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FIG. 3.. Potential U(x) with two metastable states 4 and C. Escape occurs via the forward rate k * and the backward rate k ~, re-
spectively, and E; are the corresponding activation energies.
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FIG. 2. Van’t Hoff-Arrhenius plots of reaction-rate data for two different physical systems in which both thermal activation and
tunneling events occur: (a) Rate of CO migration to a separated 8 chain of hemoglobin (Alberding et al., 1976; Frauenfelder, 1979);
(b) diffusion coefficient D of atomic hydrogen moving on the (110) plane of tungsten at a relative H-coverage of 0.1 (data taken from
DiFoggio and Gomer, 1982). The diffusion D is directly proportional to the hopping rate k.
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Stochastic resonance
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Using fithess landscapes to
visualize evolution in action

A film by Randy Olson and Bjgrn @stman

https://www.youtube.com/watch?v=4pdiAneMMhU
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Paddle Fish

sensory system. However, stochastic resonance requires an external source of electrical noise in
order to function. A swarm of plankton, for example Daphnia, can provide the required noise.
We hypothesize that juvenile paddlefish can detect and attack single Daphnia as outliers in the
vicinity of the swarm by using noise from the swarm itself. From the power spectral density of
the noise plus the weak signal from a single Daphnia, we calculate the signal-to-noise ratio,
Fisher information and discriminability at the surface of the paddlefish’s rostrum. The results
predict a specific attack pattern for the paddlefish that appears to be experimentally testable.



1.4.1 Generic minimal model

Consider the over-damped SDE

dx(t) = -0, Udt + V2D * dB(t) (1.68a)
with a confining potential U (z)

lim U(z) — o (1.68b)

r—+o00

that has two (or more) minima and maxima. A typical example is the bistable quartile
double-well

b
U(x) = —%xQ + 1364 : a,b >0 (1.68c)

with minima at 4++/a/b.



1.4.1 Generic minimal model

Consider the over-damped SDE
dx(t) = -0, Udt + V2D * dB(t) (1.68a)
with a confining potential U (z)

lim U(z) — o (1.68b)

r—+o00

that has two (or more) minima and maxima. A typical example is the bistable quartile
double-well

U(x) = —%xQ + ZZB4 : a,b>0 (1.68c)
with minima at :tm.

Generally, we are interested in characterizing the transitions between neighboring min-
ima in terms of a rate k (units of time™!) or, equivalently, by the typical time required for
escaping from one of the minima. To this end, we shall first dicuss the general structure of
the time-dependent solution of the FPE! for the corresponding PDF p(t, z), which reads

Op = —0,7 , j(t,x) = =[(0.U)p + DO,p], (1.68d)

and has the stationary zero-current (j = 0) solution

o—U(@)/D 00
ps(x) = — Z = / dx e V@D, (1.69)

o



General time-dependent solution

Op = —0,7 , j(t,x) = —[(0.U)p + DO.p], (1.68d)

To find the time-dependent solution, we can make the ansatz
p(t,z) = o(t, x) e V@/CD). (1.70)
which leads to a Schrodinger equation in imaginary time
—0,0 = [—D(‘?ﬁ - W(x)] o=:Hop, (1.71a)

with an effective potential

W(x) = 5@(])2 - %agU. (1.71b)



General time-dependent solution

Op = —0,7 , j(t,x) = —[(0.U)p + DO.p], (1.68d)

To find the time-dependent solution, we can make the ansatz
p(t,z) = ot,z) e V2P, (1.70)

which leads to a Schrodinger equation in imaginary time

—0o = [—DI; + W (z)] 0 =: Ho, (1.71a)
with an effective potential
W(z) = ——(0,U)?2 — 282U (1.71b)
)= 150 ;U :

Assuming the Hamilton operator H has a discrete non-degenerate spectrum, A\g < Ay < ...,
the general solution p(t, x) may be written as

p(t,z) = eV @/ED) Z Cn O () €M (1.72a)
n=0
where the eigenfunctions ¢,, of H satisfy
/dx 05 () P () = Spim, (1.72b)

and the constants c,, are determined by the initial conditions

Cp = /d:r: o () U@/ D) 50 ). (1.72¢)



General time-dependent solution

At large times, t — oo, the solution (1.72a) must approach the stationary solution (1.69),
implying that

_— 1 bo(2) e~ U(z)/(2D)
p— , Ch — —— , T) —

Note that A\yg = 0 in particular means that the first non-zero eigenvalue A\; > 0 dominates
the relaxation dynamics at large times and, therefore,

(1.73)

ro=1/\ (1.74)

is a natural measure of the escape time. In practice, the eigenvalue \; can be computed
by various standard methods (WKB approximation, Ritz method, techniques exploiting
supersymmetry, etc.) depending on the specifics of the effective potential .



