Microbial locomotion
 I8.S995 - L24-26

Why microbial hydrodynamics?

- > 50\% global biomass
- gut flora, biofilms, ...
- global food web
- > 50\% global carbon fixation

Whitman et al (1998) PNAS
Guasto et al (2012) Annu Rev Fluid Mech

Reynolds numbers

dunkel@math.mit.edu

Turbulence

Entry \#: V84181

Spatially developing turbulent boundary layer on a flat plate

J.H. Lee, Y.S. Kwon, N. Hutchins and J.P. Monty

Department of Mechanical Engineering The University of Melbourne

Swimming at low Reynolds number

Navier - Stokes:

If $\mathcal{R} \sim U L \rho / \eta \ll 1$
Time doesn't matter. The pattern of motion is the same, whether slow or fast, whether forward or backward in time.

The Scallop Therem

Geoffrey Ingram Taylor

$$
\begin{aligned}
& 0=\mu \nabla^{2} \boldsymbol{u}-\nabla p+\boldsymbol{f} \\
& 0=\nabla \cdot \boldsymbol{u}
\end{aligned}
$$

+ time-dependent BCs

Edward Purcell

Zero-Re flow

E.COII (non-tumbling HCB 437)

Bacterial motors

movie: V. Kantsler

source: wiki

Berg (1999) Physics Today
Chen et al (201I) EMBO Journal

Chlamydomonas alga

~ 50 beats / sec

speed $\sim 100 \mu \mathrm{~m} / \mathrm{s}$

Goldstein et al (2011) PRL

dunkel@math.mit.edu

Stroke

(a)

(b)

(c)

Sareh et al (2013) J Roy Soc Interface
$t_{1}=0$
$t_{2}=1.7 \mathrm{~ms}$

$t_{6}=8.7 \mathrm{~ms}$

$t_{9}=13.9 \mathrm{~ms}$

$t_{13}=20.9 \mathrm{~ms}$

$t_{17}=27.8 \mathrm{~ms}$

$t_{21}=34.8 \mathrm{~ms}$

$t_{3}=3.4 \mathrm{~ms}$

$t_{7}=10.4 \mathrm{~ms}$

$t_{11}=17.4 \mathrm{~ms}$

$t_{15}=24.3 \mathrm{~ms}$

$t_{19}=31.3 \mathrm{~ms}$

$t_{23}=36.2 \mathrm{~s}$

$t_{4}=5.2 \mathrm{~ms}$

$t_{8}=12.1 \mathrm{~ms}$

$t_{12}=19.1 \mathrm{~ms}$

$t_{16}=26.1 \mathrm{~ms}$

$t_{20}=33 \mathrm{~ms}$

$t_{24}=38.3 \mathrm{~ms}$

Volvox carteri

beating frequency 25 Hz

Sareh et al (2013)
J Roy Soc Interface

$$
t=0.002 \mathrm{sec}
$$

Meta-chronal waves

Brumley et al (2012) PRL

3

- How can Volvox perform phototaxis?

(discussed later)

Swimming at low Reynolds number

Navier - Stokes:

If $\mathcal{R} \sim U L \rho / \eta \ll 1$
Time doesn't matter. The pattern of motion is the same, whether slow or fast, whether forward or backward in time.

The Scallop Therem

Geoffrey Ingram Taylor

$$
\begin{aligned}
& 0=\mu \nabla^{2} \boldsymbol{u}-\nabla p+\boldsymbol{f} \\
& 0=\nabla \cdot \boldsymbol{u}
\end{aligned}
$$

+ time-dependent BCs

Edward Purcell

Superposition of singularities

$2 \times$ stokeslet $=$
stokeslet

flow $\sim r^{-1}$
symmetric dipole

r^{-2}
'pusher'
r^{-2}
'pusher'
rotlet

r^{-2}

Volvox

Chlamy

swimming speed $\sim 100 \mu \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
\mathbf{v}_{f i t}(\mathbf{r})= & -U_{0} \hat{\mathbf{y}}-\frac{A_{S t}}{r}(\mathbf{I}+\hat{\mathbf{r}} \hat{\mathbf{r}}) \cdot \hat{\mathbf{y}} \\
& +\frac{A_{s t r}}{r^{2}}\left(1-3(y / r)^{2}\right) \hat{\mathbf{r}}-\frac{A_{s d}}{r^{3}}\left(\frac{\mathbf{I}}{3}-\hat{\mathbf{r}} \mathbf{r}\right) \cdot \hat{\mathbf{y}}
\end{aligned}
$$

swimming speed $\sim 50 \mu \mathrm{~m} / \mathrm{sec}$

$$
\begin{array}{ll}
3 \mathrm{D}: & \boldsymbol{v} \sim 1 / r^{2} \\
2 \mathrm{D}: & \boldsymbol{v} \sim 1 / r
\end{array}
$$

... no dipoles !

Drescher et al (2010) PRL
Guasto et al (2010) PRL

E.coli (non-tumbling HCB 437)

$$
\boldsymbol{u}(\boldsymbol{r})=\frac{A}{|\boldsymbol{r}|^{2}}\left[3(\hat{\boldsymbol{r}} . \hat{\boldsymbol{d}})^{2}-1\right] \hat{\boldsymbol{r}}, \quad A=\frac{\ell F}{8 \pi \eta}, \quad \hat{\boldsymbol{r}}=\frac{\boldsymbol{r}}{|\boldsymbol{r}|}
$$

$$
V_{0}=22 \pm 5 \mu \mathrm{~m} / \mathrm{s}
$$

$$
\ell=1.9 \mu \mathrm{~m}
$$

$$
F=0.42 \mathrm{pN}
$$

weak 'pusher' dipole

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (201I) PNAS

Twitching motility

Type-IV Pili

Twitching motility

Pseudomonas

Amoeboid locomotion

5.1 Navier-Stokes equations

Consider a fluid of conserved mass density $\varrho(t, \boldsymbol{x})$, governed by continuity equation

$$
\begin{equation*}
\partial_{t} \varrho+\nabla \cdot(\varrho \boldsymbol{u})=0, \tag{5.1}
\end{equation*}
$$

where $\boldsymbol{u}(t, \boldsymbol{x})$ is local flow velocity. According to standard hydrodynamic theory, the

5.1 Navier-Stokes equations

Consider a fluid of conserved mass density $\varrho(t, \boldsymbol{x})$, governed by continuity equation

$$
\begin{equation*}
\partial_{t} \varrho+\nabla \cdot(\varrho \boldsymbol{u})=0, \tag{5.1}
\end{equation*}
$$

where $\boldsymbol{u}(t, \boldsymbol{x})$ is local flow velocity. According to standard hydrodynamic theory, the dynamics of \boldsymbol{u} is described by the Navier-Stokes equations (NSEs)

$$
\begin{equation*}
\varrho\left[\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right]=\boldsymbol{f}-\nabla p+\nabla \cdot \hat{T} \tag{5.2}
\end{equation*}
$$

where $p(t, \boldsymbol{x})$ the pressure in the fluid, $\hat{T}(t, \boldsymbol{x})$ the deviatoric ${ }^{2}$) stress-energy tensor of the fluid, and $\boldsymbol{f}(t, \boldsymbol{x})$ an external force-density field. A typical example of an external force \boldsymbol{f},

5.1 Navier-Stokes equations

Consider a fluid of conserved mass density $\varrho(t, \boldsymbol{x})$, governed by continuity equation

$$
\begin{equation*}
\partial_{t} \varrho+\nabla \cdot(\varrho \boldsymbol{u})=0, \tag{5.1}
\end{equation*}
$$

where $\boldsymbol{u}(t, \boldsymbol{x})$ is local flow velocity. According to standard hydrodynamic theory, the dynamics of \boldsymbol{u} is described by the Navier-Stokes equations (NSEs)

$$
\begin{equation*}
\varrho\left[\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right]=\boldsymbol{f}-\nabla p+\nabla \cdot \hat{T} \tag{5.2}
\end{equation*}
$$

where $p(t, \boldsymbol{x})$ the pressure in the fluid, $\hat{T}(t, \boldsymbol{x})$ the deviatoric ${ }^{2}$) stress-energy tensor of the fluid, and $\boldsymbol{f}(t, \boldsymbol{x})$ an external force-density field. A typical example of an external force \boldsymbol{f}, that is also relevant in the biological context, is the gravitational force

$$
\begin{equation*}
\boldsymbol{f}=\varrho \boldsymbol{g} \tag{5.3}
\end{equation*}
$$

where $\boldsymbol{g}(t, \boldsymbol{x})$ is the gravitational acceleration field.

