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Examples

• gene regulatory networks	

• neur(on)al networks	

• structural networks (cytoskeleton, gels, …)	

• hydrodynamic transport networks (blood vessels, 
slime molds, leaves, trees)	

• tree structures (phylogenetic, cell lineages)	

• ecological networks
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Gene facts

• gene = basic physical and functional 
unit of heredity	

• 20,000-25,000 human genes, length 
from a few100 bp to 2 Mbp	

• <1% different between humans	

• alleles = alternate forms of the same 
gene

Courtesy: National Human Genome Research Institute

www.genome.gov
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Explore the Project's
History
Starting points include

Human Genome News: This 13-
year publication facilitated HGP
communication, helped prevent
duplication of research effort, and
informed persons interested in
genome research.
Timeline: This research tool
chronicles major events in the HGP
and related follow-on projects.
Publications archive: Library of
HGP program reports, research
abstracts, research goals, and other
historical documents.
Research archive: Archive of HGP

Human Genome Project
ompleted in 2003, the Human Genome Project (HGP) was a 13-year project coordinated
by the U.S. Department of Energy (DOE) and the National Institutes of Health. During the

early years of the HGP, the Wellcome Trust (U.K.) became a major partner; additional
contributions came from Japan, France, Germany, China, and others. Project goals were to

identify all the approximately 20,500 genes in human DNA,
determine the sequences of the 3 billion chemical base pairs that make up human DNA,
store this information in databases,
improve tools for data analysis,
transfer related technologies to the private sector, and
address the ethical, legal, and social issues (ELSI) that may arise from the project.

Though the HGP is finished, analyses of the data will continue for many years.

About This Site

During the Human Genome Project,
this website served as the primary
electronic information source for HGP
researchers and the public. It is now a
unique archive—a repository for
historical documents detailing the
history of the HGP from the project's
beginnings in 1989 until it was
completed in 2003.

http://web.ornl.gov/sci/techresources/Human_Genome/index.shtml
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Comparative genomics

PLOS Genetics 4 (7): e1000128

8 Yersina bacteria



Relationship between mutation rate per nucleotide site and genome size for different genomic 
systems including viruses. [Reproduced with permission from ref. 19 (Copyright 2009, AAAS).]. 

Holmes PNAS (2010) 107:1742-1746

©2010 by National Academy of Sciences
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The dorsal–ventral GRN in Drosophila 

Levine and Davidson PNAS (2005) 102, 4936

©2005 by National Academy of Sciences



Gap gene network

domain of giant belongs to the most fragile features of
the patterning process, and that regulatory interactions
involving the maternal gradients tend to be highly
constrained.

MATERIAL AND METHODS

Integration of several expression data sets

We combine two databases to assemble a spatiotemporal expression data
set for mRNA and proteins spanning the cleavage cycles C12–C14A
(Fig. S1 in the Supporting Material). Data are taken primarily from the
Berkeley Drosophila Transcription Network Project (BDTNP) (16), which
contains three-dimensional (3D) measurements of relative mRNA con-
centration for >80 genes, and the protein expression patterns for Bicoid,

Giant, Hunchback, and Kruppel during C14A. These data were registered
on the coordinates of 6078 nuclei on the embryo cortex. The second source
is the FlyEx database, which has one-dimensional (1D) quantitative data of
protein expression for the four gap genes (hunchback, Kruppel, giant, and
knirps) and the three input proteins (Bicoid, Caudal, Tailless). These data
span cleavage cycles C10–C14A (10), and correspond to a 10% wide
A-P stripe located in the middle of the D-V axis (Fig. 1 C). The two data-
bases show highly consistent expression patterns (Fig. S2). To assemble
a complete dataset suitable for modeling, extrapolation is necessary, as
some of the 3D data needed to model the genetic network from cleavage
cycles C12–C14A are missing (Fig. S1). For Bicoid, 3D protein data do
not cover the early times of the simulation. At these times, we scaled the
initial 3D profile at each A-P position by a scale factor computed from
the 1D FlyEx data. For Caudal, Tailless and Huckebein, only 3D mRNA
data are available, and they do not cover the whole time interval. We first
extrapolate these data in time, assuming that 1), for caudal and tailless
genes, the mRNA is constant from C12 to the beginning of C14; and 2),
the concentration of huckebein mRNA is zero at C12. We then apply the
translation model (Eq. 3) to simulate the protein from the mRNA data, using
model parameters (Eq. 3) that are calibrated on the 1D protein data in
FlyEx. The initial condition for each protein is taken from the 1D protein
data in FlyEx to the whole embryo surface, assuming rotational symmetry.
Table S1 summarizes the data assembly (input regulators are shown in
Fig. S4 B). Details are given in the Supporting Material.