1.4.2 Two-state approximation

We next illustrate a commonly used simplified description of escape problems, which can
be related to (1.74). As a specific example, we can again consider the escape of a particle
from the left well of a symmetric quartic double well-potential

b
U(x) = —g.rz + Zm"‘ : p(0,2) =d6(z —x_) (1.75a)
where
r_ = —/a/b (1.75Db)

is the location of the left minimum, but the general approach is applicable to other types
of potentials as well.

The basic idea of the two-state approximation is to project the full FPE dynamics onto
simpler set of master equations by considering the probabilities Py (t) of the coarse-grained
particle-states ‘left well’ (—) and ‘right well’ (+), defined by

P (t) = / dx p(t, ), (1.76a)

— o0

P, (t) = /Oood:z:p(t,x). (1.76Db)

~
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If all particles start in the left well, then

~
[ — Y - - - .-
4 L

P(0)=1,  P.(0)=0. (1.77)

Whilst the exact dynamics of PL(t) is governed by the FPE (1.68d), the two-state approx-
imation assumes that this dynamics can be approximated by the set of master equations'®

P =—k P +k P, P .=k.P —k_ P, (1.78)

For a symmetric potential, U(x) = U(—=z), forward and backward rates are equal, k, =
k_ =k, and in this case, the solution of Eq. (1.78) is given by

Pi(t) = = F = e 2kt (1.79)
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Whilst the exact dynamics of PL(t) is governed by the FPE (1.68d), the two-state approx-
imation assumes that this dynamics can be approximated by the set of master equations'®

P =—k P +k P, P .=k.P —k_ P, (1.78)

For a symmetric potential, U(x) = U(—=z), forward and backward rates are equal, k, =
k_ =k, and in this case, the solution of Eq. (1.78) is given by

1 1
Pj:(t) = 5 + 5 G_th. (179)

For comparison, from the FPE solution (1.72a), we find in the long-time limit
p(t, ) ~ py(x) + c1e”V@/2P g () e, (1.80)

Due to the symmetry of p,(x), we then have

1
P_(t) ~ 5+ O e M! (1.81a)

15Note that Egs. (1.78) conserve the total probability, P_(t) + P_(t) = 1.
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Solution
P_(t) ~ % + Oy e Mt
where
Ch =0 /O e V@/2Dg (1) ¢ = ¢ (x_) V@)D, (1.81b)

Since Eq. (1.81a) neglects higher-order eigenfunctions, C; is in general not exactly equal
but usually close to 1/2. But, by comparing the time-dependence of (1.81a) and (1.79), it
is natural to identify

A 1
k~— = . 1.82
2 2T, (8)

We next discuss, by considering in a slightly different setting, how one can obtain an
explicit result for the rate £ in terms of the parameters of the potential U.



source I

1.4.3 Constant-current solution

Consider a bistable potential as in Eq. (1.75), but now with a particle source at zo < x_ < 0
and a sink!® at z; > 2, = 0. Assuming that particles are injected at x, at constant flux
j(t,x) = J = const, the escape rate can be defined by

= — 1
k=5, (1.83)

with P_ denoting the probability of being in the left well, as defined in Eq. (1.76a) above.
To compute the rate from Eq. (1.83), we need to find a stationary constant flux solution
ps(x) of Eq. (1.68d), satisfying p;(x1) = 0 and

J =—(0,U)p; — DOrp, (1.84)

for some constant J. This solution is given by [HTB90]

J “
ps(x) = EeU(“")/D/ dy VWP, (1.85)

as one can verify by differentiation

—(0.U)ps — DOyp; = —(0:U)p; — DO, [%eu@)/p/ dy GU(y)/D]

- J (1.86)



Therefore, the inverse rate k~! from Eq. (1.83) can be formally expressed as

P 1™ g b
k= =7 /oo dx e_U(QU)/D/ﬂj dy VW'D (1.87)

and a partial integration yields the equivalent representation

k= %/xl dz V@D /w dy e VW/D. (1.88)



Therefore, the inverse rate k=! from Eq. (1.83) can be formally expressed as

P 1 [ 1
k= =7 /_OO dx 6U($)/D/x dy eVW/D. (1.87)

and a partial integration yields the equivalent representation

k= %/wl dz eV @/P /x dy e VWD, (1.88)

