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http://ghr.nlm.nih.gov/handbook/basics/dnasource: wiki

• DNA contour length in bacteria:  ~1.5mm

• Length of DNA in nucleus of mammals: ~ 2-3m

DNA
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DNA = biopolymer pair

~ 3m per cell

~ 10^14 cells/human

> max. distance between
Earth and Pluto
(~50 AU = 7.5 x 10^12 m)
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DNA packaging in eukaryotes
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Prokaryotes

http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/chroms-genes-prots/genomes.html
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Typical length scales
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Species estimates

• estimated number of eukaryotic species on Earth:  
8.7 million (Nature, 2011)

• undiscovered: 86% land spec & 91%marine spec 

• ~ 300,000 plant species

• prokaryotic biomass ~ eukaryotic biomass

• oldest known fossilized prokaryotes from 3.5 
billion years ago
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Size-Complexity relation
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Unicellular organisms

Caulobacter crescentus (Gitai lab, Princeton)

Algae

Amoeba

Chlamydomonas reinhardtii 
(K. Drescher)Bacteria

size ~ 1µm 
doubling time ~ 2h

size ~ 10µm
doubling time ~ 5-8h

size ~ 1mm 
doubling time ~ 1d

Text
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evolution from  
unicellular to multicellular ?
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Evolution of multicellularity

Short et al, PNAS 2013

Flows driven by flagella of multicellular organisms
enhance long-range molecular transport
Martin B. Short*, Cristian A. Solari†, Sujoy Ganguly*, Thomas R. Powers‡, John O. Kessler*,
and Raymond E. Goldstein*§¶!
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Evolution from unicellular organisms to larger multicellular ones
requires matching their needs to the rate of exchange of molecular
nutrients with the environment. This logistic problem poses a
severe constraint on development. For organisms whose body plan
is a spherical shell, such as the volvocine green algae, the current
(molecules per second) of needed nutrients grows quadratically
with radius, whereas the rate at which diffusion alone exchanges
molecules grows linearly, leading to a bottleneck radius beyond
which the diffusive current cannot meet metabolic demands. By
using Volvox carteri, we examine the role that advection of fluid
by the coordinated beating of surface-mounted flagella plays in
enhancing nutrient uptake and show that it generates a boundary
layer of concentration of the diffusing solute. That concentration
gradient produces an exchange rate that is quadratic in the radius,
as required, thus circumventing the bottleneck and facilitating
evolutionary transitions to multicellularity and germ–soma differ-
entiation in the volvocalean green algae.

advection " multicellularity " Volvox

The motility of microorganisms is primarily thought to enable
access to optimum environments. Yet some species of co-

lonial motile algae thrive in restrictive habitats such as shallow
evanescent puddles, all the while paddling energetically with
their f lagella. What is the significance, beyond locomotion, of
this collective coordinated beating of flagella? Algal metabolism
requires exchange, between organisms and water, of small
molecules and ions such as CO2, O2, and PO4

3!. Rapidly growing
organisms that are ‘‘large’’ in the sense explained below must
augment diffusion with effective modes of transport from re-
mote reaches of their environment (1). The volvocine green
algae (2–5) can serve as a model system for understanding how
exchange of nutrients and wastes varies with organism size, as in
the transition from unicellular to ever-larger multicellular col-
onies. The Volvocales range from the unicellular Chlamydomo-
nas to large colonies of cells, eventually leading to Volvox,
comprising 1,000–50,000 cells (Fig. 1). They include closely
related lineages with different degrees of cell specialization in
reproductive and vegetative function (germ–soma separation),
which seem to represent ‘‘alternative stable states’’ (6). Phylo-
genetic studies show that these transitions in cell specialization
have occurred multiple times, independently (7–9), to geomet-
rically and functionally similar configurations, suggesting that
there is a selective advantage to that morphology. The volvo-
calean range of sizes, "3 orders of magnitude, enables the study
of scaling laws; from a theoretical perspective, the spherical form
of the Volvocales simplifies mathematical analysis.

Volvox, the largest colonies in the lineage, are formed by sterile
bif lagellated Chlamydomonas-like somatic cells, with outwardly
oriented flagella, which are embedded at the surface of a
transparent extracellular matrix, which also contains the germ
cells that develop into flagellated daughter colonies. In some
species, germ cells start f lagellated, but after their first mitotic
division the flagella are absorbed (e.g., V. aureus), whereas in
others (e.g., V. carteri) the germ cells are never flagellated.

Directional swimming due to the coordinated beating of these
flagella also is accompanied by rotation; Volvox is from the Latin
‘‘volvere,’’ to roll (2). Bell (10) and Koufopanou (11) suggested
that the extracellular matrix is a storehouse (‘‘source’’) of
nutrients for the germ cells (‘‘sink’’). They interpret this source–
sink coupling as a mechanism that increases the uptake of
nutrients by the developing germ cells located within the colony.
Moreover, they showed (11) that germ cells from Volvox carteri,
when liberated from their mother colony and freely suspended
in the growth medium, grow more slowly than those embedded
in intact colonies. Those experimental studies did not consider
the external f low created by collective flagellar beating of the
mother colonies. Our studies (3, 4) were designed to investigate
the effects of such fluid flows and showed in fact that these flows
positively influence germ-cell growth rates. Indeed, externally
supplied flows can replace those due to flagella and return germ
cells to normal growth rates. Flagella obviously confer motility;
we infer that they also play a subtle but crucial role in metab-
olism. Niklas (1) suggested that as organisms increase in size,
stirring of boundary layers, yielding transport from remote
regions, can be fundamental in maintaining a sufficient rate of
metabolite turnover, one not attainable by diffusive transport
alone. Yet there has not been a clear quantitative analysis of this
putative connection between flagella-driven stirring and nutri-
ent uptake. Here we investigate the hypothesis that those flows
facilitate, even ‘‘encourage,’’ the transition to large multicellular
forms. We analyze the idealized problem of the scaling that
relates nutrient uptake to body size. Measurements of the actual
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Fig. 1. Volvocine green algae arranged according to typical colony radius R.
The lineage ranges from the single-cell Chlamydomonas reinhardtii (A), to
undifferentiated Gonium pectorale (B), Eudorina elegans (C), to the soma-
differentiated Pleodorina californica (D), to the germ–soma differentiated V.
carteri (E), V. aureus (F), and even larger (e.g., V. gigas with a radius of 1 mm).
In species in which two cell types can be identified, the smaller are somatic cells
and the larger are reproductive cells. Note that the number of cells in Volvox
species ranges from 1,000 (e.g., V. carteri) to 50,000 (e.g., V. barberi).
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Volvox carteri

Drescher et al (2010) PRL
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how do organisms  
achieve locomotion ?
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Reynolds numbers

Boulder Summer School 2011: Introduction to Low Reynolds Number Locomotion
(Notes from Peko Hosoi’s Lecture)

0.1 Reynolds Numbers in Biology

The Reynolds number is dimensionless group that characterizes the ratio of inertial to viscous
forces. It is defined as

Re =
⇥UL

µ
=

UL

�

where ⇥ is the density of the medium the organism is moving through; µ is the dynamic viscosity
of the medium; � is the kinematic viscosity; U is a characteristic velocity of the organism; and L
is a characteristic length scale. When we discuss swimming biological organisms, we are usually
referring to creatures that are moving through water (or through a fluid with material properties
very close to those of water). This means that the material properties µ and ⇥ are fixed1 and the
Reynolds number is roughly determined by the size of the organism.

