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2.3 Continuum description

2.3.1 Di↵erential geometry of curves

Consider a continuous curve r(t) 2 R3, where t 2 [0, T ]. The length of the curve is given
by

L =

Z T

0

dt ||ṙ(t)|| (2.41)

where ṙ(t) = dr/dt and || · || denotes the Euclidean norm. The local unit tangent vector
is defined by

t =
ṙ

||ṙ|| . (2.42)

The unit normal vector, or unit curvature vector, is

n =
(I � tt) · r̈

||(I � tt) · r̈|| . (2.43)

Unit tangent vector t̂(t) and unit normal vector n̂(t) span the osculating (‘kissing’) plane
at point t. The unit binormal vector is defined by

b =
(I � tt) · (I � nn) · ...r

||(I � tt) · (I � nn) · ...r || . (2.44)

The orthonormal basis {t(t),n(t), b(t)} spans the local Frenet frame.
The local curvature (t) and the associated radius of curvature ⇢(t) = 1/ are defined

by

(t) =
ṫ · n
||ṙ|| , (2.45)

and the local torsion ⌧(t) by

⌧(t) =
ṅ · b
||ṙ|| . (2.46)

Plane curves satisfy, by definition, b = const. or, equivalently, ⌧ = 0.
Given ||ṙ||, (t), ⌧(t) and the initial values {t(0),n(0), b(0)}, the Frenet frames along

the curve can be obtained by solving the Frenet-Serret system

1

||ṙ||

0

@
ṫ

ṅ

ḃ

1

A =

0

@
0  0
� 0 ⌧
0 �⌧ 0

1

A

0

@
t

n

b

1

A . (2.47a)

The above formulas simplify if t is the arc length, for in this case ||ṙ|| = 1.
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ṅ

ḃ
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ṫ · n
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dt ||ṙ(t)|| (2.41)
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Given ||ṙ||, (t), ⌧(t) and the initial values {t(0),n(0), b(0)}, the Frenet frames along

the curve can be obtained by solving the Frenet-Serret system

1

||ṙ||
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where ṙ(t) = dr/dt and || · || denotes the Euclidean norm. The local unit tangent vector
is defined by

t =
ṙ
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r (t) is not linearly independent of ṙ and r̈. In this case, we set b = n ^ t.

The local curvature (t) and the associated radius of curvature ⇢(t) = 1/ are defined
by

(t) =
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2.3.2 Stretchable polymers: Minimal model and equipartition

As a simple example, consider a polymer confined in a plane. Assume the polymer’s end-
points are fixed at (x, y) = (0, 0) and (x, y) = (0, L), respectively, and that the ground-
state configuration corresponds to a straight line connecting these two points. Denoting
the tension3 by �, adopting the parameterization y = h(x) for the polymer and assuming
that the bending energy is negligible, the energy relative to the ground-state is given by

E = �

Z L

0

dx
p
1 + h2

x � L

�
, (2.48)

where hx = h0(x). Restricting ourselves to small deformations, |hx| ⌧ 1, we may approxi-
mate

E ' �

2

Z L

0

dx h2

x. (2.49)

Taking into account that h(0) = h(L) = 0, we may represent h(x) and its derivative
through the Fourier-sine series

h(x) =
1X

n=1

An sin

✓
n⇡x

L

◆
(2.50a)

hx(x) =
1X

n=1

An
n⇡

L
cos

✓
n⇡x

L

◆
. (2.50b)

Exploiting orthogonality

Z L

0

dx sin

✓
n⇡x

L

◆
sin

✓
m⇡x

L

◆
=

L

2
�nm (2.51)

we may rewrite the energy (2.49) as

E ' �

2

X

n

X

m

Z L

0

dxAnAm

⇣n⇡
L

⌘⇣m⇡

L

⌘
cos

✓
n⇡x

L

◆
cos

✓
m⇡x

L

◆

=
�

2

X

n

X

m

AnAm

⇣n⇡
L

⌘⇣m⇡

L

⌘ L

2
�nm

=
1X

n=1

En, (2.52a)

where the energy En stored in Fourier mode n is

En = A2

n

✓
�n2⇡2

4L

◆
. (2.52b)

3
� carries units of energy/length.
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Now assume the polymer is coupled to a bath and the stationary distribution is canonical
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with � = (kBT )�1. The PDF factorizes and, therefore, also the normalization constant
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That is, each mode absorbs the same amount of thermal energy, which is just a manifestion
of the canonical equipartion theorem for harmonic degrees of freedom.