Considering a Cartesian coordinate frame, Eqs. (5.1) and (5.2) can also be rewritten in the component form

$$
\begin{align*}
\partial_{t} \varrho+\nabla_{i}\left(\varrho u_{i}\right) & =0 \tag{5.4a}\\
\varrho\left(\partial_{t} u_{i}+u_{j} \partial_{j} u_{i}\right) & =F_{i}-\partial_{i} p+\partial_{j} \hat{T}_{j i} . \tag{5.4b}
\end{align*}
$$

To close the system of equations (5.4), one still needs to
(i) fix the equation of state

$$
p=p[\varrho, \ldots]
$$

(ii) choose an ansatz the symmetric stress-energy tensor

$$
\hat{T}=\left(\hat{T}_{i j}[\varrho, \boldsymbol{u}, \ldots]\right)
$$

(iii) specify an appropriate set of initial and boundary conditions.

[^0]Simplifications In the case of a homogeneous fluid with ${ }^{3}$

$$
\begin{equation*}
\partial_{t} \varrho=0 \quad \text { and } \quad \nabla \varrho=0 \tag{5.5}
\end{equation*}
$$

the associated flow is incompressible (isochoric)

$$
\begin{equation*}
\nabla \cdot \boldsymbol{u}=0 \tag{5.6}
\end{equation*}
$$

Simplifications In the case of a homogeneous fluid with ${ }^{3}$

$$
\begin{equation*}
\partial_{t} \varrho=0 \quad \text { and } \quad \nabla \varrho=0 \tag{5.5}
\end{equation*}
$$

the associated flow is incompressible (isochoric)

$$
\begin{equation*}
\nabla \cdot \boldsymbol{u}=0 \tag{5.6}
\end{equation*}
$$

A Newtonian fluid is a fluid that can, by definition, be described by

$$
\begin{equation*}
\hat{T}_{i j}:=\lambda(\nabla \cdot \boldsymbol{u}) \delta_{i j}+\mu\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right) \tag{5.7}
\end{equation*}
$$

where λ the first coefficient of viscosity (related to bulk viscosity), and μ is the second coefficient of viscosity (shear viscosity). Thus, for an incompressible Newtonian fluid, the Navier-Stokes system (5.4) simplifies to

$$
\begin{align*}
0 & =\nabla \cdot \boldsymbol{u} \tag{5.8a}\\
\varrho\left[\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right] & =-\nabla p+\mu \nabla^{2} \boldsymbol{u}+\boldsymbol{f} \tag{5.8b}
\end{align*}
$$

Dynamic viscosity The SI physical unit of dynamic viscosity μ is the Pascal \times second

$$
\begin{equation*}
[\mu]=1 \mathrm{~Pa} \cdot \mathrm{~s}=1 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{~s}) \tag{5.9}
\end{equation*}
$$

If a fluid with a viscosity $\mu=1 \mathrm{~Pa} \cdot \mathrm{~s}$ is placed between two plates, and one plate is pushed sideways with a shear stress of one pascal, it moves a distance equal to the thickness of the layer between the plates in one second. The dynamic viscosity of water $\left(T=20^{\circ} \mathrm{C}\right)$ is $\mu=1.0020 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$.

Dynamic viscosity The SI physical unit of dynamic viscosity μ is the Pascal \times second

$$
\begin{equation*}
[\mu]=1 \mathrm{~Pa} \cdot \mathrm{~s}=1 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{~s}) \tag{5.9}
\end{equation*}
$$

If a fluid with a viscosity $\mu=1 \mathrm{~Pa} \cdot \mathrm{~s}$ is placed between two plates, and one plate is pushed sideways with a shear stress of one pascal, it moves a distance equal to the thickness of the layer between the plates in one second. The dynamic viscosity of water $\left(T=20^{\circ} \mathrm{C}\right)$ is $\mu=1.0020 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$.

Kinematic viscosity Below we will be interested in comparing viscous and inertial forces. Their ratio is characterized by the kinematic viscosity ν, defined as

$$
\begin{equation*}
\nu=\frac{\mu}{\varrho}, \quad[\nu]=\mathrm{m}^{2} / \mathrm{s} \tag{5.10}
\end{equation*}
$$

The kinematic viscosity of water with mass density $\varrho=1 \mathrm{~g} / \mathrm{cm}^{3}$ is $\nu=10^{-6} \mathrm{~m}^{2} / \mathrm{s}=$ $1 \mathrm{~mm}^{2} / \mathrm{s}=1 \mathrm{cSt}$.

5.2 Stokes equations

5.2.1 Motivation

Consider an object of characteristic length L, moving at absolute velocity $U=|\boldsymbol{U}|$ through (relative to) an incompressible, homogeneous Newtonian fluid of constant viscosity μ and constant density ϱ. The object can be imagined as a moving boundary (condition), which induces a flow field $\boldsymbol{u}(t, \boldsymbol{x})$ in the fluid. The ratio of the inertial (dynamic) pressure ϱU^{2} and viscous shearing stress $\mu U / L$ can be characterized by the Reynolds number ${ }^{4}$

$$
\begin{equation*}
\mathcal{R}=\frac{\left|\varrho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u}\right)\right|}{\left|\mu \nabla^{2} \boldsymbol{u}\right|} \simeq \frac{\varrho U^{2} / L}{\mu U / L^{2}}=\frac{U L \varrho}{\mu}=\frac{U L}{\nu} . \tag{5.11}
\end{equation*}
$$

For example, when considering swimming in water $\left(\nu=10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$, one finds for fish or humans:

$$
L \simeq 1 \mathrm{~m}, U \simeq 1 \mathrm{~m} / \mathrm{s} \quad \Rightarrow \quad \mathcal{R} \simeq 10^{6},
$$

whereas for bacteria:

$$
L \simeq 1 \mu \mathrm{~m}, U \simeq 10 \mu \mathrm{~m} / \mathrm{s} \quad \Rightarrow \quad \mathcal{R} \simeq 10^{-5} .
$$

5.2 Stokes equations

5.2.1 Motivation

Consider an object of characteristic length L, moving at absolute velocity $U=|\boldsymbol{U}|$ through (relative to) an incompressible, homogeneous Newtonian fluid of constant viscosity μ and constant density ϱ. The object can be imagined as a moving boundary (condition), which induces a flow field $\boldsymbol{u}(t, \boldsymbol{x})$ in the fluid. The ratio of the inertial (dynamic) pressure ϱU^{2} and viscous shearing stress $\mu U / L$ can be characterized by the Reynolds number ${ }^{4}$

$$
\begin{equation*}
\mathcal{R}=\frac{\left|\varrho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u}\right)\right|}{\left|\mu \nabla^{2} \boldsymbol{u}\right|} \simeq \frac{\varrho U^{2} / L}{\mu U / L^{2}}=\frac{U L \varrho}{\mu}=\frac{U L}{\nu} . \tag{5.11}
\end{equation*}
$$

For example, when considering swimming in water ($\nu=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$), one finds for fish or humans:

$$
L \simeq 1 \mathrm{~m}, U \simeq 1 \mathrm{~m} / \mathrm{s} \quad \Rightarrow \quad \mathcal{R} \simeq 10^{6},
$$

whereas for bacteria:

$$
L \simeq 1 \mu \mathrm{~m}, U \simeq 10 \mu \mathrm{~m} / \mathrm{s} \quad \Rightarrow \quad \mathcal{R} \simeq 10^{-5} .
$$

If the Reynolds number is very small, $\mathcal{R} \ll 1$, the nonlinear NSEs (5.8) can be approximated by the linear Stokes equations ${ }^{5}$

$$
\begin{align*}
& 0=\nabla \cdot \boldsymbol{u} \tag{5.12a}\\
& 0=\mu \nabla^{2} \boldsymbol{u}-\nabla p+\boldsymbol{f} \tag{5.12b}
\end{align*}
$$

$$
\left\{\begin{array}{l}
\boldsymbol{u}(t, \boldsymbol{x})=0, \tag{5.13}\\
p(t, \boldsymbol{x})=p_{\infty},
\end{array} \quad \text { as } \quad|\boldsymbol{x}| \rightarrow \infty .\right.
$$

5.2.2 Special solutions

Oseen solution Consider the Stokes equations (5.12) for a point-force

$$
\begin{equation*}
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{F} \delta(\boldsymbol{x}) . \tag{5.14}
\end{equation*}
$$