In general, the characteristic size of the organism and the characteristic swimming velocity are
related. As a rule-of-thumb, the characteristic locomotion velocity, U , in biological organisms is
related to L by U � L/second e.g. for people L � 1 m and we move at U � 1 m/s; bugs are about
L � 1 mm, and they move at about U � 1 mm/s; for microorganisms L � 100 µm and U � 100
µm/s. Obviously this is a very very very very rough estimate and one does not have to think very
hard to come up with exceptions (as is always the case in biology!). However, it serves as a good
starting point to estimate the Reynolds numbers for various biological organisms as illustrated in
the sketch in Figure ??. Note that even for organisms as small as ants, the Reynolds number is
still on the order of 1 (which is not very low). In this lecture we will focus on Re ⇥ 1 which is

10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105 106

1m1cm1mm100!m10!m

Reynolds number

people

Reynolds number

bugs

single-cell 

organisms
bacteria

Figure 1: Typical Reynolds numbers for various biological organisms. Reynolds numbers are esti-
mated using the length scales indicated, the “rule-of-thumb” in the text, and material properties
of water.

relevant for single-cell organisms and bacteria.
1For water, � � 10�2cm2/s and ⇥ � 1 g/cm3.

1
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E.coli  (non-tumbling HCB 437)

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNAS
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
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µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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of the cell body (Fig. 1D) illustrate that the measured flow
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cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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8πη
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
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plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
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the measured flow field (Fig. 1A) is the same as that of a
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pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Sperm near surfaces 

boundary is, in fact, mainly determined by the contact interactions
between their flagella and the surface, whereas hydrodynamic
effects only play a secondary role. Building on these insights, we
derive a simple criterion to predict an efficient ratchet design for
Chlamydomonas and confirm its validity experimentally, thereby

demonstrating that robust rectification of algal locomotion is pos-
sible. More generally, our results show that the interactions be-
tween swimming microorganisms and surfaces are more complex
than previously recognized, suggesting the need for a thorough
revision of currently accepted paradigms. Because mechano-elastic

A

B

C

Fig. 1. Surface scattering of bull spermatozoa is governed by ciliary contact interactions, as evident from the scattering sequences of individual cells at two
temperature values: (A) T = 10 °C and (B) T = 29 °C. The background has been subtracted from the micrographs to enhance the visibility of the cilia. The cyan-
colored line indicates the corner-shaped boundary of themicrofluidic channels (seeMovies S1 and S2 for raw imaging data). The horizontal dotted line in the last
image inB defines θ = 0. (Scale bars: 20 μm.) (C) Theprobability distributions of scattering angles θ from the corner peak at negative angles, due to the fact that the
beat amplitude of the cilia exceeds the size of the cell body (sample size: n = 116 for T = 10 °C and n = 115 for T = 29 °C). At higher temperatures, the cilia exhibit
a larger oscillation amplitude and beat frequency (29), resulting in a larger swimming speed and shifting the typical scattering angles to larger absolute values.

Fig. 2. Surface scattering of Chlamydomonas is governed by ciliary contact interactions. (A) Scattering sequence for WT Chlamydomonas CC-125 (Movie S3).
(Upper) Originalmicrographs. (Lower) Cilia manually marked red. Results for the long-flagellamutant lf3-2 and the short-flagellamutant shf1 look qualitatively
similar (Movies S4 and S5). (Scale bar: 20 μm.) (B) Themutant pushermbo1 remains trapped for several seconds (Movie S6). (Scale bar: 20 μm.) (C) The conditional
probability distributions P(θoutjθin) indicate that, for all four strains, memory of the incidence angle is lost during the collision process, due to multiple flagellar
contact with the surface. (D) The cumulative scattering distribution P(θout) shows how cilia length and swimming mechanisms determine the effective surface-
scattering law. (E) Schematic illustration of the flagella-induced scattering and trapping mechanisms.

1188 | www.pnas.org/cgi/doi/10.1073/pnas.1210548110 Kantsler et al.
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Surface + shear flow

Figure 1: Sperm swim on upwards spirals against shear flow. (A) Background-subtracted mi-
crograph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPas
shear rate �̇ =2.1 s�1), channel boundary false-colored with black, see Movie XX for raw
data. (B) Schematic representation not drawn to scale. The conical envelope of the flagel-
lar beat holds the sperm close to the surface (11). The vertical flow gradient exerts a torque
that turns the sperm against the flow, but is counteracted by a torque from the chirality of
the flagellar wave, resulting in a mean diagonal upstream motion. (C) Tracks of bull sperm
near a flat channel surface. (D) Upstream and transverse mean velocities hv

y,x

i versus shear
flow speed u20 at 20µm from the surface for different viscosities. All velocities are normal-
ized by the sample mean speed v0µ at �̇ = 0. For human sperm, in order of increasing vis-
cosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1, and for bull sperm
v0µ = 70.4 ± 11.8, 45.6 ± 4.7, 32.4 ± 4.8, 29.6 ± 4.1µms�1, where uncertainties are stan-
dard deviations of mean values from different experiments. Each data point is an average over
> 1000 sperms (Supporting Material). (E) Histograms for selected points in (D).
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Walking modes
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M
yosin and kinesin motor proteins use
the energy obtained from adenosine
triphosphate (ATP) hydrolysis to

transport organelles and vesicles by moving
along the cytoskeleton. Structurally, these
motors are dimeric, having two motor heads,
two legs, and a common stalk. The head
regions bind to actin or microtubule filaments
and power the forward movement. The central
question was how the two heads are coupled so
that the motor can processively move along its
track. In the hand-over-hand model (1), ATP
binding and hydrolysis creates a conforma-
tional change in the forward head (head 1) and
this conformation pulls the rear head (head 2)
forward, while head 1 stays fixed on the track.
In the next step, head 2 stays fixed and pulls
head 1 forward. Alternatively, in the inchworm
model (2) only the forward head catalyzes ATP
and always leads while the other head follows
(see figure below). 