We may use the equipartition result to compute the variance of the polymer at the
position x 2 [0, L]
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Thus, by measuring fluctuations along the polymer we may infer �.
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Now assume the polymer is coupled to a bath and the stationary distribution is canonical

p({An}) =
1

Z
exp(��E)

=
1

Z
exp


��

1X

n=1

A2

n

✓
�n2⇡2

4L

◆�
(2.53)

with � = (kBT )�1. The PDF factorizes and, therefore, also the normalization constant

Z =
1Y

i=1

Zn, (2.54a)

where

Zn =

Z 1

1
dAn exp
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n
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. (2.54b)

We thus find for the first to moments of An

E[An] = 0 (2.55a)

E[A2
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, (2.55b)

and from this for the mean energy per mode
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◆
E[A2

n] =
1

2
kBT. (2.56)

That is, each mode absorbs the same amount of thermal energy, which is just a manifestion
of the canonical equipartion theorem for harmonic degrees of freedom.

We may use the equipartition result to compute the variance of the polymer at the
position x 2 [0, L]
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If we additionally average along x

hE[h(x)2]i =
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◆ 1X
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n2
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✓
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◆
⇡2

6
=

kBTL

6�
. (2.58)

Thus, by measuring fluctuations along the polymer we may infer �.
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2.3.3 Rigid polymers: Euler-Bernoulli equation

Consider a rigid polymer whose motion is confined to the (x, y)-plane, with one end fixed
at (x, y) = (0, 0) and the other moving freely. As before, we adopt the parameterization
h(x) and assume that the energy is can be expressed in terms of fundamental geometric
properties. At zero-temperature and in the absence of other forces, the groundstate of the
polymer is a straight configuration along the positive the x-axis, i.e., h

0

(x) = 0, x 2 [0, L].
Since one end of the polymer can move freely, tension is negligible, and the main

contribution to the polymers energy comes from curvature ,

E ' A

2

Z L

0

dx2, (2.59)

where A is the bending modulus (units energy⇥length). For plane curves h(x), the curva-
ture can be expressed as

 =
hxx

(1 + h2

x)
3/2

. (2.60)

Focussing on the limit of weak deformations, hx ⌧ 1, we may approximate  ' hxx, and
the energy simplifies to

E ' A

2

Z L

0

dx (hxx)
2. (2.61)

The exact form of the boundary conditions depend on how the polymer is attached to the
plane x = 0. Assuming that polymer is rigidly anchored at an angle 90�, the boundary
conditions at the fixed end at x = 0 are

h(0) = 0 , hx(0) = 0. (2.62a)

At the free end, we will consider flux conditions

hxx(L) = 0 , hxxx(L) = 0. (2.62b)

Intuitively, because of  = hxx, these last two conditions mean that the polymer tries to
maintain minimal absolute curvature at the free end. By means of the BCs (2.62) and two
partial integrations, we may rewrite (2.61) as

E ' A

2

"
hxhxx

����
L

0

�
Z L

0

dx hxhxxx

#

=
A

2


�
Z L

0

dx hxhxxx

�

=
A

2

"
�hhxxx

����
L

0

+

Z L

0

dx hhxxxx

#
=

A

2

Z L

0

dx hhxxxx

�
. (2.63)

45

2.3.3 Rigid polymers: Euler-Bernoulli equation

Consider a rigid polymer whose motion is confined to the (x, y)-plane, with one end fixed
at (x, y) = (0, 0) and the other moving freely. As before, we adopt the parameterization
h(x) and assume that the energy is can be expressed in terms of fundamental geometric
properties. At zero-temperature and in the absence of other forces, the groundstate of the
polymer is a straight configuration along the positive the x-axis, i.e., h

0

(x) = 0, x 2 [0, L].
Since one end of the polymer can move freely, tension is negligible, and the main

contribution to the polymers energy comes from curvature ,

E ' A

2

Z L

0

dx2, (2.59)

where A is the bending modulus (units energy⇥length). For plane curves h(x), the curva-
ture can be expressed as

 =
hxx

(1 + h2

x)
3/2

. (2.60)

Focussing on the limit of weak deformations, hx ⌧ 1, we may approximate  ' hxx, and
the energy simplifies to

E ' A

2

Z L

0

dx (hxx)
2. (2.61)

