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Swimming at low Reynolds nhumber
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Zero-Re flow




E. COI’ (non-tumbling HCB 437)
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Bacterial motors
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~ 50 beats / sec speed ~100 pm/s
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Volvox carteri

Chlamydomonas
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Stroke

fluid flow direction

recovery
stroke
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Meta-chronal waves

Brumley et al (2012) PRL



mailto:dunkel@math.mit.edu

Dogic lab (Brandeis)

dunkel@math.mit.edu


mailto:dunkel@math.mit.edu

Volvox carteri

somatic

Drescher et al (2010) PRL


mailto:dunkel@math.mit.edu

® How can Volvox perform phototaxis!?

(discussed later)
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Superposition of singularities

2x stokeslet =
stokeslet symmetric dipole rotlet




Volvox Chlamy

swimming speed ~ 100 um/sec swimming speed ~ 50 um/sec
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5.1 Navier-Stokes equations
Consider a fluid of conserved mass density o(t, ), governed by continuity equation
00+ V- (ou) =0, (5.1)

where u(t,x) is local flow velocity. According to standard hydrodynamic theory, the
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where u(t,x) is local flow velocity. According to standard hydrodynamic theory, the
dynamics of u is described by the Navier-Stokes equations (NSEs)
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where p(t, ) the pressure in the fluid, T'(t, ) the deviatoric?) stress-energy tensor of the
fluid, and f(¢, ) an external force-density field. A typical example of an external force f,



5.1 Navier-Stokes equations
Consider a fluid of conserved mass density o(t, ), governed by continuity equation
00+ V- (ou) =0, (5.1)

where u(t,x) is local flow velocity. According to standard hydrodynamic theory, the
dynamics of u is described by the Navier-Stokes equations (NSEs)

oldu+(u-Vul=f—-Vp+V- T, (5.2)

where p(t, ) the pressure in the fluid, T'(t, ) the deviatoric?) stress-energy tensor of the
fluid, and f(¢, ) an external force-density field. A typical example of an external force f,
that is also relevant in the biological context, is the gravitational force

f = og, (5.3)

where g(t,x) is the gravitational acceleration field.



Considering a Cartesian coordinate frame, FEqgs. (5.1) and (5.2) can also be rewritten in
the component form

&;Q + VZ(QUZ) = O, (54&)

To close the system of equations (5.4), one still needs to

(i) fix the equation of state
p=rlo, ..,

(ii) choose an ansatz the symmetric stress-energy tensor

AN

T = (ﬁj[Q,U, - ])7

(iii) specify an appropriate set of initial and boundary conditions.

2¢deviatoric’:= without hydrostatic stress (pressure); a ‘full’ stress-energy tensor & may be defined by

5'1']' = —p(SZ-j + T’LJ



Simplifications In the case of a homogeneous fluid with ?
0o =0 and Vo=0, (5.5)
the associated flow is incompressible (isochoric)

V-u=0. (5.6)



Simplifications In the case of a homogeneous fluid with ?
0o =0 and Vo=0, (5.5)
the associated flow is incompressible (isochoric)
V-u=0. (5.6)

A Newtonian fluid is a fluid that can, by definition, be described by

AN

where A the first coefficient of viscosity (related to bulk viscosity), and p is the second
coefficient of viscosity (shear viscosity). Thus, for an incompressible Newtonian fluid, the
Navier-Stokes system (5.4) simplifies to

0 = V-u, (5.8&)
olou+ (u-Vu| = —Vp+ uViu + f. (5.8b)



Dynamic viscosity The SI physical unit of dynamic viscosity p is the Pascal xsecond
lw] =1Pa-s=1kg/(m-s) (5.9)

If a fluid with a viscosity © = 1 Pa-s is placed between two plates, and one plate is pushed
sideways with a shear stress of one pascal, it moves a distance equal to the thickness of

the layer between the plates in one second. The dynamic viscosity of water (T = 20°C) is
u=1.0020 x 10~? Pa - s.