In both of these mechanisms, the motor
needs two heads to be able to stay on the track
as it moves and its step size depends on the
length of the legs. However, myosin VI with
short legs (8 nm) was observed to take the same
long steps (30 nm) as myosin V. Moreover, a sin-
gle-headed processive motor has suggested that
two heads are not necessary for processive
motion. These observations lead to another
mechanism: biased diffusion of the motor
along the actin/microtubule lattice (3). The bias
is provided by the initial push of the power
stroke, and the motor most likely attaches to the
next binding site in the forward direction.
Understanding motor protein movement is a fun-
damental step in understanding how cargo trans-
port works within a cell, but despite intensive
research, the mechanism underlying movement
remained highly controversial.

The most direct way to distinguish among
these models is to measure how much each head
moves when the motor walks. The hand-over-
hand model predicts that a head alternately
moves twice the stalk displacement and stays
stationary in the next step while the other head
takes a step (see figure, left panel). In contrast,
the inchworm model predicts that both of the
heads move forward the same distance as the
stalk (see figure, right panel). The diffusion
model states that heads randomly bind to the
track. Current nanometer-precision tracking
techniques (optical traps and cantilever probes)

cannot readily be used to watch
the head movement, because
they use a large probe (>100
µm) that might hinder the
movement of the motor’s tiny
heads (5 to 10 nm). What is
needed is to track a nanometer-
sized probe (such as organic dyes)
attached to a motor head with sin-
gle- nanometer precision. 

The position of a diffrac-
tion-limited spot can be local-
ized very precisely by deter-
mining the center of its emis-
sion pattern. However, organic
dyes are not very bright and the
signal disappears quickly by
permanent photobleaching.
This limited previous single-
molecule tracking experiments to a precision of
around 30 nm (4). I have extended the photostabil-
ity and brightness of single organic dyes 20 times
by effectively deoxygenating the assay solution
and using reducing agents, and I have achieved
1.5-nm localization and collected 1.4 million pho-
tons from single organic dyes. The technique,
named fluorescence imaging with one-nanome-
ter accuracy (FIONA), has improved spatial resolu-
tion in single molecule fluorescence by ~20-fold. 

Using FIONA, I tracked the movement of
the motor proteins myosin V, kinesin, and
myosin VI, which were labeled with a single
dye in the head region as follows.

Myosin V. Bifunctional rhodamine (Br)–label-

ed calmodulins were exchanged
into the myosin V lever arm,
where the calmodulin can poten-
tially exchange at any of six
calmodulin-binding sites (IQ
domains). The inchworm model
predicts a uniform step size of 37
nm regardless of the position of
the labeled calmodulin. The
hand-over-hand model predicts
alternating short and long steps,
depending on the in-plane dis-
tance of the dye from the mid-
point of the myosin. The trajec-
tory of moving spots created
three classes of steps. I observed
74-or 0-nm displacements for
dye on the first IQ domain, alter-
nating 52-and 23-nm steps for

dye on the fifth IQ domain and alternating 42-and
33-nm steps for dye on the sixth IQ domain (5)
(see figure below, left). 

Kinesin. A human kinesin was specifically
labeled on the head region with a single Cy3
molecule. As the stalk took 8-nm steps, the
head was observed to take alternating 16-nm
and 0-nm steps (6). 

Myosin VI. Myosin VI was labeled with a
single Cy3 molecule on a calmodulin-binding
site. Again, the labeled head alternately moved
twice as far as the stalk moved and stopped as
the other head moved (7). Unexpectedly, Cy3-
calmodulin showed significant flexibility when
it had ATP bound, whereas it was immobile in
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Myosin V: Walking or inchworming? Predicted movement for the heads and a dye molecule label (green
dot) on the lever arm in the hand-over-hand model (left) and the inchworm model (right). The FIONA assay
has revealed that myosin V, along with kinesin and myosin VI, walks hand-over-hand. C
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yosin and kinesin motor proteins use
the energy obtained from adenosine
triphosphate (ATP) hydrolysis to

transport organelles and vesicles by moving
along the cytoskeleton. Structurally, these
motors are dimeric, having two motor heads,
two legs, and a common stalk. The head
regions bind to actin or microtubule filaments
and power the forward movement. The central
question was how the two heads are coupled so
that the motor can processively move along its
track. In the hand-over-hand model (1), ATP
binding and hydrolysis creates a conforma-
tional change in the forward head (head 1) and
this conformation pulls the rear head (head 2)
forward, while head 1 stays fixed on the track.
In the next step, head 2 stays fixed and pulls
head 1 forward. Alternatively, in the inchworm
model (2) only the forward head catalyzes ATP
and always leads while the other head follows
(see figure below). 

In both of these mechanisms, the motor
needs two heads to be able to stay on the track
as it moves and its step size depends on the
length of the legs. However, myosin VI with
short legs (8 nm) was observed to take the same
long steps (30 nm) as myosin V. Moreover, a sin-
gle-headed processive motor has suggested that
two heads are not necessary for processive
motion. These observations lead to another
mechanism: biased diffusion of the motor
along the actin/microtubule lattice (3). The bias
is provided by the initial push of the power
stroke, and the motor most likely attaches to the
next binding site in the forward direction.
Understanding motor protein movement is a fun-
damental step in understanding how cargo trans-
port works within a cell, but despite intensive
research, the mechanism underlying movement
remained highly controversial.

The most direct way to distinguish among
these models is to measure how much each head
moves when the motor walks. The hand-over-
hand model predicts that a head alternately
moves twice the stalk displacement and stays
stationary in the next step while the other head
takes a step (see figure, left panel). In contrast,
the inchworm model predicts that both of the
heads move forward the same distance as the
stalk (see figure, right panel). The diffusion
model states that heads randomly bind to the
track. Current nanometer-precision tracking
techniques (optical traps and cantilever probes)

cannot readily be used to watch
the head movement, because
they use a large probe (>100
µm) that might hinder the
movement of the motor’s tiny
heads (5 to 10 nm). What is
needed is to track a nanometer-
sized probe (such as organic dyes)
attached to a motor head with sin-
gle- nanometer precision. 

The position of a diffrac-
tion-limited spot can be local-
ized very precisely by deter-
mining the center of its emis-
sion pattern. However, organic
dyes are not very bright and the
signal disappears quickly by
permanent photobleaching.
This limited previous single-
molecule tracking experiments to a precision of
around 30 nm (4). I have extended the photostabil-
ity and brightness of single organic dyes 20 times
by effectively deoxygenating the assay solution
and using reducing agents, and I have achieved
1.5-nm localization and collected 1.4 million pho-
tons from single organic dyes. The technique,
named fluorescence imaging with one-nanome-
ter accuracy (FIONA), has improved spatial resolu-
tion in single molecule fluorescence by ~20-fold. 