The exact form of the boundary conditions depend on how the polymer is attached to the
plane x = 0. Assuming that polymer is rigidly anchored at an angle 90�, the boundary
conditions at the fixed end at x = 0 are

h(0) = 0 , hx(0) = 0. (2.62a)

At the free end, we will consider flux conditions

hxx(L) = 0 , hxxx(L) = 0. (2.62b)

Intuitively, because of  = hxx, these last two conditions mean that the polymer tries to
maintain minimal absolute curvature at the free end. By means of the BCs (2.62) and two
partial integrations, we may rewrite (2.61) as

E ' A

2

"
hxhxx

����
L

0

�
Z L

0

dx hxhxxx

#

=
A

2


�
Z L

0

dx hxhxxx

�

=
A

2

"
�hhxxx

����
L

0

+

Z L

0

dx hhxxxx

#
=

A

2

Z L

0

dx hhxxxx

�
. (2.63)

45

2.3.3 Rigid polymers: Euler-Bernoulli equation

Consider a rigid polymer whose motion is confined to the (x, y)-plane, with one end fixed
at (x, y) = (0, 0) and the other moving freely. As before, we adopt the parameterization
h(x) and assume that the energy is can be expressed in terms of fundamental geometric
properties. At zero-temperature and in the absence of other forces, the groundstate of the
polymer is a straight configuration along the positive the x-axis, i.e., h

0

(x) = 0, x 2 [0, L].
Since one end of the polymer can move freely, tension is negligible, and the main

contribution to the polymers energy comes from curvature ,

E ' A

2

Z L

0

dx2, (2.59)

where A is the bending modulus (units energy⇥length). For plane curves h(x), the curva-
ture can be expressed as

 =
hxx

(1 + h2

x)
3/2

. (2.60)

Focussing on the limit of weak deformations, hx ⌧ 1, we may approximate  ' hxx, and
the energy simplifies to

E ' A

2

Z L

0

dx (hxx)
2. (2.61)

The exact form of the boundary conditions depend on how the polymer is attached to the
plane x = 0. Assuming that polymer is rigidly anchored at an angle 90�, the boundary
conditions at the fixed end at x = 0 are

h(0) = 0 , hx(0) = 0. (2.62a)

At the free end, we will consider flux conditions

hxx(L) = 0 , hxxx(L) = 0. (2.62b)

Intuitively, because of  = hxx, these last two conditions mean that the polymer tries to
maintain minimal absolute curvature at the free end. By means of the BCs (2.62) and two
partial integrations, we may rewrite (2.61) as

E ' A

2

"
hxhxx

����
L

0

�
Z L

0

dx hxhxxx

#

=
A

2


�
Z L

0

dx hxhxxx

�

=
A

2

"
�hhxxx

����
L

0

+

Z L

0

dx hhxxxx

#
=

A

2

Z L

0

dx hhxxxx

�
. (2.63)

45

mailto:dunkel@math.mit.edu


dunkel@math.mit.edu

2.3.3 Rigid polymers: Euler-Bernoulli equation

Consider a rigid polymer whose motion is confined to the (x, y)-plane, with one end fixed
at (x, y) = (0, 0) and the other moving freely. As before, we adopt the parameterization
h(x) and assume that the energy is can be expressed in terms of fundamental geometric
properties. At zero-temperature and in the absence of other forces, the groundstate of the
polymer is a straight configuration along the positive the x-axis, i.e., h

0

(x) = 0, x 2 [0, L].
Since one end of the polymer can move freely, tension is negligible, and the main

contribution to the polymers energy comes from curvature ,

E ' A

2

Z L

0

dx2, (2.59)

where A is the bending modulus (units energy⇥length). For plane curves h(x), the curva-
ture can be expressed as

 =
hxx

(1 + h2

x)
3/2

. (2.60)

Focussing on the limit of weak deformations, hx ⌧ 1, we may approximate  ' hxx, and
the energy simplifies to

E ' A

2

Z L

0

dx (hxx)
2. (2.61)

The exact form of the boundary conditions depend on how the polymer is attached to the
plane x = 0. Assuming that polymer is rigidly anchored at an angle 90�, the boundary
conditions at the fixed end at x = 0 are

h(0) = 0 , hx(0) = 0. (2.62a)

At the free end, we will consider flux conditions

hxx(L) = 0 , hxxx(L) = 0. (2.62b)

Intuitively, because of  = hxx, these last two conditions mean that the polymer tries to
maintain minimal absolute curvature at the free end. By means of the BCs (2.62) and two
partial integrations, we may rewrite (2.61) as