— 00

Assuming a sufficiently steep barrier, the integrals in Eq. (1.88) may be evaluated by
adopting steepest descent approximations near the potential minimum at z_ and near the
maximum at the barrier position z,. More precisely, taking into account that U'(z_) =
U'(xp) = 0, one can replace the potentials in the exponents by the harmonic approximations

1
U(r) ~ Ulxyp) — r—x
(@) = Ulw)— 5 (z—m)
1 2
Uly) = Ulz-)+5—(y—z)",
27_
where
7 =-U"(29) >0, 7 =U"(xp) >0 (1.90)
carry units of time. Inserting (1.89) into (1.88) and replacing the upper integral boundaries
by (—Foo, one thus obtains the so-called I%'amers rate [HTB90, GHIM9S] '
o—AU/D _
ko~ ——— =: kg, AU =Ul(xp) — Ul(x_).

2T /T_Tp
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Stochastic resonance

7

)

1. a nonlinear measurement device'
2. a periodic signal weaker than the threshold of measurement device,

3. additional input noise, uncorrelated with the signal of interest.

)
)

®©
@

0
no

1

1

/
-



mailto:dunkel@math.mit.edu

1.5 Stochastic resonance

1.5.1 Generic model

To illustrate SR more quantitatively, consider the periodically driven SDE
dX(t) = =0, Udt + Acos(Qt)dt + V2D x dB(t), (1.93a)

where A is the signal amplitude and

b
U(r) = e

1.93b
5 1 (1.93b)

a symmetric double-well potential with minima at +z, = +/a/b and barrier height
AU = a?/(4b). Introducing rescaled variables
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1.5.1 Generic model

To illustrate SR more quantitatively, consider the periodically driven SDE
dX(t) = =0, Udt + Acos(Qt)dt + V2D x dB(t), (1.93a)

where A is the signal amplitude and

b
U(r) = e (1.93Db)
2 4
a symmetric double-well potential with minima at +z, = +/a/b and barrier height

AU = a?/(4b). Introducing rescaled variables
v =ux/x,, t'=at, A'=A/(ax,) , D' = D/(az?) , 0'=Q/a.
and dropping primes. we can rewrite (1.93a) in the dimensionless form

dX(t) = (x — 2%) dt + Acos(Qt) dt + V2D = dB(t), (1.93c)
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1.5 Stochastic resonance

1.5.1 Generic model

To illustrate SR more quantitatively, consider the periodically driven SDE
dX(t) = =0, Udt + Acos(Qt)dt + V2D x dB(t), (1.93a)

where A is the signal amplitude and

U(r) = —%:1:2 + §x4 (1.93Db)
a symmetric double-well potential with minima at +z, = +/a/b and barrier height
AU = a?/(4b). Introducing rescaled variables
v =ux/x,, t'=at, A'=A/(ax,) , D' = D/(az?) , 0'=Q/a.
and dropping primes. we can rewrite (1.93a) in the dimensionless form
dX(t) = (x — 2%) dt + Acos(Qt) dt + V2D = dB(t), (1.93c)
with a rescaled barrier height AU = 1/4. The associated FPE reads
Op = —0.{[—(0,U) + Acos(Qt)]p — DO,p}. (1.94)

For our subsequent discussion, it is useful to rearrange terms on the rhs. as

Oip = 0.[(0,U)p + DO,p| — Acos(2t)0,p. (1.95)



Perturbation theory

Op = 0,[(0,U)p + DO,p| — Acos(2t)0,p. (1.95)
To solve Eq. (1.95) perturbatively, we insert the series ansatz

plt,x) = A'py(t,x), (1.96)

which gives

> A0p, =Y {A"0,[(0:U)pn + DOupn] — A" cos()0upy } (1.97)
n=0

n=0
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which gives
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Focussing on the liner response regime, corresponding to powers A and A!, we find

op1 = 0.[(0.U)p1 + DO.p1| — cos(2t)D.po (1.98b)



Perturbation theory

Oip = 0.[(0,U)p + DO.p] — Acos(€2t)d,p. (1.95)

To solve Eq. (1.95) perturbatively, we insert the series ansatz

plt,x) = A'py(t,x), (1.96)
n=0
which gives
Z A", = Z {A"0,(0.U)pn + DOypy] — A" cos(Q)D,pn } (1.97)
n=0 n=0

Focussing on the liner response regime, corresponding to powers A and A!, we find

op1 = 0.[(0.U)p1 + DO.p1| — cos(2t)D.po (1.98b)

Equation (1.98a) is just an ordinary time-independent FPE, and we know its stationary
solution is just the Boltzmann distribution

e_U(x)/D

po(x) = 7 Zy = /d:v e~ U@)/D (1.99)




