Solution Set # 1

(1.1.9) (i) This is really just an application of Fubini’s Theorem. Namely, let p; be the distribution of
X;. Then IP’((Xl,Xg) € F) = p1 X p2(T) for T" € By x Ba, and so, by Fubini’s Theorem,

E*[F(X1,Xs)] = /

Es

(/EQ F(a1,22) Ml(d%)) po(das) = EP[f(Xa)]

when F' is bounded. When F is non-negative, the same conclusion follows from Tonelli’s Theorem.
Thus the general case follows by linearity.

(ii) First, by writing X; = X;5 — X7, reduce to the case when the X;’s are non-negative. Next,
assuming non-negativity, use induction and (i) to complete the proof.

(iii) Because E is second countable, the Borel field Bg2 equals Bg x Bg. In particular, because it
is closed in E?, the diagonal A = {(z,y) € E? : © = y} € Bg x Bg. Thus, if y and v are Borel
probability measures on F and if y is non-atomic, then

wx @) = [ [1a@mnia)) vtas) = [ ) vias) =o.

Applying this to the distributions of X,, and X,, for m # n, one sees that P(X,, = X,,) = 0 and
therefore that

P(Xm = X, for some m #n) < Y > P(Xp =X,) =0.

m=1n#m

(1.1.12) The first part is Theorem 2.1.13 in my book FEssentials of Integration Theory for Analysis. To
prove the second part, let n > 2 and distinct i1, ..., 14, be given, let F; be the set of A; € F such that
(1.1.1) holds for all Ay € Cy,...,A, € C,. Show that F; is a A-system that contains C;, and conclude
that 71 O o(C1). Next, given 2 < m < n, assume that (1.1.1) holds if A; € 0(C;) for 1 < i < m
and A; € C; for m < i < n, and take F,, to be the set of A,, € F such that (1.1.1) holds whenever
A; € 0(C) for 1 <i<mand A; € C; for m < i < n. Show that F,, is a A-system that contains C,,
and therefore o(C,,). Now apply induction to complete the proof.

(1.1.13

(i) The “only if” assertion is trivial. To prove the “if” assertion, first observe that

(*) EF[f1(X1) - fu(X0)] = EF[f1(X0)] - - EF [fu(X,)]
for all bounded, Borel measurable fi,..., f, if it holds for continuous ones. Indeed, this follows from
the fact that if f1,..., f, are bounded, Borel measurable functions, then, for each 1 < m < n one can

find a uniformly bounded sequences {¢y, r : k¥ > 1} € C(R;R) such that ¢, 1 0 X;, — fi, 0 X, P-
almost surely. Next, note that, by the hypothesis and linearity, (*) holds when the f,,, are polynomials.
Finally, assume that the f,,’s are continuous, and apply Weirstrasse to find sequences {py, r : k> 1}

of polynomials such that p,, ; — fn, uniformly on an interval in which the X,,’s take their values,
and conclude that (*) holds.

(ii) Just follow the hint.

(1.1.14) See §8.2.3 in my book Essential of Integration Theory for Analysis.



(1.1.16) There is very little to do here. The X;’s are P-indendent if and only if

X.P(, x - x L) = [ P(Xi, €T5,)

m=1
for all n > 2, distinct 41,...,4, € Z, and I3, € B;,,..., I} € B, .
(1.2.12) & (1.2.13) Because

n tk the—n k (tn)ken
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S, is a Poisson random variable with mean value nt. Hence, e "> _, .~ = P(S, < T). By the
Weak Law of Large Numbers, for each T’ -

1 T >t

P(S, <T)—
(Sn=T) {o if T < t,

and this completes (1.2.12). To handle (1.2.13), first remember that a function of bounded variation
is the difference of two non-decreasing funcions. Thus, it is enough to treat the case when F' is
non-decreasing. Given a non-decreasing F', let p be the Borel measure on [0,00) determined by

wu([0,t]) = F(t). Next, set

n k
i =crt Y U

0<k<nT

Then 0 < pZ(t) < 1 and, by (1.2.12), lim,_, pZ (t) equals 1 if ¢ < T and 0 if ¢ > 7. Finally, suppose
that F' is continuous at 7. Then pu({T'}) = 0, and therefore

_nt)k
3o k!ﬂ [D*¢](n) = /(O,Oo) P (1) uldt) = /m) P () pldt) + / pE (1) u(dt).

k<nT (T',00)

By Lebesgue’s Dominated Convergence Theorem
/(0 ) P () pldt) — p([0,7))) = p([0,T]) = F(T)

and [ o pn(t) pu(dt) — 0 as n — oo.