E ' A

2

"
hxhxx

����
L

0

�
Z L

0

dx hxhxxx

#

=
A

2


�
Z L

0

dx hxhxxx

�

=
A

2

"
�hhxxx

����
L

0

+

Z L

0

dx hhxxxx

#
=

A

2

Z L

0

dx hhxxxx

�
. (2.63)

45

Boundary conditions

(minimal absolute curvature at the free end)

mailto:dunkel@math.mit.edu


dunkel@math.mit.edu

Boundary conditions
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Consider a rigid polymer whose motion is confined to the (x, y)-plane, with one end fixed
at (x, y) = (0, 0) and the other moving freely. As before, we adopt the parameterization
h(x) and assume that the energy is can be expressed in terms of fundamental geometric
properties. At zero-temperature and in the absence of other forces, the groundstate of the
polymer is a straight configuration along the positive the x-axis, i.e., h

0

(x) = 0, x 2 [0, L].
Since one end of the polymer can move freely, tension is negligible, and the main

contribution to the polymers energy comes from curvature ,

E ' A

2

Z L

0

dx2, (2.59)

where A is the bending modulus (units energy⇥length). For plane curves h(x), the curva-
ture can be expressed as

 =
hxx

(1 + h2

x)
3/2

. (2.60)

Focussing on the limit of weak deformations, hx ⌧ 1, we may approximate  ' hxx, and
the energy simplifies to

E ' A

2

Z L

0

dx (hxx)
2. (2.61)

The exact form of the boundary conditions depend on how the polymer is attached to the
plane x = 0. Assuming that polymer is rigidly anchored at an angle 90�, the boundary
conditions at the fixed end at x = 0 are

h(0) = 0 , hx(0) = 0. (2.62a)

At the free end, we will consider flux conditions

hxx(L) = 0 , hxxx(L) = 0. (2.62b)

Intuitively, because of  = hxx, these last two conditions mean that the polymer tries to
maintain minimal absolute curvature at the free end. By means of the BCs (2.62) and two
partial integrations, we may rewrite (2.61) as

E ' A

2

"
hxhxx

����
L

0

�
Z L

0

dx hxhxxx

#

=
A

2


�
Z L

0

dx hxhxxx

�

=
A

2

"
�hhxxx

����
L

0

+

Z L

0

dx hhxxxx

#
=

A

2

Z L

0

dx hhxxxx

�
. (2.63)

45

By

2.3.3 Rigid polymers: Euler-Bernoulli equation

Consider a rigid polymer whose motion is confined to the (x, y)-plane, with one end fixed
at (x, y) = (0, 0) and the other moving freely. As before, we adopt the parameterization
h(x) and assume that the energy is can be expressed in terms of fundamental geometric
properties. At zero-temperature and in the absence of other forces, the groundstate of the
polymer is a straight configuration along the positive the x-axis, i.e., h

0

(x) = 0, x 2 [0, L].
Since one end of the polymer can move freely, tension is negligible, and the main

contribution to the polymers energy comes from curvature ,

E ' A

2

Z L

0

dx2, (2.59)

where A is the bending modulus (units energy⇥length). For plane curves h(x), the curva-
ture can be expressed as

 =
hxx

(1 + h2

x)
3/2

. (2.60)

Focussing on the limit of weak deformations, hx ⌧ 1, we may approximate  ' hxx, and
the energy simplifies to

E ' A

2

Z L

0

dx (hxx)
2. (2.61)

The exact form of the boundary conditions depend on how the polymer is attached to the
plane x = 0. Assuming that polymer is rigidly anchored at an angle 90�, the boundary
conditions at the fixed end at x = 0 are

h(0) = 0 , hx(0) = 0. (2.62a)

At the free end, we will consider flux conditions

hxx(L) = 0 , hxxx(L) = 0. (2.62b)

Intuitively, because of  = hxx, these last two conditions mean that the polymer tries to
maintain minimal absolute curvature at the free end. By means of the BCs (2.62) and two
partial integrations, we may rewrite (2.61) as

E ' A

2

"
hxhxx

����
L

0

�
Z L

0

dx hxhxxx

#

=
A

2


�
Z L

0

dx hxhxxx

�

=
A

2

"
�hhxxx

����
L

0

+

Z L

0

dx hhxxxx

#
=

A

2

Z L

0

dx hhxxxx

�
. (2.63)

