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AFM

http://www.sbmp-itn.eu/sbmps/research_method/
source: wiki

Observing the oligomeric state, supramolecular assembly and function of native membrane proteins by AFM. (A) Proton-driven rotors from spinach chloroplast FoF1-
ATP synthase [3]. (B) Sodium-driven rotors from Ilyobacter tartaricus FoF1-ATP synthase. (C) High-light-adapted native photosynthetic membrane from Rsp. 
Photometricum[3]. (D) Pore complexes of perfringolysin O (PFO), a prototype of the large family of pore-forming cholesterol-dependent cytolysins (CDCs). Image 
courtesy of Z. Shao (Virginia). (E) The oligomeric state of bovine rhodopsin in native disc membranes [3]. (F) Structrual organsiation of the light-harvesting complex I 
photosynthetic core complex of Rsp. Rubrum [3]. (H) Extracellular surface of gap junction hemichannels from rat liver Wells recorded at pH 7.6 [6]. In presence of 
aminosulfonate compounds the hemichannels open their channel entrance with increasing pH from the closed (pH 6.0) to open (pH 7.6).
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Intercellular gap junctions
exchange of molecules and ions between animal cells

source: wiki
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Active transport
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Bio-membrane

Selective barrier

source: wiki
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Morphological changes

e.g., fusion through stalk-formation

source: wiki
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Endo- & Exocytosis

material exchange with environment 
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Virus envelop

envelop fuses with host membrane

source: wiki
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Capsid

Baker et al  (1999) MMBR

cryo-EM
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Diatoms (algae)

H4SiO4

source: wiki
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More planktonic diatoms
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Plants
unlike animal cells, every plant cell is surrounded by a polysaccharide cell wall

source: wiki
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typical plant cell has between 103 and 105 plasmodesmata !
connecting it with adjacent cells !

equating to between 1 and 10 per µm
source: wiki
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Chara fragilis

http://www.youtube.com/watch?
feature=player_detailpage&v=kud4qUhsCxg
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∂P
∂t

+ eu ·∇P= dðsÞ∇2P− dðrÞP+ ðI−PPÞ · ½eð∇uÞ ·P

+ αpP+ αuu− κðP · dÞd
!
;

where all coupling constants are now nondimensional. The pa-
rameters dðsÞ and dðrÞ are spatial and rotational diffusion constants,
respectively. The final hydrodynamics read

−μ∇2u+ u+Π0ez +∇Π′= jPj2 P;

subject to

∇ · u= 0  and 
Z2π

0

Z ℓ

0

u · ez   dz  dθ= 0:

All fields have periodic boundary conditions on θ= 0; 2π and
z= 0; ℓ, where ℓ=L=R is the nondimensional cell length.

Results
To test the model and understand more about the regimes of
behavior it possesses, we ran numerical integrations of the sys-
tem starting from initial conditions of randomly perturbed total
filament disorder (Materials and Methods). The parameters
e; dðsÞ; dðrÞ; κ; μ were fixed at representative values e= 0:1,

dðsÞ = dðrÞ = 0:025, κ= 0:5, and μ= 0:05 to focus on the most im-
portant coupling constants αp and αu. We also chose ℓ= 5 as an
appropriate radius-to-length ratio for a young cell with observ-
ably organized actin cables (36).

Time Progression. Fig. 4 displays a typical time sequence for nu-
merical integration of the model with an illustrative choice of the
parameters αp; αu. The experimentally observed regeneration
progression (28) is clearly reproduced as it moves from disorder,
through small patches of locally ordered “streamlets” caused by
spontaneous polarization, and settles into fully developed cy-
closis as the passive and active reorienting effects of flow reach
full potency. Although the polar flow alignment is important for
establishing the global streaming pattern, it is worth remarking
that the traditional nematic shear alignment, though damped by
the restriction factor e, still plays a role: it acts to smooth out
curved IZ boundaries between adjacent up- and down-streaming
regions, where flow shear is high, into straight lines. This is seen
in the later stages of the time evolution in Fig. 4.