The reaction-diffusion model for the gap-gene
network

The mRNA abundance, mið~x; tÞ, at position~x for each species i follows a
production, decay, and diffusion model, as in previous studies (18,21,23):

v

vt
mið~x; tÞ ¼ fið pð~x; tÞÞ $ lmi mið~x; tÞ þ Dm

i DSmið~x; tÞ: (1)

The synthesis term fi depends on a linear combination of the spatial
protein abundances pjð~x; tÞ for eight (or nine for the model with the Hunch-
back dimer) transcription factors (j ¼ 1.8) Hunchback, Kruppel, Giant,
Knirps, Bicoid, Caudal, Tailless, and Huckebein:

fið pð~x; tÞÞ ¼ Rm
i g

 
X8

j¼ 1

Tijpjð~x; tÞ þ hi

!

: (2)

Here, the regulatory matrix, Tij, describes the effect of protein j on (the
promoter region of) gene i. If Tij>0, then the gene j activates i, and if
Tij<0, the gene j represses i. The nonlinear function g(u) describes the satu-
ration of the transcription machinery, and the constant hi is an offset that
sets the basal expression level (cf. below). The argument of g(u),
u ¼

P
j T

ijpjð~x; tÞ þ hi, is a linear combination of the protein concentra-
tions. Finally, Dm

i is the diffusion constant, and DS the Laplace-Beltrami
operator on the surface, S, of the embryo, and lmi is the mRNA degradation
rate.

The translation of mRNA into protein follows a linear model:

v

vt
pið~x; tÞ ¼ Rp

i mið~x; tÞ $ lpi pið~x; tÞ þ Dp
iDSpið~x; tÞ; (3)

where Rp
i is the translation rate, lpi the protein decay rate, and Dp

i the diffu-
sion constant. No posttranslational regulations are taken into account.

The model is integrated numerically (cf. Details in Supporting Material)
on the mesh given by the experimentally measured positions of the nuclei
and is calibrated from the data using nonlinear optimization as explained
below. For simplicity, we take the production rates Rm

i and Rp
i as constants,

since most of the simulation time is spent during a single cleavage cycle,
C14. Other authors adapt the rates during interphase or mitosis (9,23). In
a similar way, the degradation and diffusion rates are taken as constant

A B

C

D

FIGURE 1 Gap-gene-network model. (A) Experimentally measured
maternal protein gradients (Bcd and Cad) and protein expression of the
terminal system proteins (Tll and Hkb) are taken as time-varying inputs
to the gap-gene network. (B) knirpsmRNA at C14A, with the mesh defined
by the positions of the nuclei. High and low expression are indicated by red
and blue, respectively (the full data set used in this model is shown in
Fig. S4). Data are taken from the BDTNP database. (C) Modeling geom-
etry. A-P denotes the anterior-posterior axis and D-V the dorsoventral
axis. The thick band along the A-P axis (from EL position 35% to 92%)
shows the geometry considered in 1D models (23). Unless stated otherwise,
all embryos will be presented in this orientation, and 1D plots will be along
the A-P line. (D) The model. mRNA and protein expression levels for the
gap genes hb, Kr, gt, and Kni are modeled on the embryo surface; all
mRNA and protein species can diffuse (Methods and Fig. S10). Each
gap-gene mRNA is transcribed according to a linear model of transcrip-
tional influences (u is a linear combination of the protein expression levels,
pj). A nonlinear transfer function, g(u), models saturation of the poly-
merase. The proteins are translated from mRNA using a linear model,
and all degradations are first-order processes.