45

mailto:dunkel@math.mit.edu


dunkel@math.mit.edu

If the polymer is surrounded by a viscous solvent, an initial perturbation h(0, x) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, x) will be of the over-damped form4

⌘ht = ��E

�h
, (2.64)

where ⌘ is a damping constant, and the variational derivative is defined by

�E[h(x)]

�h(y)
:= lim

✏!0

E[h(x) + ✏�(x� y)]� E[h(x)]

✏
. (2.65)

Keeping terms up to order ✏, we find for the energy functional (2.61)

E[h(x) + ✏�(x� y)]� E[h(x)] =
A

2

Z L

0

dx [(h+ ✏�)xx(h+ ✏�)xx � (hxx)
2]

=
A

2

Z L

0

dx [2✏hxx�xx + O(✏2)]

Using the integral identity

g(x) @n
x�(x� y) = (�1)n�(x� y) @n

xg(x) (2.66)

for any smooth function g, one obtains

�E[h(x)]

�h(y)
= A

Z L

0

dx hxxxx(x) �(x� y) = Ahxxxx(y), (2.67)

so that Eq. (2.64) becomes a linear fourth-order equation

ht = �↵hxxxx , ↵ =
A

⌘
. (2.68)

Inserting the ansatz

h = e�t/⌧�(x) , ht = �1

⌧
e�t/⌧� , hxxxx = e�t/⌧�xxxx, (2.69)

gives the eigenvalue problem

1

⌧↵
� = �xxxx. (2.70)

for the one-dimensional biharmonic operator (@2

x)
2, which has the general solution

�(x) = B
1

cosh(x/�) + B
2

sinh(x/�) + B
3

cos(x/�) + B
4

sin(x/�) (2.71a)

4If inertia is important then one would need to term of the form µh

tt

on the lhs. of Eq. (2.64).
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E[h(x) + ✏�(x� y)]� E[h(x)] =
A

2

Z L

0

dx [(h+ ✏�)xx(h+ ✏�)xx � (hxx)
2]

=
A

2

Z L

0

dx [2✏hxx�xx + O(✏2)]

Using the integral identity

g(x) @n
x�(x� y) = (�1)n�(x� y) @n

xg(x) (2.66)

for any smooth function g, one obtains

�E[h(x)]

�h(y)
= A

Z L

0

dx hxxxx(x) �(x� y) = Ahxxxx(y), (2.67)

so that Eq. (2.64) becomes a linear fourth-order equation

ht = �↵hxxxx , ↵ =
A

⌘
. (2.68)

Inserting the ansatz

h = e�t/⌧�(x) , ht = �1

⌧
e�t/⌧� , hxxxx = e�t/⌧�xxxx, (2.69)

gives the eigenvalue problem

1

⌧↵
� = �xxxx. (2.70)

for the one-dimensional biharmonic operator (@2

x)
2, which has the general solution

�(x) = B
1

cosh(x/�) + B
2

sinh(x/�) + B
3

cos(x/�) + B
4

sin(x/�) (2.71a)

4If inertia is important then one would need to term of the form µh

tt

on the lhs. of Eq. (2.64).
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If the polymer is surrounded by a viscous solvent, an initial perturbation h(0, x) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, x) will be of the over-damped form4

⌘ht = ��E
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If the polymer is surrounded by a viscous solvent, an initial perturbation h(0, x) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, x) will be of the over-damped form4
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If the polymer is surrounded by a viscous solvent, an initial perturbation h(0, x) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, x) will be of the over-damped form4
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46

If the polymer is surrounded by a viscous solvent, an initial perturbation h(0, x) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, x) will be of the over-damped form4
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, (2.64)
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2, which has the general solution
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1
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2
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3
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4

sin(x/�) (2.71a)

4If inertia is important then one would need to term of the form µh

tt

on the lhs. of Eq. (2.64).
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If the polymer is surrounded by a viscous solvent, an initial perturbation h(0, x) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, x) will be of the over-damped form4

⌘ht = ��E

�h
, (2.64)

where ⌘ is a damping constant, and the variational derivative is defined by

�E[h(x)]

�h(y)
:= lim

✏!0

E[h(x) + ✏�(x� y)]� E[h(x)]

✏
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= A
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so that Eq. (2.64) becomes a linear fourth-order equation

ht = �↵hxxxx , ↵ =
A

⌘
. (2.68)