Cyclosis Parameter Scan. To gauge the model’s robustness, we
executed a numerical parameter sweep of nonzero αp and αu
both between 0.025 and 1. The parameter space was divided up
into a 20× 20 grid, and the full set of parameters was simulated
for each of 50 different instances of random initial conditions.
Combined with a linear stability analysis (SI Text), this detects

1 2 3

1 2 3

Fig. 4. Cyclosis developing in our model for αp = 1 and αu = 0:5, with other parameters fixed as in the text. Color coding corresponds to the z-component of
the order vector P, with purple for Pz > 0 and green for Pz < 0, darker for lower magnitude. The white lines represent IZs separating up- and down-streaming
regions. Superimposed are streamlines of the cytoplasmic flow u induced by the filament field P, where the flow is directed from the thin end to the thick end
of the individual lines. (Upper) Time sequence of six frames, showing progression from random disorder through local order to complete steady cyclosis.
(Lower) “Unwrapped” streaming patterns of the three indicated frames.
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Characean algae

streaming by way of an example and a parameter space scan to
identify regimes of robust cyclosis development. Finally, we will
discuss the model in the context of pathologies and disruptions
to understand the importance of each of the components of the
filament dynamics.

Model
A young Chara cell is modeled as a cylinder of radius R with
periodic boundaries at a distance L apart. The fixed chloroplasts
lie at the edge, with the subcortical cytoplasm a thin cylindrical
layer between the chloroplasts and the vacuolar membrane; the
vacuole then comprises the bulk of the cell. The cytoplasm is
taken to consist of a layer of short, initially disordered actin fil-
aments beneath a layer of myosin-coated endoplasmic reticulum
vesicles, which drive flow by forcing the cytoplasm as they pro-
cess on the actin filaments (Fig. 1C). Because the subcortical
layer is very thin compared with the vacuole, we approximate the
cytoplasmic layer as a purely 2D cylindrical shell. We also as-
sume that the effective viscosity contrast between cytoplasm and
vacuolar fluid is sufficiently large to take vacuolar flow as purely
passive, induced by cytoplasmic flow (25) but not affecting it.
This yields a truly 2D problem.
Our final simplification is to neglect the helical twist in the

streaming pattern (Fig. 1B). No discernible twist exists in young
cells with developed actin cables (28), so its appearance is
more likely connected to later development of the microtubule

cytoskeleton (37) by a process of twisting growth once the main
cables are established and bound to the cortical chloroplasts
(38). The twist appears to be advantageous primarily for large,
mature cells, where it enhances vacuolar mixing and nutrient
uptake (25, 26).
We will now formalize the hydrodynamics. Endow the shell

with cylindrical coordinates ðθ; zÞ and corresponding unit vectors
eθ; ez. Let uðxÞ be the velocity field of the suspending cytoplasmic
fluid. The small velocity of streaming allows us to work in the
zero Reynolds number limit. We then take u to obey the forced
Stokes equations with friction,

−μ∇2u+ νu+∇Π=F;

where ΠðxÞ is the 2D pressure and FðxÞ is the filament-induced
forcing, discussed shortly. The frictional term νu captures the
effect of the no-slip boundary proximity in our thin-shell approx-
imation, in a manner similar to Hele–Shaw flow (SI Text).
There are two crucial constraints on the flow field that must be

incorporated. First, because the tonoplast membrane, which sep-
arates the cytoplasm and vacuole, behaves as a 2D incom-
pressible fluid (39), we must have incompressibility ∇ · u= 0.
Second, the presence of end caps on the cell must be acknowl-
edged, either through explicit modeling of the end geometry or,
as we do here, qualitatively through the simple extra constraint
of zero net flux

R 2π
0

R L
0 u · ez dzdθ= 0, essentially due to the

incompressibility of a finite domain in the ez direction. This is
balanced by allowing a longitudinal pressure gradient Π0 and
writing ΠðxÞ=Π0z+Π′ðxÞ, with Π′ðxÞ the remaining fully peri-
odic pressure field.
We now turn to the filament suspension, whose dynamics will

incorporate several crucial effects. The filaments are taken to be
restricted: passive advection and shear alignment in the flow u is
inhibited by a factor e due to frictional or binding effects of the
filaments on the chloroplasts or with cortical polymer networks.
As a consequence of restriction, the filaments are non–self-
advective: a vesicle walking forward on a filament will induce
only a negligible backward propulsion of the filament itself. The
filaments are also taken to spontaneously bundle: filaments will
locally align with each other, controlled by a coupling constant αp
(a rate constant for the exponential growth of small local po-
larization), mimicking the presence of bundling proteins.
(Inhibiting the action of bundling proteins thus corresponds to
setting αp = 0.)
To represent nonspherical cellular geometry or substrate pat-

terning we include a repulsive direction d, which filaments will
preferentially avoid, with coupling constant κ (Fig. 3A); this will
be set here to d= eθ, the circumferential direction. Although
apparently a strong assumption, there is remarkable experi-
mental precedent for such an effect whereby filaments can
reorient circumferentially around cells upon inhibition of bind-
ing or director components (40–42).