Biophysical Journal 101(2) 287–296

288 Bieler et al.

Whole-Embryo Modeling of Early Segmentation in Drosophila Identifies
Robust and Fragile Expression Domains

Jonathan Bieler, Christian Pozzorini, and Felix Naef*
The Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

ABSTRACT Segmentation of the Drosophila melanogaster embryo results from the dynamic establishment of spatial mRNA
and protein patterns. Here, we exploit recent temporal mRNA and protein expression measurements on the full surface of the
blastoderm to calibrate a dynamical model of the gap gene network on the entire embryo cortex. We model the early mRNA and
protein dynamics of the gap genes hunchback, Kruppel, giant, and knirps, taking as regulatory inputs the maternal Bicoid
and Caudal gradients, plus the zygotic Tailless and Huckebein proteins. The model captures the expression patterns faithfully,
and its predictions are assessed from gap gene mutants. The inferred network shows an architecture based on reciprocal
repression between gap genes that can stably pattern the embryo on a realistic geometry but requires complex regulations
such as those involving the Hunchback monomer and dimers. Sensitivity analysis identifies the posterior domain of giant as
among the most fragile features of an otherwise robust network, and hints at redundant regulations by Bicoid and Hunchback,
possibly reflecting recent evolutionary changes in the gap-gene network in insects.

INTRODUCTION

The segmentation of the Drosophila melanogaster embryo
is established through the sequential activation of gene regu-
latory networks, starting with the translation of maternally
deposited mRNAs, and subsequent zygotic expression of
the gap genes (1). Through the combined actions of localized
translation, protein diffusion, degradation, and transport, the
Bicoid and Caudal transcription regulators form concentra-
tion gradients along the anterior-posterior (A-P) axis (2–8),
which provide initial positional information to the gap-
gene network. Mutual interaction among the gap genes
then leads to relatively broad spatial expression domains
along the A-P axis, showing approximate rotational
symmetry (9). The initial gap-gene patterning is then gradu-
ally refined, as gap genes induce the pair-rule genes and later
the segment polarity network, ending with spatial expression
domains with a resolution of a single cell (1). Expression of
the gap genes starts around cleavage cycle 11 (C11),when the
transcription regulators Bicoid (Bcd) and Caudal (Cad)
induce the zygotic transcription regulators hunchback (hb),
Kruppel (Kr), giant (gt), and knirps (kni) (10). The latter
regulators mutually cross-interact, which leads to the forma-
tion of spatiotemporal domains in their expression. A few
additional genes of the terminal system—notablyHuckebein
and Tailless, expressed at the poles of the embryo—also
contribute to specification of the spatial expression domains
(11,12). Patterning of the gap genes is completed at cycle
C14A just before cellularization, when the blastoderm is
still a syncytium. The gap-gene network has been dissected
genetically and functionally (1,3,13–15), providingadetailed
and mostly static interaction map for this process. Quantita-

tivemeasurements of expression profiles (10,16) in space and
time have opened the possibility of reconstructing the early
segmentation network by fitting generic reaction-diffusion
models describing the gap-gene regulatory network (17)
with minimal prior constraints on the network connectivity.
Although this approach does not model the regulatory inter-
actions explicitly at the level of protein-DNA interactions,
inferred networks nonetheless provide insights into design
and robustness properties of the system (9,18–21). Because
it is thought that head patterns depend on additional genes
(Section 2 in the Supporting Material), most current models
focus on the trunk of the embryo, i.e., the geometry of the
model is restricted to a subinterval of the A-P axis rep-
resenting about two-thirds of the embryo length (EL) (from
EL positions 35–90%) (Fig. 1 C, red line) (18,19,21–25).

Here, we use recent spatiotemporal mRNA and protein
expression profiles measured on the entire cortex of the
embryo (16) to calibrate a model for the gap-gene network
on the entire surface of the syncytial blastoderm. Our model
extends previous studies (18,21–23,25) in several ways: 1),
we consider the reaction-diffusion model on the curved
two-dimensional (2D) surface of the embryo given by the
experimentally measured mesh of nuclei (Fig. 1 B); 2), we
explicitly model mRNA and protein species, both of which
can diffuse on the embryo surface; 3), in addition to simple
regulations, we assume that Hunchback monomers and
dimers can carry distinct regulations. We obtain what we
believe are novel insights into both the mechanisms leading
to patterning and the structure of the gap-gene network that
make this process robust. Specifically, we identify a network
based on reciprocal repression of gap genes that faithfully
patterns the embryo, and we evaluate model predictions
on gap-gene mutants against experimental data. Finally,
sensitivity analysis in this study reveals that the posterior
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Accurate measurements of dynamics and
reproducibility in small genetic networks