Inserting the ansatz

h = e�t/⌧�(x) , ht = �1

⌧
e�t/⌧� , hxxxx = e�t/⌧�xxxx, (2.69)

gives the eigenvalue problem

1

⌧↵
� = �xxxx. (2.70)

for the one-dimensional biharmonic operator (@2

x)
2, which has the general solution

�(x) = B
1

cosh(x/�) + B
2

sinh(x/�) + B
3

cos(x/�) + B
4

sin(x/�) (2.71a)

4If inertia is important then one would need to term of the form µh

tt

on the lhs. of Eq. (2.64).
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where

� = (↵⌧)1/4. (2.71b)

From the boundary conditions (2.62), we have

0 = B
1

+B
3

0 = B
2

+B
4

0 = B
1

cosh(L/�) + B
2

sinh(L/�)� B
3

cos(L/�)� B
4

sin(L/�)

0 = B
1

sinh(L/�) + B
2

cosh(L/�) + B
3

sin(L/�)� B
4

cos(L/�)

Inserting the first two conditions into the last two, we obtain the linear system

0 = B
1

[cosh(L/�) + cos(L/�)] + B
2

[sinh(L/�) + sin(L/�)] (2.73a)

0 = B
1

[sinh(L/�)� sin(L/�)] + B
2

[cosh(L/�) + cos(L/�)]. (2.73b)

For nontrivial solutions to exist, we must have

0 = det

✓
[cosh(L/�) + cos(L/�)] [sinh(L/�) + sin(L/�)]
[sinh(L/�)� sin(L/�)] [cosh(L/�) + cos(L/�)]

◆
(2.74)

which gives us the eigenvalue condition

0 = cosh(L/�) cos(L/�) + 1. (2.75)

This equation has solutions for discrete values �n > 0 that can be computed numerically,
and one finds for the first few eigenvalues

L

2�n

= {0.94, 2.35, 3.93, 5.50, . . .} . (2.76)

For comparison, for purely sinusoidal excitations of a harmonic string one would expect
that L/�n / n. The full time-dependent solution can thus be written as

h(t, x) =
1X

n=1

B
1n e

�t/⌧n

⇢
cosh(x/�n)� cos(x/�n) +

cos(L/�n) + cosh(L/�n)

sin(L/�n) + sinh(L/�n)
[sin(x/�n)� sinh(x/�n)]

�
, (2.77)

where ⌧n = �4

n/↵ = �4

n⌘/A, and the coe�cients B
1n are determined by the initial condition.

To obtain an estimate for the energy per mode, let us consider the quasi-stationary
limit, which can be formally defined by ⌘ ! 1. In this case, we have the mode-expansion

h(x) =
1X

n=1

B
1n

⇢
cosh(x/�n)� cos(x/�n) +

cos(L/�n) + cosh(L/�n)

sin(L/�n) + sinh(L/�n)
[sin(x/�n)� sinh(x/�n)]

�
. (2.78)
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where
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To obtain an estimate for the energy per mode, let us consider the quasi-stationary
limit, which can be formally defined by ⌘ ! 1. In this case, we have the mode-expansion

h(x) =
1X

n=1

B
1n

⇢
cosh(x/�n)� cos(x/�n) +

cos(L/�n) + cosh(L/�n)

sin(L/�n) + sinh(L/�n)
[sin(x/�n)� sinh(x/�n)]

�
. (2.78)

47

where

� = (↵⌧)1/4. (2.71b)

From the boundary conditions (2.62), we have

0 = B
1

+B
3

0 = B
2

+B
4

0 = B
1

cosh(L/�) + B
2

sinh(L/�)� B
3

cos(L/�)� B
4

sin(L/�)

0 = B
1

sinh(L/�) + B
2

cosh(L/�) + B
3

sin(L/�)� B
4

cos(L/�)

Inserting the first two conditions into the last two, we obtain the linear system

0 = B
1

[cosh(L/�) + cos(L/�)] + B
2

[sinh(L/�) + sin(L/�)] (2.73a)

0 = B
1
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which gives us the eigenvalue condition
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This equation has solutions for discrete values �n > 0 that can be computed numerically,
and one finds for the first few eigenvalues
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which gives us the eigenvalue condition
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This equation has solutions for discrete values �n > 0 that can be computed numerically,
and one finds for the first few eigenvalues
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This expression can be inserted into (2.63), and after exploiting orthogonality of the bi-
harmonic eigenfunctions

E '
X

n=1

En , En =
A

2

L

�4

n

B2

n, (2.79)

i.e., the energy per mode is proportional to the square of the amplitude, just as in the
stretching case discussed in Sec. 2.3.2. It is therefore possible to compute thermal expec-
tation values exactly from Gaussian integrals. In particular, from equipartition

E[En] =
A

2

L

�4

n

E[B2

n] =
1

2
kBT. (2.80)

If we combine this with the (crude) harmonic approximation �n / n, then

E[B2

n] /
kBT

n4

, (2.81)

whereas in the stretching case we had found that E[B2

n] / kBT/n
2.