In this case, the solution with standard boundary conditions (5.13) reads ${ }^{6}$

$$
\begin{equation*}
u_{i}(\boldsymbol{x})=G_{i j}(\boldsymbol{x}) F_{j}, \quad p(\boldsymbol{x})=\frac{F_{j} x_{j}}{4 \pi|\boldsymbol{x}|^{3}}+p_{\infty} \tag{5.15a}
\end{equation*}
$$

where the Greens function $G_{i j}$ is given by the Oseen tensor

$$
\begin{equation*}
G_{i j}(\boldsymbol{x})=\frac{1}{8 \pi \mu|\boldsymbol{x}|}\left(\delta_{i j}+\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{2}}\right), \tag{5.15b}
\end{equation*}
$$

which has the inverse

$$
\begin{equation*}
G_{j k}^{-1}(\boldsymbol{x})=8 \pi \mu|\boldsymbol{x}|\left(\delta_{j k}-\frac{x_{j} x_{k}}{2|\boldsymbol{x}|^{2}}\right) \tag{5.16}
\end{equation*}
$$

as can be seen from

$$
\begin{align*}
G_{i j} G_{j k}^{-1} & =\left(\delta_{i j}+\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{2}}\right)\left(\delta_{j k}-\frac{x_{j} x_{k}}{2|\boldsymbol{x}|^{2}}\right) \\
& =\delta_{i k}-\frac{x_{i} x_{k}}{2 \mid \boldsymbol{x} \mathbf{x}^{2}}+\frac{x_{i} x_{k}}{|\boldsymbol{x}|^{2}}-\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{2}} \frac{x_{j} x_{k}}{2|\boldsymbol{x}|^{2}} \\
& =\delta_{i k}-\frac{x_{i} x_{k}}{2|\boldsymbol{x}|^{2}}+\frac{x_{i} x_{k}}{2|\boldsymbol{x}|^{2}} \\
& =\delta_{i k} . \tag{5.17}
\end{align*}
$$

Stokes solution (1851) Consider a sphere of radius a, which at time t is located at the origin, $\boldsymbol{X}(t)=\mathbf{0}$, and moves at velocity $\boldsymbol{U}(t)$. The corresponding solution of the Stokes equation with standard boundary conditions (5.13) reads ${ }^{7}$

$$
\begin{align*}
u_{i}(t, \boldsymbol{x}) & =U_{j}\left[\frac{3}{4} \frac{a}{|\boldsymbol{x}|}\left(\delta_{j i}+\frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right)+\frac{1}{4} \frac{a^{3}}{|\boldsymbol{x}|^{3}}\left(\delta_{j i}-3 \frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right)\right] \tag{5.18a}\\
p(t, \boldsymbol{x}) & =\frac{3}{2} \mu a \frac{U_{j} x_{j}}{|\boldsymbol{x}|^{3}}+p_{\infty} \tag{5.18b}
\end{align*}
$$

If the particle is located at $\boldsymbol{X}(t)$, one has to replace x_{i} by $x_{i}-X_{i}(t)$ on the rhs. of Eqs. (5.18). Parameterizing the surface of the sphere by

$$
\boldsymbol{a}=a \sin \theta \cos \phi \boldsymbol{e}_{x}+a \sin \theta \sin \phi \boldsymbol{e}_{y}+a \cos \theta \boldsymbol{e}_{z}=a_{i} \boldsymbol{e}_{i}
$$

https://www.boundless.com/physics/

Stokes solution (1851) Consider a sphere of radius a, which at time t is located at the origin, $\boldsymbol{X}(t)=\mathbf{0}$, and moves at velocity $\boldsymbol{U}(t)$. The corresponding solution of the Stokes equation with standard boundary conditions (5.13) reads ${ }^{7}$

$$
\begin{align*}
u_{i}(t, \boldsymbol{x}) & =U_{j}\left[\frac{3}{4} \frac{a}{|\boldsymbol{x}|}\left(\delta_{j i}+\frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right)+\frac{1}{4} \frac{a^{3}}{|\boldsymbol{x}|^{3}}\left(\delta_{j i}-3 \frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right)\right], \tag{5.18a}\\
p(t, \boldsymbol{x}) & =\frac{3}{2} \mu a \frac{U_{j} x_{j}}{|\boldsymbol{x}|^{3}}+p_{\infty} . \tag{5.18b}
\end{align*}
$$

If the particle is located at $\boldsymbol{X}(t)$, one has to replace x_{i} by $x_{i}-X_{i}(t)$ on the rhs. of Eqs. (5.18). Parameterizing the surface of the sphere by

$$
\boldsymbol{a}=a \sin \theta \cos \phi \boldsymbol{e}_{x}+a \sin \theta \sin \phi \boldsymbol{e}_{y}+a \cos \theta \boldsymbol{e}_{z}=a_{i} \boldsymbol{e}_{i}
$$

where $\theta \in[0, \pi], \phi \in[0,2 \pi)$, one finds that on this boundary

$$
\begin{align*}
\boldsymbol{u}(t, \boldsymbol{a}(\theta, \phi)) & =\boldsymbol{U} \tag{5.19a}\\
p(t, \boldsymbol{a}(\theta, \phi)) & =\frac{3}{2} \frac{\mu}{a^{2}} U_{j} a_{j}(\theta, \phi)+p_{\infty} \tag{5.19b}
\end{align*}
$$

corresponding to a no-slip boundary condition on the sphere's surface. The $\mathcal{O}(a /|\boldsymbol{x}|)-$ contribution in (5.18a) coincides with the Oseen result (5.15), if we identify

$$
\begin{equation*}
\boldsymbol{F}=6 \pi \mu a \boldsymbol{U} . \tag{5.20}
\end{equation*}
$$

The prefactor $\gamma=6 \pi \mu a$ is the well-known Stokes drag coefficient for a sphere.

Stokes solution (1851) Consider a sphere of radius a, which at time t is located at the origin, $\boldsymbol{X}(t)=\mathbf{0}$, and moves at velocity $\boldsymbol{U}(t)$. The corresponding solution of the Stokes equation with standard boundary conditions (5.13) reads ${ }^{7}$

$$
\begin{align*}
u_{i}(t, \boldsymbol{x}) & =U_{j}\left[\frac{3}{4} \frac{a}{|\boldsymbol{x}|}\left(\delta_{j i}+\frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right)+\frac{1}{4} \frac{a^{3}}{|\boldsymbol{x}|^{3}}\left(\delta_{j i}-3 \frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right)\right], \tag{5.18a}\\
p(t, \boldsymbol{x}) & =\frac{3}{2} \mu a \frac{U_{j} x_{j}}{|\boldsymbol{x}|^{3}}+p_{\infty} . \tag{5.18b}
\end{align*}
$$

If the particle is located at $\boldsymbol{X}(t)$, one has to replace x_{i} by $x_{i}-X_{i}(t)$ on the rhs. of Eqs. (5.18). Parameterizing the surface of the sphere by

$$
\boldsymbol{a}=a \sin \theta \cos \phi \boldsymbol{e}_{x}+a \sin \theta \sin \phi \boldsymbol{e}_{y}+a \cos \theta \boldsymbol{e}_{z}=a_{i} \boldsymbol{e}_{i}
$$

The $\mathcal{O}\left[(a /|\boldsymbol{x}|)^{3}\right]$-part in (5.18a) corresponds to the finite-size correction, and defining the Stokes tensor by

$$
\begin{equation*}
S_{i j}=G_{i j}+\frac{1}{24 \pi \mu} \frac{a^{2}}{|\boldsymbol{x}|^{3}}\left(\delta_{j i}-3 \frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right), \tag{5.21}
\end{equation*}
$$

we may rewrite (5.18a) as ${ }^{8}$

$$
\begin{equation*}
u_{i}(t, \boldsymbol{x})=S_{i j} F_{j} \tag{5.22}
\end{equation*}
$$

5.3 Golestanian's swimmer model

This part is copied (with very minor adaptations) from the article of Golestanian and Ajdari [GA07], for their excellent discussion is difficult, if not impossible, to improve.