Julien O Dubuis1,2, Reba Samanta3 and Thomas Gregor1,2,*

1 Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA, 2 Lewis Sigler Institute for Integrative Genomics, Princeton University,
Princeton, NJ, USA and 3 Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
* Corresponding author. Joseph Henry Laboratories of Physics, Lewis Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton,
NJ 08544, USA. Tel.: þ 1 609 258 4335; Fax: þ 1 609 258 6360; E-mail: tg2@princeton.edu

Received 10.9.12; accepted 10.12.12

Quantification of gene expression has become a central tool for understanding genetic networks.
In many systems, the only viable way to measure protein levels is by immunofluorescence, which is
notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that
careful identification and control of experimental error allows for highly accurate gene expression
measurements. We generated antibodies in different host species, allowing for simultaneous
staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of
expression profiles reveals that less than B20% of the observed embryo-to-embryo fluctuations
stem from experimental error. These measurements make it possible to extract not only very
accurate mean gene expression profiles but also their naturally occurring fluctuations of biological
origin and corresponding cross-correlations. We use this analysis to extract gap gene profile
dynamics with B1 min accuracy. The combination of these new measurements and analysis
techniques reveals a twofold increase in profile reproducibility owing to a collective network
dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes.
Molecular Systems Biology 9: 639; published online 22 January 2013; doi:10.1038/msb.2012.72
Subject Categories: development
Keywords: Drosophila gap genes; dynamics; error analysis; immunofluorescence; reproducibility

Introduction

The final macroscopic outcome of developmental processes in
multicellular organisms results in structures that are remark-
ably similar between individuals of a given species
(Thompson, 1917; Held, 1991). In insects, this has long been
observed for the determination of sensory bristles of the adult
(Wigglesworth, 1940; Richelle and Ghysen, 1979; Whittle,
1998). In fly embryos, in particular, the segmentally repeated
denticle pattern of the ventral epidermis is homologous from
one region to the next and identical from one individual to the
next (Alexandre et al, 1999; Hatini et al, 2000; Jones and
Bejsovec, 2005). The earliest macroscopic manifestation
of reproducible pattern in the fly embryo can be identified as
the formation of the cephalic furrow (Namba et al, 1997),
which forms only 3 h after the egg is fertilized. The swift
appearance of enduring reproducible features suggests that the
observed similarities may have their origins at the molecular
level in the reproducible spatial patterns of morphogen
concentrations in the early embryo (Lawrence, 1992, Arias
and Hayward, 2006; Kerszberg and Wolpert, 2007; Lander,
2007; Gregor et al, 2007a).

Uncovering the origin of precise and reproducible structures
in biological processes is a fundamentally quantitative
question, the answer to which can be one of two very distinct

concepts (Schrödinger, 1944). In one view, each step in the
process is noisy and variable, and noise reduction only occurs
through integration of many elements or collectively within
the whole network of elements. In the other view, each step in
the process has been tuned to enhance its reliability, at times
maybe even down to the limits set by basic physical principles
(Gregor et al, 2007a). Can the precise and reproducible
features observed in the patterning system be sufficient to
account for the precision observed in morphology? Focusing
on these quantitative features of the network will ultimately
lead to our understanding of which network properties
are truly reliable, which ones are variable, how they relate to
network architecture, and how they respond to environmental
and genetic variation.

Studies of the emergence of reproducible patterns during
embryogenesis typically utilize genetic tools to disrupt entire
nodes of the regulatory network (e.g., Driever et al, 1989;
Hülskamp et al, 1990; Kraut and Levine, 1991; Capovilla et al,
1992; Struhl et al, 1992; Rivera-Pomar et al, 1995. See Sánchez
and Thieffry, 2001 for a full review). The subsequent response
of the system is then used to infer interactions between
the remaining network components. As a complementary
approach, precise measurements in an intact, wild-type
system can reveal the quantitative relationships within the
network in an unperturbed, natural state (Mjolsness et al,

Molecular Systems Biology 9; Article number 639; doi:10.1038/msb.2012.72
Citation: Molecular Systems Biology 9:639
www.molecularsystemsbiology.com