2.4 Problems

1. Implement the torsion-free bead-spring model from Sec. 2.2 in MATLAB.

(a) Explain your choice of the discretization time-step.

(b) Compute, for suitable parameter choices/combinations, the orientation correla-
tion functions and the mean squared end-to-end distance.

(c) How do your results compare with the theoretical predictions (2.33)?
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Actin in flow

were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is
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dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey
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4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]
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When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3
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As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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eigenfunction Wð1Þ. Subsequent instabilities of higher
modes occur at !#

2 ¼ %1:9876 and !#
3 ¼ %4:955. At the

large value ! ¼ %47 in Fig. 3(c), the shape is a superpo-
sition of modes 3 and 4.

We have quantified the fluctuations, dynamics, and
buckling of single actin filaments under flow-induced ten-
sion and thereby established that strain rates _! in the range
0:1–1 s%1 are sufficient to induce buckling of filaments
with L& ‘p. Intriguingly, these are of the same order as
found in cytoplasmic streaming in large eukaryotic cells,
particularly those of plants [6,27]. This raises the possibil-
ity that significant filament rearrangements can occur
through the action of streaming. A quantitative treatment
of the finite-temperature rounding of the stretch-coil tran-
sition, along the lines of approaches to the Euler buckling
problem [17] or more general stochastic supercritical bi-
furcations [28], and a low-dimensional description of the
coupled rotation and deformation of filaments will be
discussed elsewhere. Generalization of these issues to
concentrated suspensions of flexible filaments is a chal-
lenging open problem.

We are grateful to D. Page-Croft, C. Hitch, J. Milton,
and N. Price for technical assistance and thank E. J. Hinch
for discussions and J. E. Molloy for advice with actin
protocols. This work was supported by the Leverhulme
Trust and the European Research Council, Advanced
Investigator Grant No. 247333.

[1] Y.-N. Young and M. J. Shelley, Phys. Rev. Lett. 99, 058303
(2007).

[2] G. B. Jeffery, Proc. R. Soc. A 102, 161 (1922).
[3] L. D. Landau and E.M. Lifshitz, Theory of Elasticity

(Pergamon, Oxford, 1986), 3rd ed.
[4] D. E. Smith and S. Chu, Science 281, 1335

(1998).

[5] E. Wandersman, N. Quennouz, M. Fermigier, A. Lindner,
and O. du Roure, Soft Matter 6, 5715 (2010).

[6] J. Verchot-Lubicz and R. E. Goldstein, Protoplasma 240,
99 (2010).

[7] Y. Yotsuyanagi, Cytologia 18, 202 (1953).
[8] T. Butt et al., J. Biol. Chem. 285, 4964 (2009); V. Schaller

et al., Nature (London) 467, 73 (2010).
[9] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323

(2010).
[10] C. Storm et al., Nature (London) 435, 191 (2005).
[11] R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 73, 1392

(1994); R. E. Goldstein, P. Nelson, T. Powers, and U.
Seifert, J. Phys. II (France) 6, 767 (1996).

[12] V. Kantsler, E. Segre, and V. Steinberg, Phys. Rev. Lett.
99, 178102 (2007); K. S. Turitsyn and S. S. Vergeles, Phys.
Rev. Lett. 100, 028103 (2008).

[13] F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell
Biol. 120, 923 (1993).

[14] A. Ott, M. Magnasco, A. Simon, and A. Libchaber, Phys.
Rev. E 48, R1642 (1993).
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Theory

were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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Theory
were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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Theory vs. experiment

variance VðxÞ= !Ve along the filament, where !Ve ¼
½Vð%L=2Þ þ VðL=2Þ'=2 is the mean end point fluctuation,
averaged over all available data (some 106 points),
spanning nearly 5 orders of magnitude in ". Although
the ‘‘W’’ shape is at first sight surprising, it simply reflects
the presence of two nodes in the fundamental mode;
it is well-approximated by the " ¼ 0 function ½Wð1ÞðxÞ=
Wð1ÞðL=2Þ'2, a comparison justified by the aforementioned
insensitivity of the mode shape to ". Then, a simple proxy
for the filament-averaged variance is !Ve, shown in Fig. 2(c)
to be suppressed by tension for "*1. It suffices to take
only the first two terms in the expansion (6) to achieve
excellent agreement with both the zero-tension limit and
the large-" behavior !Ve ( "%1, with ‘p as the only free
parameter. We obtain ‘p¼10)3!m, a value consistent
with the known range [13,14,24].