5.3.1 Three-sphere swimmer: simplified analysis

As a minimal model of a low Reynolds number swimmer, consider three spheres of radii $a_{i}(i=1,2,3)$ that are separated by two arms of lengths L_{1} and L_{2}. Each sphere exerts a force F_{i} on, and experiences a force $-F_{i}$ from, the fluid that we assume to be along the swimmer axis. In the limit $a_{i} / L_{j} \ll 1$, we can use the Oseen tensor (5.15) to relate the forces and the velocities as

$$
\begin{align*}
v_{1} & =\frac{F_{1}}{6 \pi \mu a_{1}}+\frac{F_{2}}{4 \pi \mu L_{1}}+\frac{F_{3}}{4 \pi \mu\left(L_{1}+L_{2}\right)} \tag{5.23a}\\
v_{2} & =\frac{F_{1}}{4 \pi \mu L_{1}}+\frac{F_{2}}{6 \pi \mu a_{2}}+\frac{F_{3}}{4 \pi \mu L_{2}} \tag{5.23b}\\
v_{3} & =\frac{F_{1}}{4 \pi \mu\left(L_{1}+L_{2}\right)}+\frac{F_{2}}{4 \pi \mu L_{2}}+\frac{F_{3}}{6 \pi \mu a_{3}} \tag{5.23c}
\end{align*}
$$

other 'minimal' swimmer

5.3 Golestanian's swimmer model

This part is copied (with very minor adaptations) from the article of Golestanian and Ajdari [GA07], for their excellent discussion is difficult, if not impossible, to improve.

5.3.1 Three-sphere swimmer: simplified analysis

As a minimal model of a low Reynolds number swimmer, consider three spheres of radii $a_{i}(i=1,2,3)$ that are separated by two arms of lengths L_{1} and L_{2}. Each sphere exerts a force F_{i} on, and experiences a force $-F_{i}$ from, the fluid that we assume to be along the swimmer axis. In the limit $a_{i} / L_{j} \ll 1$, we can use the Oseen tensor (5.15) to relate the forces and the velocities as

$$
\begin{align*}
v_{1} & =\frac{F_{1}}{6 \pi \mu a_{1}}+\frac{F_{2}}{4 \pi \mu L_{1}}+\frac{F_{3}}{4 \pi \mu\left(L_{1}+L_{2}\right)} \tag{5.23a}\\
v_{2} & =\frac{F_{1}}{4 \pi \mu L_{1}}+\frac{F_{2}}{6 \pi \mu a_{2}}+\frac{F_{3}}{4 \pi \mu L_{2}} \tag{5.23b}\\
v_{3} & =\frac{F_{1}}{4 \pi \mu\left(L_{1}+L_{2}\right)}+\frac{F_{2}}{4 \pi \mu L_{2}}+\frac{F_{3}}{6 \pi \mu a_{3}} \tag{5.23c}
\end{align*}
$$

Swim-speed

$$
\begin{equation*}
V_{0}=\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right) \tag{5.24}
\end{equation*}
$$

Force-free constraint

$$
\begin{equation*}
F_{1}+F_{2}+F_{3}=0 \tag{5.25}
\end{equation*}
$$

Eliminating F_{2} using Eq. (5.25), we can calculate the swimming velocity from Eqs. (5.23a), (5.23b), (5.23c), and (5.24) as

$$
\begin{align*}
V_{0}= & \frac{1}{3}\left[\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)+\frac{3}{2}\left(\frac{1}{L_{1}+L_{2}}-\frac{1}{L_{2}}\right)\right]\left(\frac{F_{1}}{6 \pi \mu}\right)+ \\
& \frac{1}{3}\left[\left(\frac{1}{a_{3}}-\frac{1}{a_{2}}\right)+\frac{3}{2}\left(\frac{1}{L_{1}+L_{2}}-\frac{1}{L_{1}}\right)\right]\left(\frac{F_{3}}{6 \pi \mu}\right), \tag{5.26}
\end{align*}
$$

where the subscript 0 denotes the force-free condition. To close the system of equations, we should either prescribe the forces (stresses) acting across each linker, or alternatively the opening and closing motion of each arm as a function of time. We choose to prescribe the motion of the arms connecting the three spheres, and assume that the velocities

$$
\begin{align*}
& \dot{L}_{1}=v_{2}-v_{1}, \tag{5.27a}\\
& \dot{L}_{2}=v_{3}-v_{2}, \tag{5.27b}
\end{align*}
$$

are known functions. We then use Eqs. (5.23a), (5.23b), (5.23c), and (5.25) to solve for F_{1} and F_{3} as a function of \dot{L}_{1} and \dot{L}_{2}. Putting the resulting expressions for F_{1} and F_{3} back in Eq. (5.26), and keeping only terms in the leading order in a_{i} / L_{j} consistent with our original scheme, we find the average swimming velocity to the leading order.

$$
\begin{align*}
& V_{0}=\frac{\left(a_{1}-a_{2}\right)\left(a_{2}+a_{3}\right)}{3 a_{2}\left(a_{1}+a_{2}+a_{3}\right)}\left[1+\frac{3}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)\left(\frac{1}{L_{1}+L_{2}}-\frac{1}{L_{2}}\right)-3\left(\frac{a_{2} a_{3}}{a_{2}+a_{3}}\right) \frac{1}{L_{2}}\right. \\
&+\left.+\frac{3}{a_{1}+a_{2}+a_{3}}\left(\frac{a_{2} a_{3}}{L_{2}}+\frac{a_{1} a_{2}}{L_{1}}+\frac{a_{3} a_{1}}{L_{1}+L_{2}}\right)\right] \dot{L}_{1} \\
&+\frac{a_{3}\left(a_{1}-a_{2}\right)}{3 a_{2}\left(a_{1}+a_{2}+a_{3}\right)} {\left[1+\frac{3}{2}\left(\frac{a_{1} a_{2}}{a_{2}-a_{1}}\right)\left(\frac{1}{L_{1}+L_{2}}-\frac{1}{L_{2}}\right)-\frac{3}{2}\left(\frac{a_{2}}{L_{1}}+\frac{a_{2}}{L_{2}}-\frac{a_{2}}{L_{1}+L_{2}}\right)\right.} \\
&\left.+\frac{3}{a_{1}+a_{2}+a_{3}}\left(\frac{a_{2} a_{3}}{L_{2}}+\frac{a_{1} a_{2}}{L_{1}}+\frac{a_{3} a_{1}}{L_{1}+L_{2}}\right)\right] \dot{L}_{2} \\
&++\frac{a_{1}\left(a_{2}-a_{3}\right)}{3 a_{2}\left(a_{1}+a_{2}+a_{3}\right)}\left[1+\frac{3}{2}\left(\frac{a_{2} a_{3}}{a_{2}-a_{3}}\right)\left(\frac{1}{L_{1}+L_{2}}-\frac{1}{L_{1}}\right)-\frac{3}{2}\left(\frac{a_{2}}{L_{1}}+\frac{a_{2}}{L_{2}}-\frac{a_{3}}{L_{1}+L_{2}}\right)\right. \\
&\left.\left.+\frac{\left(a_{2}-a_{3}\right)\left(a_{1}+a_{2}\right)}{3 a_{2}\left(a_{1}+a_{2}+a_{3}\right)}+\frac{a_{1} a_{2}}{L_{1}}+\frac{a_{3} a_{1}}{L_{1}+L_{2}}\right)\right] \dot{L}_{1} \\
&+\frac{3}{a_{1}+a_{2}+a_{3}}\left(\frac{a_{2} a_{3}}{a_{2}-a_{3}}\right)\left(\frac{1}{L_{1}+L_{2}}-\frac{1}{L_{1}}\right)-3\left(\frac{a_{1} a_{2}}{a_{1}+a_{2}}\right) \frac{1}{L_{1}}
\end{align*}
$$

5.3.2 Swimming velocity

The above calculations yield a lengthy expression summarized in Eq. (B.1) of the Appendix. This result (B.1) is suitable for numerical studies of swimming cycles with arbitrarily large deformations. For the simple case where all the spheres have the same radii, namely $a=a_{1}=a_{2}=a_{3}$, Eq. (5.26) simplifies to

$$
\begin{equation*}
V_{0}=\frac{a}{6}\left[\left(\frac{\dot{L}_{2}-\dot{L}_{1}}{L_{1}+L_{2}}\right)+2\left(\frac{\dot{L}_{1}}{L_{2}}-\frac{\dot{L}_{2}}{L_{1}}\right)\right] \tag{5.28}
\end{equation*}
$$

plus terms that average to zero over a full swimming cycle. Equation (5.28) is also valid for arbitrarily large deformations.