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 1



Neur(on)al networks



Image of pyramidal neurons in mouse cerebral cortex !
expressing green fluorescent protein. The red staining !
indicates GABAergic interneurons

http://en.wikipedia.org/wiki/Cerebral_cortex
http://en.wikipedia.org/wiki/Green_fluorescent_protein
http://en.wikipedia.org/wiki/GABA


Different kinds of neurons:!
1 Unipolar neuron!
2 Bipolar neuron!
3 Multipolar neuron!
4 Pseudounipolar neuron

http://en.wikipedia.org/wiki/Unipolar_neuron
http://en.wikipedia.org/wiki/Bipolar_neuron
http://en.wikipedia.org/wiki/Multipolar_neuron
http://en.wikipedia.org/wiki/Pseudounipolar_neuron


Ed Bullmore & Olaf Sporns 
Nature Reviews Neuroscience 10, 186-198 (March 2009)



Real hippocampal pyramidal cells (top) obtained from an experimental archive are used to extract fundamental parameters and  
generate virtual neurons (bottom), with Tamori’s algorithm. No two virtual or real neurons are ever identical, though they 
belong to a recognizeable morphological class.

http://krasnow1.gmu.edu/cn3/L-Neuron/HTM/paper.htm

http://krasnow1.gmu.edu/cn3/L-Neuron/HTM/paper.htm




Name Neurons in the brain/whole nervous system Details Image Source

Sponge 0

Trichoplax 0 [1]

Caenorhabditis elegans (roundworm) 302 ~ 7,500 synapses [2]

Jellyfish 800 [3]

Medicinal leech 10,000 [4]

Pond snail 11,000 [5]

Sea slug 18,000 [6]

Fruit fly 100,000 ~ 107 [7]

Larval zebrafish 100,000 [8]

Lobster 100,000 [9]

Ant 250,000 Varies per species [11]

Honey bee 960,000 ~ 109 [12]

Cockroach 1,000,000 [13]

Adult zebrafish ~10,000,000 cells (neurons + other) [14]

Frog 16,000,000 [15]

Mouse 71,000,000 ~ 1011 [16]

Rat 200,000,000 4.48 × 10 [3]

Octopus 300,000,000 [17]

Human 86,000,000,000 For average adult; 10 [18][19][20]

http://en.wikipedia.org/wiki/Sponge
http://en.wikipedia.org/wiki/Trichoplax
http://en.wikipedia.org/wiki/Caenorhabditis_elegans
http://en.wikipedia.org/wiki/Jellyfish
http://en.wikipedia.org/wiki/Leech
http://en.wikipedia.org/wiki/Snail
http://en.wikipedia.org/wiki/California_sea_slug
http://en.wikipedia.org/wiki/Drosophila_melanogaster
http://en.wikipedia.org/wiki/Zebrafish
http://en.wikipedia.org/wiki/Lobster
http://en.wikipedia.org/wiki/Ant
http://en.wikipedia.org/wiki/Honey_bee
http://en.wikipedia.org/wiki/Cockroach
http://en.wikipedia.org/wiki/Zebrafish
http://en.wikipedia.org/wiki/Frog
http://en.wikipedia.org/wiki/Mouse
http://en.wikipedia.org/wiki/Rat
http://en.wikipedia.org/wiki/Octopus
http://en.wikipedia.org/wiki/Human






C elegans (302 neurons)



https://www.youtube.com/watch?v=I64X7vHSHOE

https://www.youtube.com/watch?v=I64X7vHSHOE


Artificial neural networks (ANNs)

An ANN is typically defined by three types of parameters:!
! 1.!The interconnection pattern between the different layers of neurons!  
! 2.!The learning process for updating the weights of the interconnections!  
! 3.!The activation function that converts a neuron's weighted input to its output activation.  

Mathematically, a neuron's network function f is defined as a composition of other functions h,g



Learning
Given a specific task to solve, and a class of functions F={f}, learning means using !
a set of observations to find f*  in F which solves the task in some optimal sense.!
!
Needs real-valued typically convex cost function  C(f)  to determine what’s optimal 



Example: Support vector machines
Choose the hyperplane so that the distance from it to the nearest data point on each side is maximized. !
!
If such a hyperplane exists, it is known as the maximum-margin hyperplane and the linear classifier it defines is !
known as a maximum margin classifier; or equivalently, the perceptron of optimal stability.

http://en.wikipedia.org/wiki/Maximum-margin_hyperplane
http://en.wikipedia.org/wiki/Margin_classifier
http://en.wikipedia.org/wiki/Perceptron


Structural networks



http://rsb.info.nih.gov/ij/images/

The eukaryotic cytoskeleton. Actin filaments are shown in red, !
microtubules are in green, and the nuclei are in blue.

