(Some) Numbers and Maths in Biology

Jörn Dunkel 2-381 <u>dunkel@mit.edu</u>

http://bionumbers.hms.harvard.edu/

B10NUMBER5

Phylogenetic tree

source: wiki

DNA

source: wiki

http://ghr.nlm.nih.gov/handbook/basics/dna

- DNA contour length in bacteria: ~1.5mm
- Length of DNA in nucleus of mammals: ~ 2-3m

DNA = biopolymer pair

- ~ 3m per cell
- ~ 10^14 cells/human

> max. distance between
Earth and Pluto
(~50 AU = 7.5 x 10^12 m)

DNA packaging in eukaryotes

mass 1pg = 978Mb

The total genome size and the number of genes in viruses, bacteria, archaea, and eukaryotes.

dunkel@math.mit.edu

source: wiki

Prokaryotes

Archaea:

http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/chroms-genes-prots/genomes.html

Typical length scales

http://www2.estrellamountain.edu/faculty/farabee/BIOBK/biobookcell2.html

Species estimates

- estimated number of eukaryotic species on Earth:
 8.7 million (Nature, 2011)
- undiscovered: 86% land spec & 91% marine spec
- ~ 300,000 plant species
- prokaryotic biomass ~ eukaryotic biomass
- oldest known fossilized prokaryotes from 3.5 billion years ago

Size-Complexity relation

Unicellular organisms

Amoeba

Bacteria

size ~ $I \mu m$ doubling time ~ 2h

size ~ 10µm doubling time ~ 5-8h

size ~ 1mm doubling time ~ 1d dunkel@math.mit.edu

evolution from unicellular to multicellular ?

Evolution of multicellularity

Short et al, PNAS 2013

Drescher et al (2010) PRL

how do organisms achieve locomotion ?

Reynolds numbers

E.coli (non-tumbling HCB 437)

E.coli (non-tumbling HCB 437)

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNAS

Bacterial motors

movie: V. Kantsler

Berg (1999) Physics Today

Torque-speed relation

200 nm fluorescent bead attached to a flagellar motor 26 steps per revolution 30x slower than real time 2400 frames per second position resolution ~5 nm

Berry group, Oxford

Chlamydomonas alga

~ 50 beats / sec

speed ~100 μ m/s

Goldstein et al (2011) PRL

Chlamy

Sperm near surfaces

Kantsler, Dunkel, Polin, Goldstein (2012) PNAS

PNAS 2015

Surface + shear flow

Amoeba

Eukaryotic motors

http://www.plantphysiol.org/content/127/4/1500/F4.expansion.html

Sketch: dynein molecule carrying cargo down a microtubule

Yildiz lab, Berkeley

Walking modes

Myosin V: Walking or inchworming? Predicted movement for the heads and a dye molecule label (green dot) on the lever arm in the hand-over-hand model (**left**) and the inchworm model (**right**). The FIONA assay has revealed that myosin V, along with kinesin and myosin VI, walks hand-over-hand.

Kinesin walks hand-over-hand

Yildiz et al (2005) Science

Intracellular transport

http://damtp.cam.ac.uk/user/gold/movies.html

wiki

Actin-Myosin

myosin-ll

our lecture course:

generic models of micro-motors

Polymers & filaments (D=I)

Physical parameters (e.g. bending rigidity) from fluctuation analysis

Drosophila oocyte

Actin in 2D

F-Actin

helical filament

Dogic Lab (Brandeis)

Actin in flow

Kantsler & Goldstein (2012) PRL

our lecture course:

- polymer models
- how to relate fluctuations to mechanical properties

Cell membranes (D=2)

dunkel@math.mit.edu

source: wiki

Cell membranes (D=2)

Illustration by J.P. Cartailler. Copyright 2007, Symmation LLC.

red blood cells affected by sickle-cell disease

source: wiki dunkel@math.mit.edu

Blood cells: shape & function

source: wiki

red blood cells affected by sicklecell disease

http://learn.genetics.utah.edu/

Optical tweezer

http://www.nature.com/ncomms/journal/v4/n4/extref/ncomms2786-s1.swf

Dynamics of a vesicle in general flow

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg¹

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100 Israel

11444–11447 | PNAS | July 14, 2009 | vol. 106 | no. 28

Volvox inversion

http://www.damtp.cam.ac.uk/user/gold/movies.html

our lecture course:

'differential geometry' of membranes

Stationary patterns

Turing model

A. M. Turing. The chemical basis of morphogenesis. Phil. Trans. Royal Soc. London. B 327, 37–72 (1952)

The matching of zebrafish stripe formation and a Turing model

Kondo S, & Miura T (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329 (5999), 1616-20

Scalar field theory

2d Swift-Hohenberg model

$$\partial_t \psi = -U'(\psi) + \gamma_0 \nabla^2 \psi - \gamma_2 (\nabla^2)^2 \psi$$

$$U(\psi) = \frac{a}{2}\psi^2 + \frac{b}{3}\psi^3 + \frac{c}{4}\psi^4$$

Active patterns

B. subtilis

bright field

fluorescence

PRL (2013)

3D bacterial suspension

(b) *B. subtilis* dynamics (PIV) 4 (c) tracer dynamics (PTV)

$$vorticity \\ \varepsilon \\ \varepsilon \\ \varepsilon \\ -4$$

fluorescence

PRL (2013)

bright field

3D suspension

Experiment: t = 0.1 s, L = 276 µm 5 0.5 0.5 0 x/L

Experiment: quasi-2D slice

Simulation: 1 - 8.7 s, $L - 300 \, \mu m$

PRL (2013)

Theory: 2D slice

Vector field theory (generalized Navier-Stokes equations)

incompressibility $abla \cdot oldsymbol{v} = oldsymbol{0}$

$$egin{aligned} &(\partial_t + \lambda_0 oldsymbol{v} \cdot
abla) oldsymbol{v} &= - \,
abla(p + \lambda_1 oldsymbol{v}^2) - (eta oldsymbol{v}^2 + lpha) oldsymbol{v} + \ &\Gamma_0
abla^2 oldsymbol{v} - \Gamma_2 (
abla^2)^2 oldsymbol{v} \end{aligned}$$

Active nematics

Dogic lab (Brandeis) Nature 2012

Active nematics

Dogic lab (Brandeis) Nature 2012

no head or tail \Rightarrow Q-tensor order-parameter

$$Q_{ij} = Q_{ji}$$
, $\operatorname{Tr} Q = 0$ $Q = \begin{pmatrix} \lambda & \mu \\ \mu & -\lambda \end{pmatrix}$
 $\Delta = \sqrt{\lambda^2 + \mu^2}$, $\Lambda^{\pm} = \pm \Delta$

467

 $\partial_t Q_{ij} + \partial_k (v_k Q_{ij}) = -\frac{\delta \mathcal{F}}{\delta Q_{ij}}$

 $v_k = D \partial_n Q_{nk}$

biological networks

Tokyo rail network by Physarum plasmodium

Tero et al (2010) Science

Compressible AFN model

Forrow et al, PRL 2017

Mode selection in compressible active flow networks

Aden Forrow, Francis G. Woodhouse, and Jörn Dunkel

Single mode selection

 $\epsilon=0.1,\,\mu=1,\,D=10^{-4}$ 1 second is $\Delta t=6$

Forrow et al, PRL 2017