A B

cytoplasm

vacuole

indifferent
zone (IZ)

~1mm

filament

cargo

motor binds & walks unbinds

flow

C

Fig. 1. Cytoplasmic streaming in Chara corallina. (A) Internodes and
branchlets of Chara. Individual internodes can grow up to 10 cm long. (B)
Rotational streaming in a single internodal cell of Chara. The stripes indicate
the polarity of actin cables at the periphery driving flow in the cytoplasm and
vacuole. (C) Microscopic mechanism driving plant cell streaming. Cargo-car-
rying myosin motors bind to actin filaments and entrain flow as they walk.

IZ
new

IZ
old
IZ

Fig. 2. Disruption, rearrangement, and resumption of streaming in Chara
(28). Filament bundles disorganize and reform with the IZ in a new location.
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∂P
∂t

+ eu ·∇P= dðsÞ∇2P− dðrÞP+ ðI−PPÞ · ½eð∇uÞ ·P

+ αpP+ αuu− κðP · dÞd
!
;

where all coupling constants are now nondimensional. The pa-
rameters dðsÞ and dðrÞ are spatial and rotational diffusion constants,
respectively. The final hydrodynamics read

−μ∇2u+ u+Π0ez +∇Π′= jPj2 P;

subject to

∇ · u= 0  and 
Z2π

0

Z ℓ

0

u · ez   dz  dθ= 0:

All fields have periodic boundary conditions on θ= 0; 2π and
z= 0; ℓ, where ℓ=L=R is the nondimensional cell length.

Results
To test the model and understand more about the regimes of
behavior it possesses, we ran numerical integrations of the sys-
tem starting from initial conditions of randomly perturbed total
filament disorder (Materials and Methods). The parameters
e; dðsÞ; dðrÞ; κ; μ were fixed at representative values e= 0:1,

dðsÞ = dðrÞ = 0:025, κ= 0:5, and μ= 0:05 to focus on the most im-
portant coupling constants αp and αu. We also chose ℓ= 5 as an
appropriate radius-to-length ratio for a young cell with observ-
ably organized actin cables (36).

Time Progression. Fig. 4 displays a typical time sequence for nu-
merical integration of the model with an illustrative choice of the
parameters αp; αu. The experimentally observed regeneration
progression (28) is clearly reproduced as it moves from disorder,
through small patches of locally ordered “streamlets” caused by
spontaneous polarization, and settles into fully developed cy-
closis as the passive and active reorienting effects of flow reach
full potency. Although the polar flow alignment is important for
establishing the global streaming pattern, it is worth remarking
that the traditional nematic shear alignment, though damped by
the restriction factor e, still plays a role: it acts to smooth out
curved IZ boundaries between adjacent up- and down-streaming
regions, where flow shear is high, into straight lines. This is seen
in the later stages of the time evolution in Fig. 4.

Cyclosis Parameter Scan. To gauge the model’s robustness, we
executed a numerical parameter sweep of nonzero αp and αu
both between 0.025 and 1. The parameter space was divided up
into a 20× 20 grid, and the full set of parameters was simulated
for each of 50 different instances of random initial conditions.
Combined with a linear stability analysis (SI Text), this detects

1 2 3

1 2 3

Fig. 4. Cyclosis developing in our model for αp = 1 and αu = 0:5, with other parameters fixed as in the text. Color coding corresponds to the z-component of
the order vector P, with purple for Pz > 0 and green for Pz < 0, darker for lower magnitude. The white lines represent IZs separating up- and down-streaming
regions. Superimposed are streamlines of the cytoplasmic flow u induced by the filament field P, where the flow is directed from the thin end to the thick end
of the individual lines. (Upper) Time sequence of six frames, showing progression from random disorder through local order to complete steady cyclosis.
(Lower) “Unwrapped” streaming patterns of the three indicated frames.
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;

where all coupling constants are now nondimensional. The pa-
rameters dðsÞ and dðrÞ are spatial and rotational diffusion constants,
respectively. The final hydrodynamics read

−μ∇2u+ u+Π0ez +∇Π′= jPj2 P;

subject to

∇ · u= 0  and 
Z2π

0

Z ℓ

0

u · ez   dz  dθ= 0:

All fields have periodic boundary conditions on θ= 0; 2π and
z= 0; ℓ, where ℓ=L=R is the nondimensional cell length.