Actin cytoskeleton of mouse embryo fibroblasts, !
stained with phalloidin

Cytoskeleton
2

FIG. 1 Fluorescence microscopy image of bovine pulmonary
artery endothelial cells. Nuclei are stained blue with DAPI,
microtubules (green) are labeled by an antibody bound to
FITC and actin filaments (red) are labelled with phalloidin
bound to TRITC. Source http://rsb.info.nih.gov/ij/images/
(example image from ImageJ (public domain))

FIG. 2 Confocal microscopy image of a fluorescently labeled
collagen network with a concentration of 0.4 mg/ml. Courtesy
of Stefan Münster (Erlangen-Nurnberg).

a fundamental physics perspective, a major motivation
for many of the experimental and theoretical studies of
biopolymers has been the diverse behavior of biopolymer
systems, which are often in stark contrast to their now
better understood synthetic and flexible counterparts in
polymer science and materials.

A polymer is said to be semiflexible when its bend-
ing sti↵ness is large enough, such that the bending
energetics—that favors a straight conformation—can just
out-compete the entropic tendency of a chain to crumple
up into a random coil. Thus, semiflexible polymers ex-
hibit small, yet significant, thermal fluctuations around
a straight conformation. This competition between en-
tropic and energetic e↵ects gives rise to many of the
unique physical properties of semiflexible polymers and

their assemblies (Bausch and Kroy, 2006; Fletcher and
Mullins, 2010; Kasza et al., 2007; Lieleg et al., 2010;
MacKintosh and Janmey, 1997). The semiflexible nature
of the polymers also has major implications for how they
interact with each other to form entangled or crosslinked
networks, and for the linear and nonlinear elastic and flow
properties of such networks. A deep and predictive un-
derstanding of the physics of such networks has proven
to be a daunting theoretical challenge, in part due to
their disordered many-body nature, and the fundamen-
tally more peripheral role of entropy in these systems.
Here, we review recent advances in modeling such sys-
tems, and highlight some of the major remaining open
questions.

Biopolymers, especially those composed of globular
proteins much larger than the atomic or molecular scale,
are far more rigid than most synthetic polymers, and
they constitute prime examples of semiflexible polymers.
Their rigidity results in conformations, both at the sin-
gle polymer and network level, that are very far from the
near gaussian or random coil configurations common in
polymer physics (Wilhelm and Frey, 1996). This di↵er-
ence turns out to be more than just a quantitative one:
Semiflexible polymer systems exhibit qualitatively di↵er-
ent elastic and viscoelastic properties. These properties
include reversible softening under compression (Chaud-
huri et al., 2007), as well as both sti↵ening (Gardel et al.,
2004a; Lieleg et al., 2007; Storm et al., 2005) and negative
normal stress under shear (Janmey et al., 2007).

Because of the unusual material properties of biopoly-
mers and their assemblies, much can be learned from
them and they can serve as inspiration for new mate-
rials or new experimental systems to test fundamental
physics. An example of the latter is the recent use of
carbon nanotubes, which have comparable mechanical
properties to many biopolymers and which can be very
e↵ectively visualized with light microscopy, to address
long-standing puzzles in polymer physics (Doi and Ed-
wards, 1988; Fakhri et al., 2010, 2009; Odijk, 1983).

From a physical point of view, the main di↵erences
between various semiflexible polymers, biological or syn-
thetic, are their dimensions and mechanical properties.
One of the ways to quantify the bending sti↵ness of poly-
mers is by their so-called persistence length, which is es-
sentially the length over which they appear straight in the
presence of Brownian forces. The persistence lengths and
dimensions of various semiflexible polymers are listed in
Table I. An important aspect, setting biopolymers apart
from most synthetic polymers, is that their persistence
length is much larger than the molecular or single pro-
tein scale, and is often comparable to or larger than the
relevant length scale on which the polymer is considered,
such as its contour length or the cross-linking length scale
of the network in which they are embedded. Thus, many
biopolymers are considered to be semiflexible, and their
dynamics is governed by a competition between entropic
and energetic e↵ects. Many theories of semiflexible poly-
mers have been put to a test, since it became possible

http://rsb.info.nih.gov/ij/images/
http://en.wikipedia.org/wiki/Eukaryotic
http://en.wikipedia.org/wiki/Actin_filaments
http://en.wikipedia.org/wiki/Microtubules
http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Mus_musculus
http://en.wikipedia.org/wiki/Embryo
http://en.wikipedia.org/wiki/Fibroblast
http://en.wikipedia.org/wiki/Phalloidin