We can also consider relatively small deformations and perform an expansion of the swimming velocity to the leading order. Using

$$
\begin{align*}
& L_{1}=\ell_{1}+u_{1}(t), \tag{5.29}\\
& L_{2}=\ell_{2}+u_{2}(t), \tag{5.30}
\end{align*}
$$

in Eq. (B.1), and expanding to the leading order in u_{i} / ℓ_{j}, we find the average swimming velocity as

$$
\begin{equation*}
\overline{V_{0}}=\frac{K}{2} \overline{\left(u_{1} \dot{u}_{2}-\dot{u}_{1} u_{2}\right)}, \tag{5.31}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{3 a_{1} a_{2} a_{3}}{\left(a_{1}+a_{2}+a_{3}\right)^{2}}\left[\frac{1}{\ell_{1}^{2}}+\frac{1}{\ell_{2}^{2}}-\frac{1}{\left(\ell_{1}+\ell_{2}\right)^{2}}\right] . \tag{5.32}
\end{equation*}
$$

5.3.3 Harmonic deformations

As a simple explicit example, consider harmonic deformations of the two arms, with identical frequencies ω and a mismatch in phases,

$$
\begin{align*}
& u_{1}(t)=d_{1} \cos \left(\omega t+\varphi_{1}\right), \tag{5.33}\\
& u_{2}(t)=d_{2} \cos \left(\omega t+\varphi_{2}\right) . \tag{5.34}
\end{align*}
$$

The average swimming velocity from Eq. (5.31) reads

$$
\begin{equation*}
\overline{V_{0}}=\frac{K}{2} d_{1} d_{2} \omega \sin \left(\varphi_{1}-\varphi_{2}\right) . \tag{5.35}
\end{equation*}
$$

This result shows that the maximum velocity is obtained when the phase difference is $\pi / 2$, which supports the picture of maximizing the area covered by the trajectory of the swimming cycle in the parameter space of the deformations. A phase difference of 0 or π, for example, will create closed trajectories with zero area, or just lines.

5.3.4 Force-velocity relation and stall force

The effect of an external force or load on the efficiency of the swimmer can be easily studied within the linear theory of Stokes hydrodynamics. When the swimmer is under the effect of an applied external force F, Eq. (5.25) should be changed as

$$
\begin{equation*}
F_{1}+F_{2}+F_{3}=F . \tag{5.36}
\end{equation*}
$$

Following through the calculations of Sec. 5.3.1 above, we find that the following changes take place in Eqs. (5.23a), (5.23b), (5.23c), and (5.24):

$$
\begin{align*}
v_{1} & \mapsto v_{1}-\frac{F}{4 \pi \mu L_{1}}, \tag{5.37}\\
v_{2} & \mapsto v_{2}-\frac{F}{6 \pi \mu a_{2}}, \tag{5.38}\\
v_{3} & \mapsto v_{3}-\frac{F}{4 \pi \mu L_{2}}, \tag{5.39}\\
V & \mapsto V-\frac{1}{3}\left(\frac{1}{6 \pi \mu a_{2}}+\frac{1}{4 \pi \mu L_{1}}+\frac{1}{4 \pi \mu L_{2}}\right) F . \tag{5.40}
\end{align*}
$$

These lead to the changes

$$
\begin{array}{ll}
\dot{L}_{1} & \mapsto \\
\dot{L}_{1}-\left(\frac{1}{6 \pi \mu a_{2}}-\frac{1}{4 \pi \mu L_{1}}\right) F, \tag{5.42}\\
\dot{L}_{2} & \mapsto \\
\dot{L}_{2}-\left(\frac{1}{4 \pi \mu L_{2}}-\frac{1}{6 \pi \mu a_{2}}\right) F,
\end{array}
$$

in Eq. (B.1), which together with correction coming from Eq. (5.40) leads to the average swimming velocity

$$
\begin{equation*}
\bar{V}(F)=\overline{V_{0}}+\frac{F}{18 \pi \mu a_{R}}, \tag{5.43}
\end{equation*}
$$

$$
\bar{V}(F)=\overline{V_{0}}+\frac{F}{18 \pi \mu a_{R}},
$$

$$
\overline{V_{0}}=\frac{K}{2} d_{1} d_{2} \omega \sin \left(\varphi_{1}-\varphi_{2}\right) .
$$

for $a_{1}=a_{2}=a_{3}=a$,

$$
\begin{equation*}
\frac{1}{a_{R}}=\frac{1}{a}+\overline{\frac{1}{L_{1}}}+\overline{\frac{1}{L_{2}}}+\overline{\frac{1}{L_{1}+L_{2}}}-\frac{a}{2} \overline{\left(\frac{1}{L_{1}}-\frac{1}{L_{2}}\right)^{2}}-\frac{a}{2} \overline{\frac{1}{\left(L_{1}+L_{2}\right)^{2}}} . \tag{5.44}
\end{equation*}
$$

The force-velocity relation given in Eq. (5.43), which could have been expected based on linearity of hydrodynamics, yields a stall force

$$
\begin{equation*}
F_{s}=-18 \pi \mu a_{R} \overline{V_{0}} \tag{5.45}
\end{equation*}
$$

Using the zeroth order expression for the hydrodynamic radius, one can see that this is equal to the Stokes force exerted on the three spheres moving with a velocity $\overline{V_{0}}$.

5.3.5 Power consumption and efficiency

Because we know the instantaneous values for the velocities and the forces, we can easily calculate the power consumption in the motion of the spheres through the viscous fluid. The rate of power consumption at any time is given as

$$
\begin{equation*}
\mathcal{P}=F_{1} v_{1}+F_{2} v_{2}+F_{3} v_{3}=F_{1}\left(-\dot{L}_{1}\right)+F_{3}\left(\dot{L}_{2}\right) \tag{5.46}
\end{equation*}
$$

where the second expression is the result of enforcing the force-free constrain of Eq. (5.25).

Using the expressions for F_{1} and F_{3} as a function of \dot{L}_{1} and \dot{L}_{2}, one finds for $a_{1}=a_{2}=$ $a_{3}=a$

$$
\begin{align*}
\mathcal{P}= & 4 \pi \mu a\left[1+\frac{a}{L_{1}}-\frac{1}{2} \frac{a}{L_{2}}+\frac{a}{L_{1}+L_{2}}\right] \dot{L}_{1}^{2}+ \\
& 4 \pi \mu a\left[1-\frac{1}{2} \frac{a}{L_{1}}+\frac{a}{L_{2}}+\frac{a}{L_{1}+L_{2}}\right] \dot{L}_{2}^{2}+ \\
& 4 \pi \mu a\left[1-\frac{1}{2} \frac{a}{L_{1}}-\frac{1}{2} \frac{a}{L_{2}}+\frac{5}{2} \frac{a}{L_{1}+L_{2}}\right] \dot{L}_{1} \dot{L}_{2} . \tag{5.47}
\end{align*}
$$

$$
\begin{aligned}
\mathcal{P}= & 4 \pi \mu a\left[1+\frac{a}{L_{1}}-\frac{1}{2} \frac{a}{L_{2}}+\frac{a}{L_{1}+L_{2}}\right] \dot{L}_{1}^{2}+ \\
& 4 \pi \mu a\left[1-\frac{1}{2} \frac{a}{L_{1}}+\frac{a}{L_{2}}+\frac{a}{L_{1}+L_{2}}\right] \dot{L}_{2}^{2}+ \\
& 4 \pi \mu a\left[1-\frac{1}{2} \frac{a}{L_{1}}-\frac{1}{2} \frac{a}{L_{2}}+\frac{5}{2} \frac{a}{L_{1}+L_{2}}\right] \dot{L}_{1} \dot{L}_{2} .
\end{aligned}
$$

We can now define a Lighthill hydrodynamic efficiency as

$$
\begin{equation*}
\mu_{\mathrm{L}} \equiv \frac{18 \pi \mu a_{R}{\overline{V_{0}}}^{2}}{\overline{\mathcal{P}}} \tag{5.48}
\end{equation*}
$$

for which we find to the leading order

$$
\begin{equation*}
\mu_{\mathrm{L}}=\frac{9}{8} \frac{a_{R}}{a} \frac{K^{2}{\overline{\left(u_{1} \dot{u}_{2}-\dot{u}_{1} u_{2}\right)}}^{2}}{C_{1} \overline{\dot{u}_{1}^{2}}+C_{2} \overline{\dot{u}_{2}^{2}}+C_{3} \overline{\dot{u}_{1} \dot{u}_{2}}}, \tag{5.49a}
\end{equation*}
$$

where

$$
\begin{align*}
C_{1} & =1+\frac{a}{\ell_{1}}-\frac{1}{2} \frac{a}{\ell_{2}}+\frac{a}{\ell_{1}+\ell_{2}} \tag{5.49b}\\
C_{2} & =1-\frac{1}{2} \frac{a}{\ell_{1}}+\frac{a}{\ell_{2}}+\frac{a}{\ell_{1}+\ell_{2}} \tag{5.49c}\\
C_{3} & =1-\frac{1}{2} \frac{a}{\ell_{1}}-\frac{1}{2} \frac{a}{\ell_{2}}+\frac{5}{2} \frac{a}{\ell_{1}+\ell_{2}} . \tag{5.49d}
\end{align*}
$$