Using FIONA, I tracked the movement of
the motor proteins myosin V, kinesin, and
myosin VI, which were labeled with a single
dye in the head region as follows.

Myosin V. Bifunctional rhodamine (Br)–label-

ed calmodulins were exchanged
into the myosin V lever arm,
where the calmodulin can poten-
tially exchange at any of six
calmodulin-binding sites (IQ
domains). The inchworm model
predicts a uniform step size of 37
nm regardless of the position of
the labeled calmodulin. The
hand-over-hand model predicts
alternating short and long steps,
depending on the in-plane dis-
tance of the dye from the mid-
point of the myosin. The trajec-
tory of moving spots created
three classes of steps. I observed
74-or 0-nm displacements for
dye on the first IQ domain, alter-
nating 52-and 23-nm steps for

dye on the fifth IQ domain and alternating 42-and
33-nm steps for dye on the sixth IQ domain (5)
(see figure below, left). 

Kinesin. A human kinesin was specifically
labeled on the head region with a single Cy3
molecule. As the stalk took 8-nm steps, the
head was observed to take alternating 16-nm
and 0-nm steps (6). 

Myosin VI. Myosin VI was labeled with a
single Cy3 molecule on a calmodulin-binding
site. Again, the labeled head alternately moved
twice as far as the stalk moved and stopped as
the other head moved (7). Unexpectedly, Cy3-
calmodulin showed significant flexibility when
it had ATP bound, whereas it was immobile in
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Kinesin walks hand-over-hand
model does not require stalk rotation (9, 10). Based
on biophysical measurements that showed
no rotation of the stalk, Hua et al. (9) concluded
that an inchworm model was more likely for kine-
sin, although they could not rule out an asym-
metric hand-over-hand mechanism.

Recently, we have developed a technique,
Fluorescence Imaging One-Nanometer Accura-
cy (FIONA), that is capable of tracking the
position of a single dye with nanometer accuracy
and subsecond resolution (11). In FIONA, the
position of a dye before and after a step is
monitored by imaging the dye’s fluorescence
onto a charge-coupled detector through a total-
internal-reflection fluorescence microscope. The
image, or point-spread-function (PSF), is a dif-
fraction-limited spot with a width of !280 nm,
but the center of the image, which corresponds to
the position of the dye (12), can be located with
nanometer accuracy. We previously applied the
technique to show that myosin V walks in a
hand-over-hand manner, with each head alternat-
ing between 74-nm and 0-nm displacements,
while the center of mass moves 37 nm (11).

Here, we have performed analogous experi-
ments with a “cys-light” kinesin (7), with a
solvent-exposed cysteine inserted on each head
for labeling with a Cy3 fluorophore (Fig. 1B)
(13). The dye’s position was monitored as the
kinesin moved on microtubules that were immo-
bilized on a coverslip (13). Three different con-
structs were used: a homodimer with glutamic
acid mutated to cysteine (E215C), a second ho-
modimer with T324C, and a heterodimer with
one head lacking solvent-exposed cysteines and
the other head containing cysteines at S43C and
T324C, which are 2 nm apart (Fig. 1B). Sub-
stoichiometric labeling was used for the ho-
modimers, and single quantal bleaching of fluo-
rescence confirmed that only a single dye was
present on each kinesin analyzed (fig. S1B). The
heterodimer was labeled with an excess of dye
and both single- and double-quantal bleaching
was observed (13).

In the absence of ATP, kinesins were station-
ary. In the presence of 340 nM ATP, discrete
steps were observed for the three different kine-
sin constructs (Fig. 2). A total of 354 steps from
35 kinesins were observed. We typically collect-
ed 4000 photons per 0.33-s image. Traces from
relatively bright kinesins ("5000 photons per
image) are shown in Fig. 2; a histogram of 143
steps from 26 molecules is shown in Fig. 3A.
The precision of step-size determination was 1.5
to 3 nm, based on measurement of the distance
between the average positions of the PSF centers
before and after a step (11, 14). The average step
size derived from the step-size histogram (Fig.
3A) is 17.3 # 3.3 nm. We did not observe
8.3-nm steps or odd multiples of 8.3 nm. These
data therefore strongly support a hand-over-hand
mechanism and not an inchworm mechanism.

The hand-over-hand mechanism predicts that
these 17-nm steps alternate with 0-nm steps,
which are not directly observable in a graph of

position versus time. However, if the observed
17-nm steps arise from the convolution of two
sequential steps (i.e., 17 nm, 0 nm. . .), then a
dwell-time histogram of the number of steps
versus step-time duration will be the convolution
of two exponential processes (11). This yields
the dwell time probability, P(t ) $ tk2exp(–kt),
which is zero at t $ 0, rises initially, and then
falls, when k is the stepping rate constant. In
contrast, if the 17-nm steps arise from a single
process, then the dwell-time histogram would be

expected to yield an exponential decay (the
Poisson-distributed rate). The dwell-time histo-
gram of 347 steps for E215C and T324C (Fig.
3B) is well fit by the above convolution function
(with k $ 1.14 # 0.03 steps per s), and not by
the single-step decaying function. The rise near
t $ 0 is not due to instrument artifacts: An
exponential process for myosin V stepping (with
dyes located to show every step) at very similar
rates yields the expected monotonic decay with
the same instrument (11). We also have immo-

Fig. 1. (A) Examples of two al-
ternative classes of mechanisms
for processive movement by ki-
nesin. The hand-over-hand mod-
el (left) predicts that a dye on
the head of kinesin will move
alternately 16.6 nm, 0 nm, 16.6
nm, whereas the inchworm
mechanism (right) predicts uni-
form 8.3-nm steps. The inch-
worm model was adapted with
slight modification from (9). (B)
The positions of S43 (red), E215
(green), and T324 (blue) on the
rat kinesin crystal structure
[from (6), Protein Data Base
2KIN]. These residues, whose
numbers correspond to conven-
tional human kinesin, were mu-
tated to cysteines for fluorescent
dye labeling as described in the
text. The bound nucleotide
(adenosine diphosphate) is
shown as a space-filling model in
cyan. This figure was made with
MolMol (22).