Starting from an arbitrary initial configuration, the vari-
ance in h grows with time, ultimately reaching the steady-
state value discussed above. The characteristic time to
achieve saturation can be computed from the linearized
mode dynamics of hðx; tÞ [16], which also yields (below) a
criterion for the onset of the stretch-coil transition in the
compressional regime. By using the scalings employed in
(3) and a rescaled time T ¼ j _"jt, we find [1]

4j"j½hTþsgnð _"Þh'¼%h4#þ"½ð$2=4%#2Þh##%4#h#':
(7)

The tension term on the right-hand side of (7), unlike the
related force term on the left-hand side of (3), is not a total
derivative with respect to #. This can be traced to a
combination of the anisotropic drag coefficient of a slender
body and the fact that the background flow that enters the
drag force in (7) through the relative velocity of the fila-
ment and the fluid is the source of the tension itself. If
we assume a solution to (7) of the form hð#; TÞ ¼
expð!TÞFð#Þ, with boundary conditions F##ð)$=2Þ ¼
F3#ð)$=2Þ ¼ 0, then we have an eigenvalue problem for
the relaxation time %1=! nearly identical to (3). The

scaling of ! with the mode number indicates that the
slowest relaxation time of the system will be %1 *
%1=!1. Along with the equilibrium fluctuations discussed
above, we have also measured the temporal relaxation to
that variance, identifying a time % for(95% equilibration.
This would correspond to three exponential relaxation
times, and a comparison between 3%1 and the data is shown
in Fig. 2(c), by using the fitted value of ‘p determined in
equilibrium. Taken together, these equilibrium and dy-
namical results indicate the validity of a one-mode dynami-
cal system description of these semiflexible filaments
under tension.
In the compressional regime "< 0, the tension induces

a stretch-coil transition beyond a critical value "+, corre-
sponding to the eigenvalue ! ¼ 0, where the thrusting
force from tension(! _"L2= lnð1=&2eÞ balances the restor-
ing force (A=L2 from the filament bending stiffness. This
instability bears the same relation to Euler buckling (with
uniform end thrust) as the twirling-to-whirling transition
[25] of an elastic filament rotated at one end (with spatially
varying twist) does to the writhing instability of a filament
under uniform twist [26]. Observed filament shapes for
various values of " are shown in Figs. 3(a)–3(c), illustrat-
ing that as the buckling amplitude initially grows the mean
filament orientation ' rotates toward the extensional direc-
tion, and the deformation subsequently relaxes as the (now
positive) tension extends the filament. A convenient mea-
sure of the extent of buckling is the minimum filament end-
to-end distanceL during this process, made dimensionless
as the order parameter P ¼ 1%L=L. Stochastic reorien-
tation of the filament during buckling sometimes moves its
ends out of the focal plane, leading to a noise floor Pnoise ’
0:15. Figure 3(d) shows the variation with j"j of P during
buckling events compared to the theoretical bifurcation
point j"j+ ¼ 0:3932 obtained numerically from Eq. (7).
While the transition is strongly rounded by thermal fluctu-
ations, the threshold is quite consistent with the analytical
prediction. The buckling eigenfunction shown in Fig. 3(d)
has a shape strikingly close to that of the first biharmonic

FIG. 2 (color online). Filament modes, fluctuations, and dynamics in the extensional regime _"> 0. (a) The first four orthonormal
eigenfunctions WðnÞ (solid lines) obtained from (3) for " ¼ 0, and Wð1Þ for " ¼ 100 (red dashed line), illustrating the insensitivity of
the fundamental bending mode shape to the tension. (b) Experimentally measured local variance as a function of position along actin
filaments (symbols), and theoretical contribution from the fundamental mode (solid red line). (c) Filament-end fluctuation variance
[raw data (open circles) and binned (red circles)] and scaled full relaxation time [raw data (open squares) and binned (green squares)]
as a function of tension. Theoretical results are solid red and green curves, respectively.
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were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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10# AB! stock was thawed and mixed with 9 parts of
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