First-order correction
Op1 = 0.1(0.U)p1 + DO,p1| — cos(§2t)0.po (1.98b)

To obtain a formal solution to Eq. (1.98b), we make use of the following ansatz

prlt ) = VDD S 0y (1) (1), (1.100)

where ¢,,(x) are the eigenfunctions of the unperturbed effective Hamiltonian, cf. Eq. (1.71),

1

Ho = —DO:
° Y>

(0,U)* — %aﬁU. (1.101)



First-order correction
Op1 = 0.1(0.U)p1 + DO,p1| — cos(§2t)0.po (1.98b)

To obtain a formal solution to Eq. (1.98b), we make use of the following ansatz

prlt ) = VDD S 0y (1) (1), (1.100)

where ¢,,(x) are the eigenfunctions of the unperturbed effective Hamiltonian, cf. Eq. (1.71),

1 1
Ho = —DO? + —(0,U)* — =02U. 1.101
Inserting (1.100) into Eq. (1.98b) gives
Z almem = — Z )\malm Qbm — COS(Qt) GU(x)/(QD) &Epo (1102)
m=1 m=1



First-order correction
Op1 = 0.1(0.U)p1 + DO,p1| — cos(§2t)0.po (1.98b)

To obtain a formal solution to Eq. (1.98b), we make use of the following ansatz

pi(t, ) = e VOCON " a0 (1) G (), (1.100)
m=1

where ¢,,(x) are the eigenfunctions of the unperturbed effective Hamiltonian, cf. Eq. (1.71),

1 1
Ho = —DO? + —(0,U)* — =02U. 1.101
Inserting (1.100) into Eq. (1.98b) gives
Z A1 Om = — Z Am@1m Gm — cos(§2t) eU@/(2D) 5 0. (1.102)
m=1 m=1

Multiplying this equation by ¢, (x), and integrating from —oo to +o0o while exploiting the
orthonormality of the system {¢,,}, we obtain the coupled ODEs

A1m = —AmQim — Mg cos(t), (1.103)

with ‘transition matrix’ elements

M, o= /d:c By €7@/ D) G 0. (1.104)



First-order correction

A1 = —AmGim — M cos(2t), (1.103)

with ‘transition matrix’ elements

M0 = /dm By €@/ D) G 1y (1.104)



First-order correction

A1 = —AmGim — M cos(2t), (1.103)

with ‘transition matrix’ elements

M0 = /dx By €@/ D) G 1y (1.104)

The asymptotic solution of Eq. (1.103) reads

Q , Am
2 eanres sin(Q2t) + 22 cos(2t)] . (1.105)

alm(t) = —Mm
Note that, because 9,p, is an antisymmetric function, the matrix elements M,,o vanish!®
for even valuesm = 0,2,4, ..., so that only the contributions from odd valuesm =1,3,5...
are asymptotically relevant.



Linear response

Focussing on the leading order contribution, m = 1, and noting that po(z) = po(—2),
we can estimate the position mean value

Y

%

E[X ()] = / dz p(t,7) @ (1.106)

A/da:pl(t,x)x

A/d:z: e V@/CD) g (1) ¢ (2)

|

Q
AT+ Q2

sin () +

A1
AT+ Q2

cos(Qt)] /da: e U@/ED) ¢ ()



Linear response

Focussing on the leading order contribution, m = 1, and noting that py(z) = po(—2),
we can estimate the position mean value

E[X ()] = / dz p(t,7) @ (1.106)

=
Ja
2

A/da:pl(t,x)x

A/d:c e V@/CD) g (1) ¢ (2)

12

A
= _AMw[ sin(€2t) + - cos(Qt)] /da:e_U(w)/@D) ¢ (z) x

Q
AT+ Q2 AT+ Q2

Using A\; = 2kk, where kg is the Kramers rate from Eq. (1.91), we can rewrite this more
compactly as

E[X ()] = X cos(Qt — P) (1.107a)
with phase shift
%) t & (1.107b)
= arctan| — :
v 2k
and amplitude
X=-A Mo /dx e~ V@/CD) o () . (1.107c¢)
(4kZ + Q2)1/2



Linear response

_ M v
X = _A(4k12< +1£022)1/2 /dxe U@/2D) o (z) . (1.107¢)

The amplitude X depends on the noise strength D through kk, through the integral factor
and also through the matrix element

My = / dz ¢ V@D po. (1.108)

To compute X, one first needs to determine the eigenfunction ¢; of H, as defined in
Eq. (1.101). For the quartic double-well potential (1.93b), this cannot be done analytically
but there exist standard techniques (e.g., Ritz method) for approximating ¢, by functions
that are orthogonal to ¢9 = +/po/Zy. Depending on the method employed, analytical



Linear response

_ M v
X=-A 0 73 /dxe U@/2D) o (z) .