Dynamic viscosity The SI physical unit of dynamic viscosity p is the Pascal xsecond
lw] =1Pa-s=1kg/(m-s) (5.9)

If a fluid with a viscosity © = 1 Pa-s is placed between two plates, and one plate is pushed
sideways with a shear stress of one pascal, it moves a distance equal to the thickness of

the layer between the plates in one second. The dynamic viscosity of water (T = 20°C) is
u=1.0020 x 10~? Pa - s.

Kinematic viscosity DBelow we will be interested in comparing viscous and inertial
forces. Their ratio is characterized by the kinematic viscosity v, defined as

y =" , [v] = m?/s (5.10)
o
The kinematic viscosity of water with mass density o = 1g/cm® is v = 107%m?/s =

Il mm?/s = 1cSt.



5.2 Stokes equations

5.2.1 Motivation

Consider an object of characteristic length L, moving at absolute velocity U = |U| through
(relative to) an incompressible, homogeneous Newtonian fluid of constant viscosity pu and
constant density o. The object can be imagined as a moving boundary (condition), which
induces a flow field u(¢, ) in the fluid. The ratio of the inertial (dynamic) pressure oU>
and viscous shearing stress uU/L can be characterized by the Reynolds number?

_e(Gu+ (u-V)u)|  oU?/L  ULe UL
N 1V2u] Tpu/Lr ow v

For example, when considering swimming in water (v = 107°®m?/s), one finds for fish or
humans:

R (5.11)

L>~1m, U>~1m/s = R~ 10°,
whereas for bacteria:

L~1pm, U=~10 pm/s = R~ 107°.
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Consider an object of characteristic length L, moving at absolute velocity U = |U| through
(relative to) an incompressible, homogeneous Newtonian fluid of constant viscosity pu and
constant density o. The object can be imagined as a moving boundary (condition), which
induces a flow field u(¢, ) in the fluid. The ratio of the inertial (dynamic) pressure oU>
and viscous shearing stress uU/L can be characterized by the Reynolds number?

_e(Gu+ (u-V)u)|  oU?/L  ULe UL
N 1V2u] Tpu/Lr ow v

For example, when considering swimming in water (v = 107°®m?/s), one finds for fish or
humans:

R (5.11)

L>~1m, U>~1m/s = R~ 10°,
whereas for bacteria:
L~1pm, U~10 pym/s = R~ 107"
If the Reynolds number is very small, R < 1, the nonlinear NSEs (5.8) can be approx-

imated by the linear Stokes equations®
0 = V-u, (5.12a)
0 = uVu—Vp+f. (5.12b)

u(t,x) =0, . -
{p(t,w) o as x| — oo. (5.13)



5.2.2 Special solutions

Oseen solution Consider the Stokes equations (5.12) for a point-force

flx) = F o(z).

In this case, the solution with standard boundary conditions (5.13) reads®
ui(x) = Gij(@) F; p(x) = ——5

where the Greens function Gj; is given by the Oseen tensor

1 T;T;
G (004 5)

Sl

which has the inverse
-1 . ij.?fk;
ij () = 8mpu|x| (5j — —2|m|2> :

as can be seen from

_q T;T5 T;ixp

N ;T ;T _ Lilj XjLy
T2zl = [z 20w
LiL LiL
20e|? - 2Jxl?

Sik —

= Ok

(5.14)

(5.15a)

(5.15b)

(5.16)

(5.17)



Stokes solution (1851) Consider a sphere of radius a, which at time ¢ is located at the
origin, X () = 0, and moves at velocity U(t). The corresponding solution of the Stokes
equation with standard boundary conditions (5.13) reads’

w;(t, x)

p(t, x)

3 a Tl 1 a? T
o IS P ST i I (F SO 5.18
J[4|w|<] +|ac|2)+4| |3(~7 |a:|2>]’ (5-182)
3 Ujl‘j
— o0~ 5.18b

If the particle is located at X (t), one has to replace z; by z; — X;(¢) on the rhs. of
Egs. (5.18). Parameterizing the surface of the sphere by

a = asinf cos¢e, +asinf singpe, +acosbe, = ae;
L | T R
.
/\ = e ) A
%\ Pla) ‘mepa ion )»’/‘,/ \J:\\‘:
| YT /- poifts ==
v \/ 4 (O o)
/
-— = - et
(a) (b) (c)
J

https://www.boundless.com/physics/
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Stokes solution (1851) Consider a sphere of radius a, which at time ¢ is located at the
origin, X () = 0, and moves at velocity U(t). The corresponding solution of the Stokes
equation with standard boundary conditions (5.13) reads’