Results
To test the model and understand more about the regimes of
behavior it possesses, we ran numerical integrations of the sys-
tem starting from initial conditions of randomly perturbed total
filament disorder (Materials and Methods). The parameters
e; dðsÞ; dðrÞ; κ; μ were fixed at representative values e= 0:1,

dðsÞ = dðrÞ = 0:025, κ= 0:5, and μ= 0:05 to focus on the most im-
portant coupling constants αp and αu. We also chose ℓ= 5 as an
appropriate radius-to-length ratio for a young cell with observ-
ably organized actin cables (36).

Time Progression. Fig. 4 displays a typical time sequence for nu-
merical integration of the model with an illustrative choice of the
parameters αp; αu. The experimentally observed regeneration
progression (28) is clearly reproduced as it moves from disorder,
through small patches of locally ordered “streamlets” caused by
spontaneous polarization, and settles into fully developed cy-
closis as the passive and active reorienting effects of flow reach
full potency. Although the polar flow alignment is important for
establishing the global streaming pattern, it is worth remarking
that the traditional nematic shear alignment, though damped by
the restriction factor e, still plays a role: it acts to smooth out
curved IZ boundaries between adjacent up- and down-streaming
regions, where flow shear is high, into straight lines. This is seen
in the later stages of the time evolution in Fig. 4.

Cyclosis Parameter Scan. To gauge the model’s robustness, we
executed a numerical parameter sweep of nonzero αp and αu
both between 0.025 and 1. The parameter space was divided up
into a 20× 20 grid, and the full set of parameters was simulated
for each of 50 different instances of random initial conditions.
Combined with a linear stability analysis (SI Text), this detects

1 2 3

1 2 3

Fig. 4. Cyclosis developing in our model for αp = 1 and αu = 0:5, with other parameters fixed as in the text. Color coding corresponds to the z-component of
the order vector P, with purple for Pz > 0 and green for Pz < 0, darker for lower magnitude. The white lines represent IZs separating up- and down-streaming
regions. Superimposed are streamlines of the cytoplasmic flow u induced by the filament field P, where the flow is directed from the thin end to the thick end
of the individual lines. (Upper) Time sequence of six frames, showing progression from random disorder through local order to complete steady cyclosis.
(Lower) “Unwrapped” streaming patterns of the three indicated frames.
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+ αpP+ αuu− κðP · dÞd
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where all coupling constants are now nondimensional. The pa-
rameters dðsÞ and dðrÞ are spatial and rotational diffusion constants,
respectively. The final hydrodynamics read

−μ∇2u+ u+Π0ez +∇Π′= jPj2 P;

subject to

∇ · u= 0  and 
Z2π

0

Z ℓ

0

u · ez   dz  dθ= 0:

All fields have periodic boundary conditions on θ= 0; 2π and
z= 0; ℓ, where ℓ=L=R is the nondimensional cell length.

Results
To test the model and understand more about the regimes of
behavior it possesses, we ran numerical integrations of the sys-
tem starting from initial conditions of randomly perturbed total
filament disorder (Materials and Methods). The parameters
e; dðsÞ; dðrÞ; κ; μ were fixed at representative values e= 0:1,

dðsÞ = dðrÞ = 0:025, κ= 0:5, and μ= 0:05 to focus on the most im-
portant coupling constants αp and αu. We also chose ℓ= 5 as an
appropriate radius-to-length ratio for a young cell with observ-
ably organized actin cables (36).

Time Progression. Fig. 4 displays a typical time sequence for nu-
merical integration of the model with an illustrative choice of the
parameters αp; αu. The experimentally observed regeneration
progression (28) is clearly reproduced as it moves from disorder,
through small patches of locally ordered “streamlets” caused by
spontaneous polarization, and settles into fully developed cy-
closis as the passive and active reorienting effects of flow reach
full potency. Although the polar flow alignment is important for
establishing the global streaming pattern, it is worth remarking
that the traditional nematic shear alignment, though damped by
the restriction factor e, still plays a role: it acts to smooth out
curved IZ boundaries between adjacent up- and down-streaming
regions, where flow shear is high, into straight lines. This is seen
in the later stages of the time evolution in Fig. 4.

