes (1.2.12). To handle (1.2.13), first remember that a function of bounded variation
is the difference of two non-decreasing funcions. Thus, it is enough to treat the case when F is
non-decreasing. Given a non-decreasing F , let µ be the Borel measure on [0,∞) determined by
µ([0, t]) = F (t). Next, set

pTn (t) = e−nt
∑

0≤k≤nT

(nt)k

k!
.

Then 0 ≤ pTn (t) ≤ 1 and, by (1.2.12), limn→∞ pTn (t) equals 1 if t < T and 0 if t > T . Finally, suppose
that F is continuous at T . Then µ({T}) = 0, and therefore

∑
k≤nT

(−nt)k

k!
[Dkϕ](n) =

∫
(0,∞)

pTn (t)µ(dt) =

∫
[0,T )

pTn (t)µ(dt) +

∫
(T,∞)

pTn (t)µ(dt).

By Lebesgue’s Dominated Convergence Theorem∫
(0,T )

pTn (t)µ(dt) −→ µ
(
[0, T )

)
) = µ

(
[0, T ]

)
= F (T )

and
∫

(T,∞)
pTn (t)µ(dt) −→ 0 as n→∞.