5.4 Dimensionality

We saw above that, in 3D, the fundamental solution to the Stokes equations for a point force at the origin is given by the Oseen solution

$$
\begin{equation*}
u_{i}(\boldsymbol{x})=G_{i j}(\boldsymbol{x}) F_{j}, \quad p(\boldsymbol{x})=\frac{F_{j} x_{j}}{4 \pi|\boldsymbol{x}|^{3}}+p_{\infty}, \tag{5.50a}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{i j}(\boldsymbol{x})=\frac{1}{8 \pi \mu|\boldsymbol{x}|}\left(\delta_{i j}+\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{2}}\right) \tag{5.50b}
\end{equation*}
$$

It is interesting to compare this result with corresponding 2 D solution

$$
\begin{equation*}
u_{i}(\boldsymbol{x})=J_{i j}(\boldsymbol{x}) F_{j}, \quad p=\frac{F_{j} x_{j}}{2 \pi|\boldsymbol{x}|^{2}}+\partial_{\infty}, \quad \boldsymbol{x}=(x, y) \tag{5.51a}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{i j}(\boldsymbol{x})=\frac{1}{4 \pi \mu}\left[-\delta_{i j} \ln \left(\frac{|\boldsymbol{x}|}{a}\right)+\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{2}}\right] \tag{5.51b}
\end{equation*}
$$

with a being an arbitrary constant fixed by some intermediate flow normalization condition. Note that (5.51) decays much more slowly than (5.50), implying that hydrodynamic interactions in 2D freestanding films are much stronger than in 3D bulk solutions.

To verify that (5.51) is indeed a solution of the 2D Stokes equations, we first note that generally

$$
\begin{align*}
\partial_{j}|\boldsymbol{x}| & =\partial_{j}\left(x_{i} x_{i}\right)^{1 / 2}=x_{j}\left(x_{i} x_{i}\right)^{-1 / 2}=\frac{x_{j}}{|\boldsymbol{x}|} \tag{5.52a}\\
\partial_{j}|\boldsymbol{x}|^{-n} & =\partial_{j}\left(x_{i} x_{i}\right)^{-n / 2}=-n x_{j}\left(x_{i} x_{i}\right)^{-(n+2) / 2}=-n \frac{x_{j}}{|\boldsymbol{x}|^{n+2}} . \tag{5.52b}
\end{align*}
$$

From this, we find

$$
\begin{equation*}
\partial_{i} p=\frac{F_{i}}{2 \pi|\boldsymbol{x}|^{2}}-2 \frac{F_{j} x_{j} x_{i}}{2 \pi|\boldsymbol{x}|^{4}}=\frac{F_{j}}{2 \pi|\boldsymbol{x}|^{2}}\left(\delta_{i j}-2 \frac{x_{j} x_{i}}{|\boldsymbol{x}|^{2}}\right) \tag{5.53}
\end{equation*}
$$

and

$$
\begin{align*}
\partial_{k} J_{i j} & =\frac{1}{4 \pi \mu} \partial_{k}\left[-\delta_{i j} \ln \left(\frac{|\boldsymbol{x}|}{a}\right)+\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{2}}\right] \\
& =\frac{1}{4 \pi \mu}\left[-\delta_{i j} \frac{1}{|\boldsymbol{x}|} \partial_{k}|\boldsymbol{x}|+\partial_{k}\left(\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{2}}\right)\right] \\
& =\frac{1}{4 \pi \mu}\left[-\delta_{i j} \frac{x_{k}}{|\boldsymbol{x}|^{2}}+\left(\delta_{i k} \frac{x_{j}}{|\boldsymbol{x}|^{2}}+\delta_{j k} \frac{x_{i}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{i} x_{j} x_{k}}{|\boldsymbol{x}|^{4}}\right)\right] . \tag{5.54}
\end{align*}
$$

To check the incompressibility condition, note that

$$
\begin{align*}
\partial_{i} J_{i j} & =\frac{1}{4 \pi \mu}\left[-\delta_{i j} \frac{x_{i}}{|\boldsymbol{x}|^{2}}+\left(\delta_{i i} \frac{x_{j}}{|\boldsymbol{x}|^{2}}+\delta_{j i} \frac{x_{i}}{|\boldsymbol{x}|^{2}}-\frac{x_{i} x_{j} x_{i}}{2|\boldsymbol{x}|^{4}}\right)\right] \\
& =\frac{1}{4 \pi \mu}\left(-\frac{x_{j}}{|\boldsymbol{x}|^{2}}+2 \frac{x_{j}}{|\boldsymbol{x}|^{2}}+\frac{x_{j}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{j}}{|\boldsymbol{x}|^{2}}\right) \\
& =0, \tag{5.55}
\end{align*}
$$

which confirms that the solution (5.51) satisfies the incompressibility condition $\nabla \cdot \boldsymbol{u}=0$.

Moreover, we find for the Laplacian

$$
\begin{align*}
\partial_{k} \partial_{k} J_{i j}= & \frac{\partial_{k}}{4 \pi \mu}\left[-\delta_{i j} \frac{x_{k}}{|\boldsymbol{x}|^{2}}+\delta_{i k} \frac{x_{j}}{|\boldsymbol{x}|^{2}}+\delta_{j k} \frac{x_{i}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{i} x_{j} x_{k}}{|\boldsymbol{x}|^{4}}\right] \\
= & \frac{1}{4 \pi \mu}\left[-\delta_{i j} \partial_{k}\left(\frac{x_{k}}{|\boldsymbol{x}|^{2}}\right)+\delta_{i k} \partial_{k}\left(\frac{x_{j}}{|\boldsymbol{x}|^{2}}\right)+\delta_{j k} \partial_{k}\left(\frac{x_{i}}{|\boldsymbol{x}|^{2}}\right)-2 \partial_{k}\left(\frac{x_{i} x_{j} x_{k}}{|\boldsymbol{x}|^{4}}\right)\right] \\
= & \frac{1}{4 \pi \mu}\left[-\delta_{i j}\left(\frac{\delta_{k k}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{k} x_{k}}{|\boldsymbol{x}|^{4}}\right)+\delta_{i k}\left(\frac{\delta_{j k}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{j} x_{k}}{|\boldsymbol{x}|^{4}}\right)+\delta_{j k}\left(\frac{\delta_{i k}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{i} x_{k}}{|\boldsymbol{x}|^{4}}\right)-\right. \\
& \left.2\left(\frac{\delta_{i k} x_{j} x_{k}}{|\boldsymbol{x}|^{4}}+\frac{x_{i} \delta_{j k} x_{k}}{|\boldsymbol{x}|^{4}}+\frac{x_{i} x_{j} \delta_{k k}}{|\boldsymbol{x}|^{4}}-4 \frac{x_{i} x_{j} x_{k} x_{k}}{|\boldsymbol{x}|^{6}}\right)\right] \\
= & \frac{1}{4 \pi \mu}\left[-\delta_{i j}\left(\frac{2}{|\boldsymbol{x}|^{2}}-2 \frac{1}{|\boldsymbol{x}|^{2}}\right)+\left(\frac{\delta_{i j}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{j} x_{i}}{|\boldsymbol{x}|^{4}}\right)+\left(\frac{\delta_{i j}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{i} x_{j}}{|\boldsymbol{x}|^{4}}\right)-\right. \\
& \left.2\left(\frac{x_{j} x_{i}}{|\boldsymbol{x}|^{4}}+\frac{x_{i} x_{j}}{|\boldsymbol{x}|^{4}}+2 \frac{x_{i} x_{j}}{|\boldsymbol{x}|^{4}}-4 \frac{x_{i} x_{j}}{|\boldsymbol{x}|^{4}}\right)\right] \\
= & \frac{1}{2 \pi \mu}\left(\frac{\delta_{i j}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{j} x_{i}}{|\boldsymbol{x}|^{4}}\right) \tag{5.56}
\end{align*}
$$

Hence, by comparing with (5.53), we see that indeed

$$
\begin{equation*}
-\partial_{i} p+\mu \partial_{k} \partial_{k} u_{i}=-\partial_{i} p+\mu \partial_{k} \partial_{k} J_{i j} F_{j}=0 \tag{5.57}
\end{equation*}
$$

The difference between 3D and 2D hydrodynamics has been confirmed experimentally for Chlamydomonas algae [GJG10, $\mathrm{DGM}^{+} 10$].