Fig. 2. Position versus time for kinesin motility. The blue and green traces are from E215C
homodimer kinesin; the red trace, from the heterodimer S43C-T324C kinesin. The numbers
correspond to the step size # %&. The uncertainties were calculated as described (11). Red lines
represent average positions of each duration between steps (plateau) and when the step occurs
(jumps) based on data analysis.
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gram of 347 steps for E215C and T324C (Fig.
3B) is well fit by the above convolution function
(with k $ 1.14 # 0.03 steps per s), and not by
the single-step decaying function. The rise near
t $ 0 is not due to instrument artifacts: An
exponential process for myosin V stepping (with
dyes located to show every step) at very similar
rates yields the expected monotonic decay with
the same instrument (11). We also have immo-
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Actin in flow

Kantsler & Goldstein (2012) PRL
were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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simulations and high flow uniformity (Fig. 2 and SI Appendix).
The accessible range of s was [0.05–0.32] s!1 and that of !/s was
[1.18–9.23]. To reduce error bars on S and ", the geometrical
parameters R and # of each vesicle were measured in situ from
a 3D reconstruction of its shape (20) in TT motion at low S, with
mean errors of 1.7% on R and of 6.1% on # within the range [0.3,
2.5]. Since only vesicles with " $ 1 were used in this work, there
is no error contribution from this parameter (20). Errors from
non-uniformity of the velocity field were below 2%; that cumu-
lates to overall mean errors of 8.7% on S and of 2% on ".

The experiments were performed in the following way. A
vesicle with given R and #, measured initially in situ in the same
device, was followed at a prescribed value of !/s and s in the
observation window. A feedback in the flow velocity was used to
hold a vesicle in the field of view for up to 10 TU/TR periods.
To explore the whole space of parameters (S, "), vesicles with
various values of R and # were loaded and individually observed,
and !/s was varied in steps during the experiment by changing
#P, which is the pressure difference between 2 inlets (see Fig. 1).
In this way the space of parameters (S, ") was populated with

A B

Fig. 1. (A) Schematic of the microfluidic 4-roll mill device; Q1 and Q2 are the flow discharges, whose ratio defines the flow type. The flow is driven by gravity,
and the ratio between the pressure drop P0 and the pressure difference between 2 inlets #P determines Q1/Q2. (B) f $ (1 ! !/s)/(1% !/s) as a function of the reduced
pressure drop (1- #P/P0). Inset: s as a function of (1 ! #P/P0). Large filled squares, P0 $ P; open squares, P0 $ 4/3P; small filled circles, P0 $ 5/3P, open circles, P0 $
2P (in our specific configuration P&750 Pa). The solid line is the 3D FEM simulation of the flow. Experimental imperfections due to soft lithography lead to
observable quantitative discrepancy with simulations.

Fig. 2. (A) Experimental streamlines images of the velocity fields for pure rotational (first column, !/s $ 43), mixed (second column, !/s $ 2.6) and pure shear
(third, !/s $ 1) flows; (B) Zoom of the same experimental flows; (C) velocity vector field representation of the same flows (PTV).
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An approach to quantitatively study vesicle dynamics as well as
biologically-related micro-objects in a fluid flow, which is based on
the combination of a dynamical trap and a control parameter, the
ratio of the vorticity to the strain rate, is suggested. The flow is
continuously varied between rotational, shearing, and elonga-
tional in a microfluidic 4-roll mill device, the dynamical trap, that
allows scanning of the entire phase diagram of motions, i.e.,
tank-treading (TT), tumbling (TU), and trembling (TR), using a
single vesicle even at ! " #in/#out " 1, where #in and #out are the
viscosities of the inner and outer fluids. This cannot be achieved in
pure shear flow, where the transition between TT and either TU or
TR is attained only at !>1. As a result, it is found that the vesicle
dynamical states in a general are presented by the phase diagram
in a space of only 2 dimensionless control parameters. The findings
are in semiquantitative accord with the recent theory made for a
quasi-spherical vesicle, although vesicles with large deviations
from spherical shape were studied experimentally. The physics of
TR is also uncovered.

Understanding the rheology of biofluids remains a great
challenge, whose progress relies, in a large part, on detailed

studies of the dynamics of a single cell. Vesicles are a model
system used to study the dynamic behavior of biological cells,
similar in some respects to red blood cells, and their dynamics in
shear flow have been the subject of intensive theoretical (1–8),
numerical (9–13), and experimental (14–18) investigations.

A vesicle is a droplet of viscous fluid encapsulated by a
phospholipid bilayer membrane suspended in a fluid of either
the same or different viscosity as the inner one. Both the volume
and the surface area of the vesicle are conserved. The former
means that the vesicle membrane is considered to be imperme-
able, at least on the time scale of the experiment, and the latter
means that the membrane dilatation is neglected since it is 2D
fluid (1,2). Experimental, theoretical, and computational efforts
during the last decade led to the observation and characteriza-
tion of 3 states in vesicle dynamics in shear flow. The existence
of the first 2, tank-treading (TT) and tumbling (TU), and the
transition between them were already predicted by a phenom-
enological model of Keller and Skalak (19) and its further
extensions (2,11,12). Two control parameters, the excess area
! " A/R2-4! and the viscosity contrast " " #in/#out, determine
the transition line "c(!) between TT and TU, which is indepen-
dent of the shear rate $̇ in the approximation of a fixed vesicle
shape, with the vesicle inclination angle % with respect to the flow
direction as the only dynamical variable (2,9,10,16–19). Here, R
is the effective vesicle radius, related to the volume via V "
4/3!R3, A is the vesicle surface area, and #in and #out are the
viscosities of the inner and outer fluids. Another analytical
approach based on a quasi-spherical vesicle approximated by a
spherical harmonics expansion used a perturbation scheme
around the Lamb solution of the Stokes flow near a spherical
body in external shear flow (1). Further refinement of the model
resulted in dynamic equations for vesicle shape and inclination
angle (3,4) and described rather well both the TT motion and the
transition line "c(!), as verified by the recent experiments
(16–18). However, the recent experimental key finding of a new
type of unsteady motion, which we dubbed trembling (TR), led
to reconsider both theoretical models (17). TR differs from TU
by oscillations in % of less than !/2 (rather than 2!) and by

stronger vesicle shape deformations (3,17). Moreover, a new
aspect is the dependence on $̇ of the separate regions of
existence of TR and TU (17). Precisely these features changed
the idea of vesicle dynamics as smooth and shape-preserved
motion and called for an adequate theoretical description.
Several theoretical models were suggested to describe the dy-
namics of all 3 states in shear flow, their regions of existence, and
transitions (5,7,13). As we have verified recently, only the 1 of
them presented in ref. 5 describes adequately the experimental
data (20). The main result of this model, which is based on the
approximation of !##1, second order spherical harmonics, and
neglecting thermal noise, is a self-similar solution, which reduces
the number of the dimensionless control parameters to just 2: S
' 7!$̇#outR3/$3&! and %' 4(1 & 23"/32)$!/$30!, where &
is the bending elasticity [taken further as & " 25 kBT'10(12 erg
(21)]. The phase diagram of the vesicle dynamical states is
2-dimensional, parameterized by the variables (S,%), and inde-
pendent of other geometrical parameters. To scan all 3 regimes
of motion and to trace transitions among them in a shear flow,
one should vary both $̇ and ", that is change the viscosities of
inner and outer fluids, which is an impossible task to realize on
an individual vesicle. Because of topology of the phase diagram
(5,20), the only remaining possibility with a single vesicle is to
scan transitions from TU to TR by varying $̇.