3 a T 1 a €T
(t S 5 Iy S fok [ Y U SN 5.18
wilt ) 3[41.@!(3 +|w|2)+4\ \3(] |w|2>]’ (5-182)
3 U.x.:
/ — Zadd gy 5.18b
p(t, ) SLaE +p ( )

If the particle is located at X (t), one has to replace z; by x; — X;(¢) on the rhs. of
Eqgs. (5.18). Parameterizing the surface of the sphere by

a = asinf cos¢e, +asinf singpe, +acosbe, = ae;

where 6 € [0, 7], ¢ € [0,27), one finds that on this boundary

u(t,a(d,9)) = U, (5.19a)
p(ta(6.0) = 5 LU, a,(6.0) + e (5.190)

corresponding to a no-slip boundary condition on the sphere’s surface. The O(a/|x|)-
contribution in (5.18a) coincides with the Oseen result (5.15), if we identify

F =6mualU. (5.20)

The prefactor v = 67 pa is the well-known Stokes drag coefficient for a sphere.



Stokes solution (1851) Consider a sphere of radius a, which at time ¢ is located at the
origin, X () = 0, and moves at velocity U(t). The corresponding solution of the Stokes
equation with standard boundary conditions (5.13) reads’

3 a T 1 a €T
(t = U |2 (g, 2 25— 37 5.18
wilt ) 3[41.@!(3 +|w|2)+4\ \3(] |w|2>] (5-182)
3 U.x.:
/ — Zadd gy 5.18b
p(t, ) SLaE +p ( )

If the particle is located at X (t), one has to replace z; by x; — X;(¢) on the rhs. of
Eqgs. (5.18). Parameterizing the surface of the sphere by

a = asinf cos¢e, +asinf singpe, +acosbe, = ae;

The O[(a/|x|)?]-part in (5.18a) corresponds to the finite-size correction, and defining
the Stokes tensor by

1 a? TiT;
Sii = Gy — 4§, — 3= : 5H.21
PTENE < ! ) (521

we may rewrite (5.18a) as®



5.3 Golestanian’s swimmer model

This part is copied (with very minor adaptations) from the article of Golestanian and
Ajdari [GAOT], for their excellent discussion is difficult, if not impossible, to improve.

5.3.1 Three-sphere swimmer: simplified analysis

As a minimal model of a low Reynolds number swimmer, consider three spheres of radii
a; (1 = 1,2,3) that are separated by two arms of lengths L; and L,. Each sphere exerts
a force F; on, and experiences a force —F; from, the fluid that we assume to be along the
swimmer axis. In the limit a;/L; < 1, we can use the Oseen tensor (5.15) to relate the

forces and the velocities as

V1 —

Vo2 =

V3 —

Fi Fy F;
+ + ,
6rpa;  dmply  Amp(Ly + Lo)
F F. F.
I SN N
Arply  Ompas  Ampls
Fi Fy F3

47T/.L(L1 + LQ) + 47T/LL2 + 67T/LCL3.

7t

(5.23a)
(5.23Db)

(5.23c¢)

other
‘minimal’
swimmer



5.3 Golestanian’s swimmer model

This part is copied (with very minor adaptations) from the article of Golestanian and
Ajdari [GAOT], for their excellent discussion is difficult, if not impossible, to improve.

5.3.1 Three-sphere swimmer: simplified analysis

As a minimal model of a low Reynolds number swimmer, consider three spheres of radii
a; (1 = 1,2,3) that are separated by two arms of lengths L; and Ls. Each sphere exerts
a force F; on, and experiences a force —F; from, the fluid that we assume to be along the
swimmer axis. In the limit a;/L; < 1, we can use the Oseen tensor (5.15) to relate the
forces and the velocities as

= 67T};16L1 i 47T];2L1 * 47w(L}:3+ La)’ (5:232)
2= 47T}:LlLl * 6753@2 i 47TZ3L2’ (5:23b)
%= 47w(L}:1+ o) 4WZQL2 i 675@3' (5:23¢)
Swim-speed
W= %(vl + vz + v3). (5.24)