Molecular motors stiffen non-affine semiflexible polymer networks

see also Brodersz & MacKintosh, Rev Mod Phys (2014)



Connective and supporting tissues

The connective tissues are defined as those composed predominantly of intercellular material, 
the extracellular matrix, which is secreted mainly by the connective tissue cells. The cells are 
therefore usually widely separated by their matrix, which is composed of fibrous proteins and 
a relatively amorphous ground substance.



Coloured scanning electron micrograph (SEM) of cancellous (spongy) bone. This tissue, found in the 
interior of bones, is characterised by a honeycomb arrangement of trabeculae (columns) and spaces.

Bone structures





Metallic foam structures as a bone substitute

Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM



Inter-cellular matrix of plants



The influence of mucus microstructure and rheology in Helicobacter pylori infection

Front. Immunol., 10 October 2013 | doi: 10.3389/fimmu.2013.00310

Mucus

Scanning electron microscopy image of rabbit stomach mucosa showing surface cells and numerous bundles of fiber-like mucus strands.  
Scale bar 10 µm. Reproduced from Nunn et al. (51) with permission from Wiley.
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Representative cryo-SEM images of HEC hydrogels (A–C) and mucus (D and E). 

Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus 
Kirch J et al. PNAS 2012;109:18355-18360

©2012 by National Academy of Sciences



Cervical Mucus Properties Stratify Risk for Preterm Birth

DOI: 10.1371/journal.pone.0069528



Transport networks



High-resolution microvasculature of a mouse ear from optical imaging !

microangiography. Siavash Yousefi, U of Washington

Blood vessels

~25,000 miles of capillaries in an adult, each with an individual length of about 1 mm



Liver vessels



Katifori lab, MPI Goettingen



Network topology & optimization

Katifori lab, UPenn



Root systems



Mycorrhizae are mutualistic - they both need and are needed by the plants  
whose roots they inhabit

http://www.bbc.com/news/science-environment-22462855

Funghi

http://www.bbc.com/news/science-environment-22462855
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!
Tokyo rail network by Physarum plasmodium 

!
Tero et al (2010) Science	
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Tero et al (2010) Science
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Maze solving

Nakagaki et al (2000) Nature

 1 cm

time = 0 after 8 hours
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Physarum developmental cycle 
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• acto-myosin contractions	

• hydrodynamics 	

• noise (?)	

• feedback (?)

How does it work ?

mailto:dunkel@math.mit.edu
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‘Shuttle streaming’

Time, min

Bykov et al  (2009) 	
J Biophoton

mailto:dunkel@math.mit.edu


dunkel@math.mit.edu

‘Standard’ network model

sink

flux

conductivity

Kirchhoff’s law

dynamics

Nakagaki et al (2007) PRL               Bonifaci et al (2012) SODA

source
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Tree structures	







 Phylogenetic genome mapping of dog breeds and their ancestors. Elaine A. Ostrander and Robert K. Wayne	
!



Jun Lab | qBio | UCSD Physics and Molecular Biology

Single cell studies

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCAQFjAA&url=http%3A%2F%2Fjun.ucsd.edu%2F&ei=AVNkVKi5DI_esATczYD4Dw&usg=AFQjCNEPengEsQO9ic7zRX2ehIJ7CZ3lBQ&sig2=h0k9BYA3sKws8MdmyUy_Cw&bvm=bv.79189006,d.cWc




L-Systems
http://algorithmicbotany.org/

wiki

http://algorithmicbotany.org/


Example 3: Cantor dust!
!
variables : A B!
constants : none!
start  : A {starting character string}!
rules  : (A → ABA), (B → BBB)!
Let A mean "draw forward" and B mean "move forward".!
This produces the famous Cantor's fractal set on a real straight line R.