This limitation is overcome in a general f low, where the
velocity gradient can be written as 'iVk " sik & (ikj)j, where sik
is the symmetric strain tensor, )j the vorticity vector, and s "
$tr(sik

2 )/2 the strain rate. The corresponding control parameters
for vesicles in general f low (5) are S '14!s#outR3/3$3&! and
% " 4 (1 & 23"/32)$!()/s)/$30!. In this paper, we report the
phase diagram in such general f low. This approach uses an
additional control parameter )/s, which is fixed to unity in shear
flow (s " ) " $̇/2), to study vesicle dynamics [it was suggested
first by G. I. Taylor to study emulsions in a 4-roll mill (22)]. The
ratio can be easily varied continuously in the experiment,
evidencing transitions from TT to either TU or TR and from TU
to TR on the same vesicle with given R, !, and ". The
experimental path across the phase diagram depends on the
initial state and the way )/s and s are varied. The possibility to
observe all dynamical states with the same vesicle, even for " "
1 used in the current experiment, complements the previous
views based on the shear flow dynamics (2–4,7–20). On the other
hand, the experimental approach used here will be advantageous
to study the dynamics of other flexible microobjects, including
biological membranes and red blood cells, in flow.

Results and Discussion
Measurements of the vesicle dynamics were conducted in a
microfluidic 4-roll mill device (23,24) manufactured in silicone
elastomer by soft lithography (Fig. 1). Particle tracking veloci-
metry (PTV) measurements show fair agreement with numerical
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system used to study the dynamic behavior of biological cells,
similar in some respects to red blood cells, and their dynamics in
shear flow have been the subject of intensive theoretical (1–8),
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A vesicle is a droplet of viscous fluid encapsulated by a
phospholipid bilayer membrane suspended in a fluid of either
the same or different viscosity as the inner one. Both the volume
and the surface area of the vesicle are conserved. The former
means that the vesicle membrane is considered to be imperme-
able, at least on the time scale of the experiment, and the latter
means that the membrane dilatation is neglected since it is 2D
fluid (1,2). Experimental, theoretical, and computational efforts
during the last decade led to the observation and characteriza-
tion of 3 states in vesicle dynamics in shear flow. The existence
of the first 2, tank-treading (TT) and tumbling (TU), and the
transition between them were already predicted by a phenom-
enological model of Keller and Skalak (19) and its further
extensions (2,11,12). Two control parameters, the excess area
! " A/R2-4! and the viscosity contrast " " #in/#out, determine
the transition line "c(!) between TT and TU, which is indepen-
dent of the shear rate $̇ in the approximation of a fixed vesicle
shape, with the vesicle inclination angle % with respect to the flow
direction as the only dynamical variable (2,9,10,16–19). Here, R
is the effective vesicle radius, related to the volume via V "
4/3!R3, A is the vesicle surface area, and #in and #out are the
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approach based on a quasi-spherical vesicle approximated by a
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around the Lamb solution of the Stokes flow near a spherical
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(5,20), the only remaining possibility with a single vesicle is to
scan transitions from TU to TR by varying $̇.

This limitation is overcome in a general f low, where the
velocity gradient can be written as 'iVk " sik & (ikj)j, where sik
is the symmetric strain tensor, )j the vorticity vector, and s "
$tr(sik

2 )/2 the strain rate. The corresponding control parameters
for vesicles in general f low (5) are S '14!s#outR3/3$3&! and
% " 4 (1 & 23"/32)$!()/s)/$30!. In this paper, we report the
phase diagram in such general f low. This approach uses an
additional control parameter )/s, which is fixed to unity in shear
flow (s " ) " $̇/2), to study vesicle dynamics [it was suggested
first by G. I. Taylor to study emulsions in a 4-roll mill (22)]. The
ratio can be easily varied continuously in the experiment,
evidencing transitions from TT to either TU or TR and from TU
to TR on the same vesicle with given R, !, and ". The
experimental path across the phase diagram depends on the
initial state and the way )/s and s are varied. The possibility to
observe all dynamical states with the same vesicle, even for " "
1 used in the current experiment, complements the previous
views based on the shear flow dynamics (2–4,7–20). On the other
hand, the experimental approach used here will be advantageous
to study the dynamics of other flexible microobjects, including
biological membranes and red blood cells, in flow.

Results and Discussion
Measurements of the vesicle dynamics were conducted in a
microfluidic 4-roll mill device (23,24) manufactured in silicone
elastomer by soft lithography (Fig. 1). Particle tracking veloci-
metry (PTV) measurements show fair agreement with numerical
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one should vary both $̇ and ", that is change the viscosities of
inner and outer fluids, which is an impossible task to realize on
an individual vesicle. Because of topology of the phase diagram
(5,20), the only remaining possibility with a single vesicle is to
scan transitions from TU to TR by varying $̇.
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% " 4 (1 & 23"/32)$!()/s)/$30!. In this paper, we report the
phase diagram in such general f low. This approach uses an
additional control parameter )/s, which is fixed to unity in shear
flow (s " ) " $̇/2), to study vesicle dynamics [it was suggested
first by G. I. Taylor to study emulsions in a 4-roll mill (22)]. The
ratio can be easily varied continuously in the experiment,
evidencing transitions from TT to either TU or TR and from TU
to TR on the same vesicle with given R, !, and ". The
experimental path across the phase diagram depends on the
initial state and the way )/s and s are varied. The possibility to
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1 used in the current experiment, complements the previous
views based on the shear flow dynamics (2–4,7–20). On the other
hand, the experimental approach used here will be advantageous
to study the dynamics of other flexible microobjects, including
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Figure 1. Numerical illustration of structural transitions in the order-parameter
⇤ for (a-c) mono-stable and (d-f) bi-stable potentials. (a,d) Symbols show the
results of simulations for the first two �0-induced transitions, and lines are linear
interpolations. Quasi-stationary space-time averages ⇤ · ⌅ were computed over 3000
successive simulation time-steps (�t = 0.1) after an initial relaxation period of 200
characteristic time units tu = L4/�2. (b,c) Snapshots of the order-parameter field ⇤
at t = 500, scaled by the maximum value ⇤m, for a mono-stable potential U(⇤) and
homogeneous random initial conditions. After the first transition two stripes appear,
and the number of stripes increases with the number of transitions. (e,f) Snapshots
of the order-parameter at t = 500 for a bi-stable potential. For �0 ⇥ �(2⇥)2�2/L2,
increasingly more complex quasi-stationary structures arise; see References [29, 47] for
similar patterns in excited granular media and chemical reaction systems.
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2. (Pseudo) scalar order-parameter theory