5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces $\boldsymbol{F}^{+}=-\boldsymbol{F}^{-}=F \boldsymbol{e}_{x}$ located at positions $\boldsymbol{x}^{+}= \pm \ell \boldsymbol{e}_{x}$. Due to linearity of the Stokes equations the total flow at some point \boldsymbol{x} is given by

$$
u_{i}(\boldsymbol{x})=\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right) F_{j}^{+}+\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right) F_{j}^{-}
$$

5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces $\boldsymbol{F}^{+}=-\boldsymbol{F}^{-}=F \boldsymbol{e}_{x}$ located at positions $\boldsymbol{x}^{+}= \pm \ell \boldsymbol{e}_{x}$. Due to linearity of the Stokes equations the total flow at some point \boldsymbol{x} is given by

$$
\begin{align*}
u_{i}(\boldsymbol{x}) & =\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right) F_{j}^{+}+\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right) F_{j}^{-} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right)-\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right)\right] F_{j}^{+} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\ell \boldsymbol{e}_{x}\right)-\Gamma_{i j}\left(\boldsymbol{x}+\ell \boldsymbol{e}_{x}\right)\right] F_{j}^{+} \tag{5.58}
\end{align*}
$$

5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces $\boldsymbol{F}^{+}=-\boldsymbol{F}^{-}=F \boldsymbol{e}_{x}$ located at positions $\boldsymbol{x}^{+}= \pm \ell \boldsymbol{e}_{x}$. Due to linearity of the Stokes equations the total flow at some point \boldsymbol{x} is given by

$$
\begin{align*}
u_{i}(\boldsymbol{x}) & =\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right) F_{j}^{+}+\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right) F_{j}^{-} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right)-\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right)\right] F_{j}^{+} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\ell \boldsymbol{e}_{x}\right)-\Gamma_{i j}\left(\boldsymbol{x}+\ell \boldsymbol{e}_{x}\right)\right] F_{j}^{+} \tag{5.58}
\end{align*}
$$

where $\Gamma_{i j}=J_{i j}$ in 2D and $\Gamma_{i j}=G_{i j}$ in 3D. If $|\boldsymbol{x}| \gg \ell$, we can Taylor expand $\Gamma_{i j}$ near $\ell=0$, and find to leading order

$$
\begin{align*}
u_{i}(\boldsymbol{x}) & \simeq\left\{\left[\Gamma_{i j}(\boldsymbol{x})-\Gamma_{i j}(\boldsymbol{x})\right]-\left[x_{k}^{+} \partial_{k} \Gamma_{i j}(\boldsymbol{x})-x_{k}^{-} \partial_{k} \Gamma_{i j}(\boldsymbol{x})\right]\right\} F_{j}^{+} \\
& =-2 x_{k}^{+}\left[\partial_{k} \Gamma_{i j}(\boldsymbol{x})\right] F_{j}^{+} \tag{5.59}
\end{align*}
$$

5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces $\boldsymbol{F}^{+}=-\boldsymbol{F}^{-}=F \boldsymbol{e}_{x}$ located at positions $\boldsymbol{x}^{+}= \pm \ell \boldsymbol{e}_{x}$. Due to linearity of the Stokes equations the total flow at some point \boldsymbol{x} is given by

$$
\begin{align*}
u_{i}(\boldsymbol{x}) & =\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right) F_{j}^{+}+\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right) F_{j}^{-} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right)-\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right)\right] F_{j}^{+} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\ell \boldsymbol{e}_{x}\right)-\Gamma_{i j}\left(\boldsymbol{x}+\ell \boldsymbol{e}_{x}\right)\right] F_{j}^{+} \tag{5.58}
\end{align*}
$$

where $\Gamma_{i j}=J_{i j}$ in 2D and $\Gamma_{i j}=G_{i j}$ in 3D. If $|\boldsymbol{x}| \gg \ell$, we can Taylor expand $\Gamma_{i j}$ near $\ell=0$, and find to leading order

$$
\begin{align*}
u_{i}(\boldsymbol{x}) & \simeq\left\{\left[\Gamma_{i j}(\boldsymbol{x})-\Gamma_{i j}(\boldsymbol{x})\right]-\left[x_{k}^{+} \partial_{k} \Gamma_{i j}(\boldsymbol{x})-x_{k}^{-} \partial_{k} \Gamma_{i j}(\boldsymbol{x})\right]\right\} F_{j}^{+} \\
& =-2 x_{k}^{+}\left[\partial_{k} \Gamma_{i j}(\boldsymbol{x})\right] F_{j}^{+} \tag{5.59}
\end{align*}
$$

2D case Using our above result for $\partial_{k} J_{i j}$, and writing $\boldsymbol{x}^{+}=\ell \boldsymbol{n}$ and $\boldsymbol{F}^{+}=F \boldsymbol{n}$ with $|\boldsymbol{n}|=1$, we find in 2D

$$
\begin{aligned}
u_{i}(\boldsymbol{x}) & =-\frac{x_{k}^{+}}{2 \pi \mu}\left[-\delta_{i j} \frac{x_{k}}{|\boldsymbol{x}|^{2}}+\left(\delta_{i k} \frac{x_{j}}{|\boldsymbol{x}|^{2}}+\delta_{j k} \frac{x_{i}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{i} x_{j} x_{k}}{|\boldsymbol{x}|^{4}}\right)\right] F_{j}^{+} \\
& =-\frac{F \ell}{2 \pi \mu}\left(-n_{i} \frac{x_{k} n_{k}}{|\boldsymbol{x}|^{2}}+n_{i} \frac{x_{j} n_{j}}{|\boldsymbol{x}|^{2}}+n_{k} n_{k} \frac{x_{i}}{|\boldsymbol{x}|^{2}}-2 \frac{n_{k} x_{i} x_{j} x_{k} n_{j}}{|\boldsymbol{x}|^{4}}\right)
\end{aligned}
$$

5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces $\boldsymbol{F}^{+}=-\boldsymbol{F}^{-}=F \boldsymbol{e}_{x}$ located at positions $\boldsymbol{x}^{+}= \pm \ell \boldsymbol{e}_{x}$. Due to linearity of the Stokes equations the total flow at some point \boldsymbol{x} is given by

$$
\begin{align*}
u_{i}(\boldsymbol{x}) & =\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right) F_{j}^{+}+\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right) F_{j}^{-} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{+}\right)-\Gamma_{i j}\left(\boldsymbol{x}-\boldsymbol{x}^{-}\right)\right] F_{j}^{+} \\
& =\left[\Gamma_{i j}\left(\boldsymbol{x}-\ell \boldsymbol{e}_{x}\right)-\Gamma_{i j}\left(\boldsymbol{x}+\ell \boldsymbol{e}_{x}\right)\right] F_{j}^{+} \tag{5.58}
\end{align*}
$$

where $\Gamma_{i j}=J_{i j}$ in 2D and $\Gamma_{i j}=G_{i j}$ in 3D. If $|\boldsymbol{x}| \gg \ell$, we can Taylor expand $\Gamma_{i j}$ near $\ell=0$, and find to leading order

$$
\begin{align*}
u_{i}(\boldsymbol{x}) & \simeq\left\{\left[\Gamma_{i j}(\boldsymbol{x})-\Gamma_{i j}(\boldsymbol{x})\right]-\left[x_{k}^{+} \partial_{k} \Gamma_{i j}(\boldsymbol{x})-x_{k}^{-} \partial_{k} \Gamma_{i j}(\boldsymbol{x})\right]\right\} F_{j}^{+} \\
& =-2 x_{k}^{+}\left[\partial_{k} \Gamma_{i j}(\boldsymbol{x})\right] F_{j}^{+} \tag{5.59}
\end{align*}
$$