(4kZ + Q2)

(1.107c)

The amplitude X depends on the noise strength D through kk, through the integral factor

and also through the matrix element

My = /dﬂf ¢1 BU(:C)/(QD)@;Z?O-

(1.108)

To compute X, one first needs to determine the eigenfunction ¢; of H, as defined in
Eq. (1.101). For the quartic double-well potential (1.93b), this cannot be done analytically
but there exist standard techniques (e.g., Ritz method) for approximating ¢, by functions
that are orthogonal to ¢9 = +/po/Zy. Depending on the method employed, analytical
estimates for X may vary quantitatively but always show a non-monotonic dependence on
the noise strength D for fixed potential-parameters (a,b). As discussed in [GHJM98], a

reasonably accurate estimate for X is given by

< ~ Aa 4k 12
Db \ 4k% + Q2 ’

which exhibits a maximum for a critical value D, determined by

4ki. = Q7 (%U —1>.

(1.109)

(1.110)

That is, the value D, corresponds to the optimal noise strength, for which the mean
value E[X (¢)] shows maximal response to the underlying periodic signal — hence the name

‘stochastic resonance’ (SR).
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1.5.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P.(t) of the coarse-grained particle-states ‘left well’ (—) and ‘right well’ (+),
as defined by Eq. (1.76). This approach leads to the following two-state master equations

with time-dependent rates

P(t) = —k.(t)P-+k_(t) Py, (1.111a)
P.(t) = ki(t)P.—k_(t)Py. (1.111b)



1.5.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P.(t) of the coarse-grained particle-states ‘left well’ (—) and ‘right well’ (+),
as defined by Eq. (1.76). This approach leads to the following two-state master equations

with time-dependent rates

P(t) = —k.(t)P-+k_(t) Py, (1.111a)
P.(t) = ki(t)P.—k_(t)Py. (1.111b)

The general solution of this pair of ODEs is given by [GHJM98|

Pi(t) = g(t) [Pi(t0)+/totds k;ij)] (1.112a)

where

g(t) = exp{—/tds[k+(s)+k_(s)]}. (1.112b)



1.5.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P.(t) of the coarse-grained particle-states ‘left well’ (—) and ‘right well’ (+),
as defined by Eq. (1.76). This approach leads to the following two-state master equations
with time-dependent rates

P(t) = —k.(t)P-+k_(t) Py, (1.111a)
P.(t) = ki(t)P.—k_(t)Py. (1.111b)

The general solution of this pair of ODEs is given by [GHJM98|

Pi(t) = g(t) [Pi(t0)+/totds k;ij)] (1.112a)
where
g(t) = exp{— /totds[k+(s)+k_(s)]}. (1.112b)

To discuss SR within this framework, it is plausible to postulate time-dependent Arrhenius-
type rates,

Az,
D

ka (1) = ki exp [i Cos(Qt)] . (1.113)



Considering the asymptotic imit g — —oo, one can Taylor-expand the rates for Az, <
D to obtain

Az, Az,

1+ 5 cos(Qt)—l—( 5

k() = kg

2
) cos?(Qt) +

These approximations are valid for slow driving (adiabatic regime), and they allow us to
compute expectation values to leading order in Az,/D. To first order, one then finds for
the conditional probability

P+(t|CL'0,t0) = 1-P (thIJo to)
_ _{e—%x(t T0) (28,50 2. — 1 — K(to)] + 1+ &(t)} (1.114a)

where

Az akz 2 20)
i(t) = —== cos(QU — K ., P =arctan| — ). 1.1141
k(1) D cos( D) (41% _|_QQ) , D = arc an(kK) ( )



Note that the conditional probability Py (t|zg, %) satisfies the initial condition

. ]-, — Lk
P+(t0|x03t0) — O:Bo,a:* — { = (1115)

. )
0, otherwise

where x, = r4+ depending on whether the particle starts in the left or right well. Further-
more, one then finds for the mean position the asymptotic linear response result [GHJMO9S|

E[X(t)] = X cos(Qt — D) (1.116a)
where
A2 4k N\ 0
I p = arcta : 1161
X i) (41:}2{ n {22) : @ arctan(sz) (1.116b)

Note that Eqgs. (1.116) are consistent with our earlier result (1.107).