The minimal model considered in this section belongs to the class of generalized

Swift-Hohenberg theories [29, 35]. Our motivation for prepending a brief discussion

of this well-known model here is two-fold: It is helpful to recall some of its basic

properties before considering the generalization to vectorial order-parameters. This

model is also useful for illustrating how microscopic symmetry-breaking mechanisms [40]

can be incorporated into macroscopic descriptions of experimentally relevant microbial

systems [28], as discussed in Section 2.4 below.

2.1. Model equations

We consider the simplest isotropic fourth-order model for a non-conserved scalar or

pseudo-scalar order-parameter ⇤(t,x), given by

⇧t⇤ = F (⇤) + �0�⇤ � �2�
2⇤, (1)

where ⇧t = ⇧/⇧t denotes the time derivative, and ⇤ = ⌅2 is the d-dimensional

Laplacian. The force F is derived from a Landau-potental U(⇤)

F = �⇧U

⇧⇤
, U(⇤) =

a

2
⇤2 +

b

3
⇤3 +

c

4
⇤4, (2)

and the derivative terms on the rhs. of Equation (1) can also be obtained by variational

methods from a suitably defined energy functional. In the context of active suspensions,

⇤ could, for example, quantify local energy fluctuations, local alignment, phase

di⇤erences, or vorticity. We will assume throughout that the system is confined to

a finite spatial domain ⇥ ⇥ Rd of volume

|⇥| =

⇤

�

ddx, (3)

adopting with periodic boundary conditions in simulations.

For completeness, one should note that in the case of a conserved order-parameter

field ⌅ the field equations would either have to take the current-form ⇧t⌅ = �⌅ · J(⌅)

or, alternatively, one could implement conservation laws globally by means of Lagrange

multipliers [36]. For example, for a dynamics similar to that of Equation (1) and a

simple global ‘mass’ constraint

M =

⇤

�

ddx ⌅ = const,

the Lagrange-multiplier approach yields the non-local equations of motions

⇧t⌅ = F (⌅) + �0�⌅� �2�
2⌅� ⇥1,

⇥1 =
1

|⇥|

⇤

�

ddx
�
F (⌅) + �0�⌅� �2�

2⌅
⇥
.

In the remainder of this section, however, we shall focus on the local dynamics defined

by Equations (1) and (2), since this well-known example will be a useful reference point

for the discussion of the vector model in Section 3.

Scalar field theory
2d Swift-Hohenberg model

⇤t⇥ = �U �(⇥) + �0⇥2⇥ � �2(⇥2)2⇥

Minimal continuum models of active fluids 8

2.4. Symmetry breaking

With regard to microbial suspensions, the minimal model (1) is useful for illustrating

how microscopic symmetry-breaking mechanisms that a�ect the motion of individual

organisms or cells [40, 48, 49, 50] can be implemented into macroscopic field equations.

To demonstrate this, we interpret ⇥ as a 2D pseudo-scalar vorticity field⌃

⇥ ⇥ ⇤ = ⌥⇧ v = �ij⌅ivj, (7)

which is assumed to describe the flow dynamics v of a dense microbial suspension

confined to a thin quasi-2D layer of fluid. If the confinement mechanism is top-bottom

symmetric, as for example in a thin free-standing bacterial film [10], then one would

expect that vortices of either handedness are equally likely. In this case, Equation (1)

must be invariant under ⇤ ⇤ �⇤, implying that U(⇤) = U(�⇤) and, therefore, b = 0

in Equation (2). Intuitively, the transformation ⇤ ⇤ �⇤ corresponds to a reflection of

the observer position at the midplane of the film (watching the 2D layer from above vs.

watching it from below).

The situation can be rather di�erent, however, if we consider the dynamics of

microorganisms close to a liquid-solid interface, such as the motion of bacteria or sperms

cells in the vicinity of a glass slide (Figure 2). In this case, it is known that the

trajectory of a swimming cell can exhibit a preferred handedness [40, 48, 49, 50]. For

example, the bacteria Escherichia coli [40] and Caulobacter [48] have been observed

⌃ �ij denotes the Cartesian components of the Levi-Civita tensor, ⌅i = ⌅/⌅xi for i = 1, 2, and we use
a summation convention for equal indices throughout.

Figure 2. E�ect of symmetry breaking. (a) Stationary hexagonal lattice of the pseudo-
scalar vorticity order-parameter ⇥ = ⇤, scaled by the maximum value ⇥m = ⇤m,
as obtained in simulations of Equations (1) and (2) with b > 0, corresponding to a
broken reflection symmetry ⇤ ⌅⇤ �⇤. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus
droebachiensis) near a glass surface; from [28] adapted and reprinted with permission
from AAAS. At high densities, the spermatozoa assemble into vortices that rotate in
clockwise direction (inset) when viewed from the bulk fluid.
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Spontaneous motion in hierarchically assembled
active matter
Tim Sanchez1*, Daniel T. N. Chen1*, Stephen J. DeCamp1*, Michael Heymann1,2 & Zvonimir Dogic1

With remarkable precision and reproducibility, cells orchestrate
the cooperative action of thousands of nanometre-sized molecular
motors to carry out mechanical tasks at much larger length scales,
such as cell motility, division and replication1. Besides their bio-
logical importance, such inherently non-equilibrium processes
suggest approaches for developing biomimetic active materials
from microscopic components that consume energy to generate
continuous motion2–4. Being actively driven, these materials are
not constrained by the laws of equilibrium statistical mechanics
and can thus exhibit sought-after properties such as autonomous
motility, internally generated flows and self-organized beating5–7.
Here, starting from extensile microtubule bundles, we hierarchically
assemble far-from-equilibrium analogues of conventional polymer
gels, liquid crystals and emulsions. At high enough concentration,
the microtubules form a percolating active network characterized
by internally driven chaotic flows, hydrodynamic instabilities,
enhanced transport and fluid mixing. When confined to emulsion
droplets, three-dimensional networks spontaneously adsorb onto
the droplet surfaces to produce highly active two-dimensional
nematic liquid crystals whose streaming flows are controlled by
internally generated fractures and self-healing, as well as unbinding
and annihilation of oppositely charged disclination defects. The
resulting active emulsions exhibit unexpected properties, such as
autonomous motility, which are not observed in their passive ana-
logues. Taken together, these observations exemplify how assem-
blages of animate microscopic objects exhibit collective biomimetic

properties that are very different from those found in materials
assembled from inanimate building blocks, challenging us to
develop a theoretical framework that would allow for a systematic
engineering of their far-from-equilibrium material properties.