Force-free constraint

Fi+ F>, + F3 = 0. (5.25)



Eliminating F; using Eq. (5.25), we can calculate the swimming velocity from Eqs. (5.23a),

(5.23b), (5.23¢), and (5.24) as

Vo

Wl Wl

(1 1)

— — — | +

ai as
(1 1)
— — — | +
as as

3

2
3

2

(
(

1 1
Li+Ly Ly
1 1
Li+Ly, L,

)

)

(
(

F N
07

b3
— 5.26

where the subscript 0 denotes the force-free condition. To close the system of equations,
we should either prescribe the forces (stresses) acting across each linker, or alternatively
the opening and closing motion of each arm as a function of time. We choose to prescribe
the motion of the arms connecting the three spheres, and assume that the velocities

Ly
Ly

Uy — Uy,

U3 — U2,

(5.27a)
(5.27b)

are known functions. We then use Eqs. (5.23a), (5.23b), (5.23c), and (5.25) to solve for F}
and Fy as a function of L; and L. Putting the resulting expressions for F; and Fy back
in Eq. (5.26), and keeping only terms in the leading order in a;/L; consistent with our
original scheme, we find the average swimming velocity to the leading order.
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5.3.2 Swimming velocity

The above calculations yield a lengthy expression summarized in Eq. (B.1) of the Appendix.
This result (B.1) is suitable for numerical studies of swimming cycles with arbitrarily large
deformations. For the simple case where all the spheres have the same radii, namely
a = a; = as = az, Eq. (5.26) simplifies to

a LQ_Ll Ll L2
w-gl(z5) (2 7)| =

plus terms that average to zero over a full swimming cycle. Equation (5.28) is also valid
for arbitrarily large deformations.

We can also consider relatively small deformations and perform an expansion of the
swimming velocity to the leading order. Using

Ll = 61—|—U1(t), (529)
L2 = 62—|—’LL2(15), (530)

in Eq. (B.1), and expanding to the leading order in u;/¢;, we find the average swimming

velocity as

- K — :
Vo = - (wtiz — dyug), (5.31)

where ; . . '
a1a9a
1a920a3 LI

— : 5.32
(CL1 + a9 + (13)2 g% 6% <€1 + 62)2 ( )

K =




5.3.3 Harmonic deformations

As a simple explicit example, consider harmonic deformations of the two arms, with iden-
tical frequencies w and a mismatch in phases,

uy(t) = dy cos(wt + ¢1), (5.33)
us(t) = do cos(wt + 3). (5.34)

The average swimming velocity from Eq. (5.31) reads

Vo = 5} didsw sin(py — p2). (5.35)

This result shows that the maximum velocity is obtained when the phase difference is
7/2, which supports the picture of maximizing the area covered by the trajectory of the
swimming cycle in the parameter space of the deformations. A phase difference of 0 or T,
for example, will create closed trajectories with zero area, or just lines.



5.3.4 Force-velocity relation and stall force

The effect of an external force or load on the efficiency of the swimmer can be easily studied
within the linear theory of Stokes hydrodynamics. When the swimmer is under the effect
of an applied external force F', Eq. (5.25) should be changed as

Following through the calculations of Sec. 5.3.1 above, we find that the following changes
take place in Egs. (5.23a), (5.23b), (5.23¢), and (5.24):

F
s _ 5.37
u1 1 Arply’ ( )
F
—> — 5.38
Y2 2 67 pasy’ ( )
" F (5.39)
v Vo — .
1 1 1 1
V —» V —— F 5.40
3 (67rua2 i Al i 47T/,LL2) ( )

These lead to the changes

Ly — Li— — F 5.41
! ! (67r,ua2 47T,uL1) ’ ( )

: : 1 1
Lo — Loy — — F 5.42

: 2 (47T,uL2 67T,LLCL2> ’ (542)
in Eq. (B.1), which together with correction coming from Eq. (5.40) leads to the average
swimming velocity

V(F)=V,+

H.43
18Tuar’ ( )



5 K .
V) =Vot Vo= ddwsinlor = o

for a; = ay = a3 = a,

The force-velocity relation given in Eq. (5.43), which could have been expected based
on linearity of hydrodynamics, yields a stall force

F, = —18muar V. (5.45)

Using the zeroth order expression for the hydrodynamic radius, one can see that this is
equal to the Stokes force exerted on the three spheres moving with a velocity Vj.