2D case Using our above result for $\partial_{k} J_{i j}$, and writing $\boldsymbol{x}^{+}=\ell \boldsymbol{n}$ and $\boldsymbol{F}^{+}=F \boldsymbol{n}$ with $|\boldsymbol{n}|=1$, we find in 2 D

$$
\begin{aligned}
u_{i}(\boldsymbol{x}) & =-\frac{x_{k}^{+}}{2 \pi \mu}\left[-\delta_{i j} \frac{x_{k}}{|\boldsymbol{x}|^{2}}+\left(\delta_{i k} \frac{x_{j}}{|\boldsymbol{x}|^{2}}+\delta_{j k} \frac{x_{i}}{|\boldsymbol{x}|^{2}}-2 \frac{x_{i} x_{j} x_{k}}{|\boldsymbol{x}|^{4}}\right)\right] F_{j}^{+} \\
& =-\frac{F \ell}{2 \pi \mu}\left(-n_{i} \frac{x_{k} n_{k}}{|\boldsymbol{x}|^{2}}+n_{i} \frac{x_{j} n_{j}}{|\boldsymbol{x}|^{2}}+n_{k} n_{k} \frac{x_{i}}{|\boldsymbol{x}|^{2}}-2 \frac{n_{k} x_{i} x_{j} x_{k} n_{j}}{|\boldsymbol{x}|^{4}}\right)
\end{aligned}
$$

and, hence,

$$
\begin{equation*}
\boldsymbol{u}(x)=\frac{F \ell}{2 \pi \mu|\boldsymbol{x}|}\left[2(\boldsymbol{n} \cdot \hat{\boldsymbol{x}})^{2}-1\right] \hat{\boldsymbol{x}} \tag{5.60}
\end{equation*}
$$

where $\hat{\boldsymbol{x}}=\boldsymbol{x} /|\boldsymbol{x}|$.

3D case To compute the dipole flow field in 3D, we need to compute the partial derivatives of the Oseen tensor

$$
\begin{equation*}
G_{i j}(\boldsymbol{x})=\frac{1}{8 \pi \mu|\boldsymbol{x}|}\left(1+\hat{x}_{i} \hat{x}_{j}\right), \quad \hat{x}_{k}=\frac{x_{k}}{|\boldsymbol{x}|} \tag{5.61}
\end{equation*}
$$

3D case To compute the dipole flow field in 3 D , we need to compute the partial derivatives of the Oseen tensor

$$
\begin{equation*}
G_{i j}(\boldsymbol{x})=\frac{1}{8 \pi \mu|\boldsymbol{x}|}\left(1+\hat{x}_{i} \hat{x}_{j}\right), \quad \hat{x}_{k}=\frac{x_{k}}{|\boldsymbol{x}|} \tag{5.61}
\end{equation*}
$$

Defining the orthogonal projector $\left(\Pi_{i k}\right)$ for \hat{x}_{k} by

$$
\begin{equation*}
\Pi_{i k}:=\delta_{i k}-\hat{x}_{i} \hat{x}_{k}, \tag{5.62}
\end{equation*}
$$

we have

$$
\begin{align*}
\partial_{k}|\boldsymbol{x}| & =\frac{x_{k}}{|\boldsymbol{x}|}=\hat{x}_{k} \tag{5.63a}\\
\partial_{k} \hat{x}_{i} & =\frac{\delta_{i k}}{|\boldsymbol{x}|}-\frac{x_{k} x_{i}}{|\boldsymbol{x}|^{3}}=\frac{\Pi_{i k}}{|\boldsymbol{x}|} \tag{5.63b}\\
\partial_{n} \Pi_{i k} & =-\frac{1}{|\boldsymbol{x}|}\left(\hat{x}_{i} \Pi_{n k}+\hat{x}_{k} \Pi_{n i}\right), \tag{5.63c}
\end{align*}
$$

3D case To compute the dipole flow field in 3 D , we need to compute the partial derivatives of the Oseen tensor

$$
\begin{equation*}
G_{i j}(\boldsymbol{x})=\frac{1}{8 \pi \mu|\boldsymbol{x}|}\left(1+\hat{x}_{i} \hat{x}_{j}\right), \quad \hat{x}_{k}=\frac{x_{k}}{|\boldsymbol{x}|} \tag{5.61}
\end{equation*}
$$

Defining the orthogonal projector $\left(\Pi_{i k}\right)$ for \hat{x}_{k} by

$$
\begin{equation*}
\Pi_{i k}:=\delta_{i k}-\hat{x}_{i} \hat{x}_{k}, \tag{5.62}
\end{equation*}
$$

we have

$$
\begin{align*}
\partial_{k}|\boldsymbol{x}| & =\frac{x_{k}}{|\boldsymbol{x}|}=\hat{x}_{k} \tag{5.63a}\\
\partial_{k} \hat{x}_{i} & =\frac{\delta_{i k}}{|\boldsymbol{x}|}-\frac{x_{k} x_{i}}{|\boldsymbol{x}|^{3}}=\frac{\Pi_{i k}}{|\boldsymbol{x}|} \tag{5.63b}\\
\partial_{n} \Pi_{i k} & =-\frac{1}{|\boldsymbol{x}|}\left(\hat{x}_{i} \Pi_{n k}+\hat{x}_{k} \Pi_{n i}\right) \tag{5.63c}
\end{align*}
$$

and from this we find

$$
\begin{align*}
\partial_{k} G_{i j} & =-\frac{\hat{x}_{k}}{|\boldsymbol{x}|} G_{i j}+\frac{\kappa}{|\boldsymbol{x}|^{2}}\left(\Pi_{i k} \hat{x}_{j}+\Pi_{j k} \hat{x}_{i}\right) \\
& =\frac{\kappa}{|\boldsymbol{x}|^{2}}\left(-\hat{x}_{k} \delta_{i j}+\hat{x}_{j} \delta_{i k}+\hat{x}_{i} \delta_{j k}-3 \hat{x}_{k} \hat{x}_{i} \hat{x}_{j}\right) \tag{5.64}
\end{align*}
$$

Inserting this expression into (5.59), we obtain the far-field dipole flow in 3D

$$
\begin{equation*}
\boldsymbol{u}(\boldsymbol{x})=\frac{F \ell}{4 \pi \mu|\boldsymbol{x}|^{2}}\left[3(\boldsymbol{n} \cdot \hat{\boldsymbol{x}})^{2}-1\right] \hat{\boldsymbol{x}} . \tag{5.65}
\end{equation*}
$$

As shown in Ref. [DDC $\left.{ }^{+} 11\right]$, Eq. (5.65) agrees well with the mean flow-field of a bacterium.

E.coli (non-tumbling HCB 437)

$$
\boldsymbol{u}(\boldsymbol{r})=\frac{A}{|\boldsymbol{r}|^{2}}\left[3(\hat{\boldsymbol{r}} . \hat{\boldsymbol{d}})^{2}-1\right] \hat{\boldsymbol{r}}, \quad A=\frac{\ell F}{8 \pi \eta}, \quad \hat{\boldsymbol{r}}=\frac{\boldsymbol{r}}{|\boldsymbol{r}|}
$$

$$
V_{0}=22 \pm 5 \mu \mathrm{~m} / \mathrm{s}
$$

$$
\ell=1.9 \mu \mathrm{~m}
$$

$$
F=0.42 \mathrm{pN}
$$

weak 'pusher' dipole

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (201I) PNAS

Hele-Shaw approximation

$$
\begin{aligned}
& 0=\nabla \cdot \boldsymbol{u} \\
& 0=\mu \nabla^{2} \boldsymbol{u}-\nabla p+\boldsymbol{f} .
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{u}(x, y, z)=\frac{6 z(H-z)}{H^{2}}\left[U_{x}(x, y) \boldsymbol{e}_{x}+U_{x}(x, y) \boldsymbol{e}_{y}\right] \equiv \frac{6 z(H-z)}{H^{2}} \boldsymbol{U}(x, y) \\
\boldsymbol{u}(x, y, h / 2)=\frac{3}{2} \boldsymbol{U}(x, y) \\
0=\nabla \cdot \boldsymbol{U}, \quad 0=-\nabla P+\mu \nabla^{2} \boldsymbol{U}-\kappa \boldsymbol{U}
\end{gathered}
$$

where $\kappa=12 \mu / H^{2}$ and ∇ is now the 2D gradient operator.

Hele-Shaw approximation

[^0]: ${ }^{2}$ 'deviatoric':= without hydrostatic stress (pressure); a 'full' stress-energy tensor $\hat{\sigma}$ may be defined by

 $$
 \hat{\sigma}_{i j}:=-p \delta_{i j}+\hat{T}_{i j} .
 $$