We assembled active materials from microtubule filaments, which are
stabilized with the non-hydrolysable nucleotide analogue GMPCPP,
leading to an average length of 1.5mm. Bundles were formed by adding
a non-adsorbing polymer—poly(ethylene glycol) or PEG—which
induces attractive interactions through the well-studied depletion
mechanism. To drive the system far from equilibrium, we added bio-
tin-labelled fragments of kinesin-1, a molecular motor that converts
chemical energy from ATP hydrolysis into mechanical movement
along a microtubule8. Kinesins were assembled into multi-motor clus-
ters by tetrameric streptavidin, which can simultaneously bind and
move along multiple microtubules, inducing inter-filament sliding
(Fig. 1a). In this respect, our experiments build upon important earlier
work that demonstrated the formation of asters and vortices in net-
works of unbundled microtubules and kinesin9,10. However, compared
to these dispersed networks, the proximity and alignment of depletion-
bundled microtubules greatly increases the probability of kinesin clus-
ters simultaneously binding and walking along neighbouring filaments,
thus enhancing the overall activity.

Motor-induced sliding of aligned microtubules depends on their
relative polarity. Kinesin clusters generate sliding forces between
microtubules of opposite polarity, whereas no sliding force is induced
between microtubules of the same polarity11–13. To study the dynamics

*These authors contributed equally to this work.

1Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA. 2Graduate Program in Biophysics and Structural Biology, Brandeis University, 415 South
Street, Waltham, Massachusetts 02454, USA.
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Figure 1 | Active microtubule
networks exhibit internally
generated flows. a, Schematic
illustration of an extensile
microtubule–kinesin bundle, the basic
building block used for the assembly
of active matter. Kinesin clusters exert
inter-filament sliding forces, whereas
depleting PEG polymers induce
microtubule bundling. b, Two
microtubule bundles merge and the
resultant bundle immediately extends,
eventually falling apart. Time interval,
5 s; scale bar, 15mm. c, In a
percolating microtubule network,
bundles constantly merge (red
arrows), extend, buckle (green dashed
lines), fracture, and self-heal to
produce a robust and highly dynamic
steady state. Time interval, 11.5 s; scale
bar, 15mm. d, An active microtubule
network viewed on a large scale.
Arrows indicate local bundle velocity
direction. Scale bar, 80mm.
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Note that the potential cannot contain odd-power terms
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To obtain closed equation, we must express v = (v
k

) in
terms of Q. We discuss two possible choices
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) (16b)

where the constant D is a response coe�cient with units
length2/time. Note the crucial di↵erence between the
two closure conditions: Eq. (16a) assumes that active LC
configurations Q and �Q create flow fields in opposite
directions. By contrast, Eq. (16b) which may also be
written as

v

k

= D@

k

�2
, (17)

assumes that Q and �Q describe physically equivalent
situations because they have identical spectra (although
the corresponding eigenvectors are swapped).

Adopting (16a), which distinguishes between contrac-
tile and extensile nematics, the equations of motions take
the form
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Dynamics conserves the trace, TrQ ⌘ 0. As indicated
above, the velocity term breaks Q ! �Q symmetry, but
could be replaced by (D,Q) ! (�D,�Q) symmetry.

In principle one could include additional terms on
the rhs., such as correctly symmetrized combinations of
vorticity coupling terms involving !

ik

Q

kj

where !

ik

=
@

i
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k
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k
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i

with v

k

being expressed in terms of Q via the
adopted closure condition (this could lead to less isotropic
structures).

SIMULATION PARAMETERS

Simulate regime a < 0, �2 < 0 with b, �4 > 0 while
D could in principle take both signs (contractile versus
extensile). To estimate a and b, rewrite free energy den-
sity in terms of nematic order parameter S = 2�, using
TrQ2 = S

2
/2 and TrQ4 = S

4
/8,

f =
a

4
S

2 +
b

32
S

4
. (19)

For a < 0, we find minima at S± = ±
p

�4a/b. If we
want a minimum at S = 1, we should fix a = �b/4.
With this convention, the depth of the potential well
is f(S±) = �b/32, where b carries units 1/time, i.e.,
⌧

b

= 1/b determines how rapidly the system is damped

to the ordered state. The typical structure size in the ex-
periments is �0 ⇠ 50µm and the typical flow speed v0 ⇠
1µm/s. To establish local order su�ciently fast, we need
⌧

b

< �0/v0, so ⌧

b

⇠ 5s could be a good choice.
Define ‘vortex’ length scale L
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=
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scale T
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= �4/(��2)2, and speed V
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. Choose
�2 < 0 and �4 > 0 such that L

�

matches typical domain
size ⇠ 50µm in experiments, and that V

�

matches typical
flow speed v0 ⇠ 1µm/s.
To estimate a reasonable value for D, assume filament

length ` ⇠ 5µm and approximate velocity D/` by typical
flow speed ⇠ 1µm/s.
To see roughly 100 defects, size of simulation domain

should be 10L
�

⇥ 10L
�

with periodic BCs. Spatial reso-
lution should be of the order of filament length, that is
gridspacing �x = ✏L

�

with ✏ = 1/10 or ✏ = 1/20 could
work reasonably well, corresponding to a total lattice size
100 ⇥ 100 or 200 ⇥ 200, respectively. The time step �t

should be smaller than ✏L

�

/v0 = ✏ ⇥ 5s, i.e. �t = ✏ ⇥ 1s
could work well.
It seems advisable to rescale space and time coordi-

nates in simulations to eliminate two parameters, setting
T

�

= 1 and L

�

⇠ 1 or (L
�

= 2⇡) could be useful.

DEFECT ANALYSIS

Denote by S a spherical area around some point x with
unit tangent vector s = (s

i

) and outward-pointing unit
normal vector b = (b
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). Stokes-theorem in 2D for some
vector field n
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and Gauss
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Example defects: hedgehog at 0
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unlikely to be created spontaneously, since process re-
quires simultaneous production of a pair of �1/2 defects.
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