5.3.5 Power consumption and efficiency

Because we know the instantaneous values for the velocities and the forces, we can easily
calculate the power consumption in the motion of the spheres through the viscous fluid.

The rate of power consumption at any time is given as
P = Fﬂ]l —+ FQUQ -+ F3U3 = Fl(—[q) -+ Fg(LQ), (546)

where the second expression is the result of enforcing the force-free constrain of Eq. (5.25).

Using the expressions for F; and Fj3 as a function of Ll and Lg, one finds for ay — a9 —

as — a

a 1 a a

P = 4 1+ ——-— L2
7T/LCL_ —|—L1 2L2+L1—|—L2_ 1‘|‘
[ 1 a a a | .
drpa |1 — ~— 4+ & L2
7r,ua_ 2L1+L2+L1+L2_ 5+
1 a 1 a 5) a .
4 l]——— — —— 4 = LyLs. 5.47
TR Ty T, AT v | (5:47)



1 :
P = 4drpa|l+——-—+ L+

drpa |1 — —— + — + Lg-l-

drpia |1 o2 - o St Ly

We can now define a Lighthill hydrodynamic efficiency as

—2
18 Vi
U1, — ﬂ-lu_aR 0 , (548)
P
for which we find to the leading order
2
9 K2 . L .
= Sor K7ty —tia) (5.49a)
8 a Cyu?+ Cyui+ Cs s
where
a 1la a
. = 14 - _-Z 5.49b
! Y A (5.49b)
la a a
Co = 1—=——+— 5.49
? 20, by i+l (5.49¢)
1 1 5
Cs :1——3——§+— - (5.49d)
2



5.4 Dimensionality

We saw above that, in 3D, the fundamental solution to the Stokes equations for a point

force at the origin is given by the Oseen solution
ui(x) = Gij(x) F} p(e) = ——5

where

1 T
Gi(x) (5@‘ + W) ;

~ Brp|z|

It is interesting to compare this result with corresponding 2D solution

F.x,

— aOO ) — )

where

1 || LT
(o) = g oo () + 8]

(5.50a)

(5.50b)

(5.51a)

(5.51b)

with a being an arbitrary constant fixed by some intermediate flow normalization condi-
tion. Note that (5.51) decays much more slowly than (5.50), implying that hydrodynamic

interactions in 2D freestanding films are much stronger than in 3D bulk solutions.

To verify that (5.51) is indeed a solution of the 2D Stokes equations, we first note that

generally
Ojle| = Oj(ww:)'? = wy(wiz;) 2 = |{E_J’
xr
Ole|™ = Oj(wixs) ™ = —naj(ww;) "2 = —n‘;jw

(5.52a)

(5.52b)



From this, we find

0= gar gt~ ap (2 ) 628
and
- o)
= [t o (52)
_ ﬁ _—5Z-j|%+(5 — +5Jk’w|2—2x7|?3fk)]. (5.54)

To check the incompressibility condition, note that

0, J;; = b [_5..ﬂ 4+ (5m|ﬂ 15 ti _ xzxsz)]

drp | aP T\ T e T )t

1 X X X X
- ) 2 J J 2_.7
Ty ( 2f el JaP rwwz)

= 0, (5.55)

which confirms that the solution (5.51) satisfies the incompressibility condition V - u = 0.



Moreover, we find for the Laplacian

O [ Ty Tp
OOk Jii = —9; .
v dmp | \| WP |ﬂ4]

1 X T; T;TiTh
= T | 5”8’“(1 |2>+5““a’“(1 |2)+5”fa’“(! |2>‘28k( P )]
SR S QLA Y (B LI, b i IR S (L, Sl I
4w[ J(\az\? |ac|4>+ k(\w\Q @\4)*1%(@\2 |:c\4>

9 ((L-kxjask n Ti0 kT n L% Ok _ 433i$j33k33k>]

1 2 1 ;i T ;i T
= | = -2 o i o gliti)
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Hence, by comparing with (5.53), we see that indeed

The difference between 3D and 2D hydrodynamics has been confirmed experimentally
for Chlamydomonas algae [GJG10, DGM™10].