L-Systems

http://en.wikipedia.org/wiki/Cantor_set


Example 5: Sierpinski triangle!
!
The Sierpinski triangle drawn using an L-system.!
variables : A B!
constants : + −!
start  : A!
rules  : (A → B−A−B), (B → A+B+A)!
angle  : 60°!
!
Here, A and B both mean "draw forward", + means 
"turn left by angle", and − means "turn right by angle". 
The angle changes sign at each iteration so that the 
base of the triangular shapes are always in the bottom 
(otherwise the bases would alternate between top and 
bottom).

L-Systems

http://en.wikipedia.org/wiki/Sierpinski_triangle


Ecological networks
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Food web
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The Ythan estuary food web66,73. a, Node colour indicates the length of the shortest path linking the most connected 
species (the flounder Platichthys flesus, in red) and each other species from the network. (The trophic direction of the 
links—what eats what—is ignored). Dark green, species are one link apart; light green, two links; and blue, three links. 
The central circle represents the densest sub-web75, which consists of 28 species with at least 7 links with the rest of 
the species from the sub-web. This sub-web contributes most to the observed clustering. b, Food chains between basal 
species of Enteromorpha (red node at the bottom) and the top predator, the cormorant Phalacrocorax carbo (red node 
at the top). Links corresponding to the shortest path connecting them are in blue (2-links), and those corresponding to 
the longest food chain between these two species are in red (6-links).

Shortest paths in a complex food web
Ecological networks and their fragility 
José M. Montoya, Stuart L. Pimm and Ricard V. Solé 
Nature 442, 259-264(20 July 2006) 
doi:10.1038/nature04927

http://www.nature.com/nature/journal/v442/n7100/full/nature04927.html


Ecological networks and their fragility 
José M. Montoya, Stuart L. Pimm and Ricard V. Solé 
Nature 442, 259-264(20 July 2006) 
doi:10.1038/nature04927

a–e, The cumulative probabilities Pc(k), for k, where P(k) is the probability a species has k links to other species, and is given by P(k)k-

e-k/ where e-k/ introduces a cut-off at some characteristic scale . Panels a (log–log) and b (log–linear) show three different modelled 
networks. Black lines, single-scale networks; when  is very small, the distribution has a fast decaying tail, typically exponential, P(k)e-k/. 
Green lines, truncated scale-free networks; these correspond to intermediate values of  where the distribution has a power law regime 
followed by a sharp cut-off, with an exponential decay of the tail. Red lines, scale-free networks; for large values of  the number of 
connections per species decays as a power law, P(k)k-, a function with a relatively 'fat tail'. c–e, Experimental data (filled circles) and 
best fits (lines); c, a frugivore–plant web76; d, a pollinator–plant web77; and e, the food web from El Verde rainforest78. In c and d, for 
red circles, k is the number of plants species visited by an animal, and for black circles, k is the number of pollinator species visiting 
each plant species. In e, we sum prey–predator links and predator–prey links for each species. Best fits to the data in c–e are as 
follows: c, animals, exponential, P(k) = e-k/3.998; plants, truncated power law, P(k) = k-0.013e-k/11.22; d, animals, power law, P(k) = k-1.512; 
plants, truncated power law, P(k) = k-0.2822e-k/42.55; e, exponential, P(k) = e-k/8.861. f–h, Photographs of a frugivore–plant (f), insect–flower 
(g) and predator–prey (h) interaction of webs depicted in c–e, respectively.

http://www.nature.com/nature/journal/v442/n7100/full/nature04927.html


Genome-Wide Association Studies and Human Disease Networks
By: Leslie Pray, Ph.D. © 2008 Nature Education !!

Disease gene network (DGN).
In the DGN, each node is a gene, with two genes being connected if they are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the 
gene is implicated. Nodes representing genes with links to multiple classes are colored dark grey, whereas unclassified genes are colored light grey. Genes associated with more than five 
disorders, and those mentioned in the text, are indicated with the gene symbol. Only nodes with at least one link are shown.© 2008 National Academy of Sciences, USA Goh, K.-I. et al. The 
human disease network. Proceedings of the National Academy of Sciences 104, 8685-8690 (2008). All rights reserved. 

http://www.pnas.org/