5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces F* = —F~ = Fe,
located at positions ™ = +fe,. Due to linearity of the Stokes equations the total flow at
some point @ is given by

UZ(CU) = FZ](QZ—CU+)F]+—|—F”(CU—£U_)F_

J
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5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces F* = —F~ = Fe,
located at positions ™ = +fe,. Due to linearity of the Stokes equations the total flow at
some point @ is given by

ui(x) = Ty(x—a")F"+Ty(x—x")F;
= [FZ](:L* —a") —Ty(x—ax)| FF

where I';; = J;; in 2D and I';; = G;; in 3D. If || > ¢, we can Taylor expand I';; near
¢ =0, and find to leading order

Uz<33) = {[sz( ) Fz]( )] T [x_k:'_akrij(m) _xl;akrij(m)}}FJﬂ_
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5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces F* = —F~ = Fe,
located at positions T = +le,. Due to linearity of the Stokes equations the total flow at
some point @ is given by

u(x) = Dy(x—a") F +Ty(x—x7) Fy
= Tij(x—2") - Fij(m_w_)}F;L

= [[y(x —le,) —Ty(x + le,)] FF (5.58)

j
where I';; = J;; in 2D and I';; = G;; in 3D. If || > ¢, we can Taylor expand I';; near
¢ = 0, and find to leading order

Uz(w) = {[Fw( ) Fz]( )] _ [xzrakrij(w) _ sz@kFij(w)}}Ff
= 2} [0y (@)] F; (5.59)

2D case Using our above result for dyJ;;, and writing & = ¢n and F* = Fn with
in| =1, we find in 2D
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5.5 Force dipole and dimensionality

To construct a force dipole, consider two opposite point-forces F* = —F~ = Fe,
located at positions T = +le,. Due to linearity of the Stokes equations the total flow at
some point @ is given by

u(x) = Dy(x—a") F +Ty(x—x7) Fy
= Tij(x—2") - Fij(m_w_)}F;L

= [[y(x —le,) —Ty(x + le,)] FF (5.58)

J

where I';; = J;; in 2D and I';; = G;; in 3D. If || > ¢, we can Taylor expand I';; near
¢ = 0, and find to leading order

Uz(w) = {[Fw( ) Fz]( )] _ [xzrakrij(w) _xlzakFij(m)}}FjJr
= 2} [0y (@)] F; (5.59)

2D case Using our above result for dyJ;;, and writing & = ¢n and F* = Fn with
in| =1, we find in 2D
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and, hence,
24
— 2n-x)* — 1| 4 5.60
u) = 5o [n-a) - 1] (5.60

where & = x/|x|.



3D case To compute the dipole flow field in 3D, we need to compute the partial deriva-
tives of the Oseen tensor
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Defining the orthogonal projector (IL;;) for z; by
we have
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3D case To compute the dipole flow field in 3D, we need to compute the partial deriva-
tives of the Oseen tensor

Defining the orthogonal projector (IL;;) for z; by

T,y o= O — Zidin, (5.62)
we have

Onlz| = i;—’“' _ (5.63a)
Opt; = Iivkl - TZZ — ‘ri"ﬁ (5.63b)
oy — —% (3T + 2511, | (5.63¢)

and from this we find

0uGi; = —%Gij + # (I, + L)

- @ (—d4iy + &30 + £:055 — Bhidid;). (5.64)

Inserting this expression into (5.59), we obtain the far-field dipole flow in 3D

Fe
Ample|?

u(x) = 3(n-2)°—1] 2. (5.65)

As shown in Ref. [DDC™11], Eq. (5.65) agrees well with the mean flow-field of a bacterium.
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Hele-Shaw approximation

.....................
/////////////////////////

0 = V-.u, \\'\
0 = uVu—-Vp+ f. >

62(H — z2)

w(z,y,z) =

0=V U, 0=—-VP+uVU — kU

where k = 12u/H? and V is now the 2D gradient operator.



Hele-Shaw approximation
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