Cyclosis Parameter Scan. To gauge the model’s robustness, we
executed a numerical parameter sweep of nonzero αp and αu
both between 0.025 and 1. The parameter space was divided up
into a 20× 20 grid, and the full set of parameters was simulated
for each of 50 different instances of random initial conditions.
Combined with a linear stability analysis (SI Text), this detects
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Fig. 4. Cyclosis developing in our model for αp = 1 and αu = 0:5, with other parameters fixed as in the text. Color coding corresponds to the z-component of
the order vector P, with purple for Pz > 0 and green for Pz < 0, darker for lower magnitude. The white lines represent IZs separating up- and down-streaming
regions. Superimposed are streamlines of the cytoplasmic flow u induced by the filament field P, where the flow is directed from the thin end to the thick end
of the individual lines. (Upper) Time sequence of six frames, showing progression from random disorder through local order to complete steady cyclosis.
(Lower) “Unwrapped” streaming patterns of the three indicated frames.
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Blood cells: shape & function

red blood cells 	
affected by sickle-
cell disease
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Optical tweezer

http://www.nature.com/ncomms/journal/v4/n4/extref/ncomms2786-s1.swf

source: wiki
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Red blood cell in tweezer 

Basu et al (2011) Biophys J
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Full dynamics of a red blood cell in shear flow
Jules Dupire, Marius Socol, and Annie Viallat1

Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire Adhésion et Inflammation Unité Mixte de Recherche 7333, Inserm
UMR1067, 13009 Marseille, France
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At the cellular scale, blood fluidity and mass transport depend on
the dynamics of red blood cells in blood flow, specifically on their
deformation and orientation. These dynamics are governed by
cellular rheological properties, such as internal viscosity and
cytoskeleton elasticity. In diseases in which cell rheology is altered
genetically or by parasitic invasion or by changes in the microen-
vironment, blood flow may be severely impaired. The nonlinear
interplay between cell rheology and flow may generate complex
dynamics, which remain largely unexplored experimentally. Under
simple shear flow, only two motions, “tumbling” and “tank-tread-
ing,” have been described experimentally and relate to cell me-
chanics. Here, we elucidate the full dynamics of red blood cells in
shear flow by coupling two videomicroscopy approaches provid-
ing multidirectional pictures of cells, and we analyze the mechan-
ical origin of the observed dynamics. We show that contrary to
common belief, when red blood cells flip into the flow, their ori-
entation is determined by the shear rate. We discuss the “rolling”
motion, similar to a rolling wheel. This motion, which permits the
cells to avoid energetically costly deformations, is a true signature
of the cytoskeleton elasticity. We highlight a hysteresis cycle and
two transient dynamics driven by the shear rate: an intermittent
regime during the “tank-treading-to-flipping” transition and a Fris-
bee-like “spinning” regime during the “rolling-to-tank-treading”
transition. Finally, we reveal that the biconcave red cell shape is
highly stable under moderate shear stresses, and we interpret this
result in terms of stress-free shape and elastic buckling.

elastic capsule | low Reynolds number | shape memory | erythrocyte

Blood is a concentrated suspension of cells: 45% in volume is
occupied by red blood cells (RBCs). Its fluidity strongly

depends on its behavior in flow, which is a key factor of proper
tissue perfusion. At the cellular scale, blood flow behavior is
affected primarily by the RBC response to the hydrodynamic stress
in terms of cell orientation relative to the flow direction and of cell
deformation. For example, on one hand, at low shear rates, similar
cell orientations may favor the formation of stacks (rouleaux) (1)
of RBCs, like rolls of coins, which increases blood viscosity. On the
other hand, at high shear rates, the individualization of RBCs,
their alignment, and their stretching in the flow (2) decrease blood
viscosity (3). The orientation and the deformation in flow of RBCs
are governed by their rheological properties. They result from the
viscoelastic contributions of all components of the cell composite
structure. Moreover, RBC rheological properties also depend on
the microenvironment and on metabolic functionality (4). Both
local and systemic disturbances of homeostasis (in diabetes mel-
litus, hypertension) have the potential to induce RBC rheological
alterations and consequently to impair blood circulation. It there-
fore is crucial to understand the relationships between the rhe-
ological properties of RBCs and their orientation and deformation
in flow. This question is far from trivial because even in a simple
shear flow, RBCs present a variety of dynamic states, such as steady
tank-treading, swinging, unsteady tumbling, and chaotic motion.
To date, there has been little experimental work on the con-

nection between the mechanical properties of RBCs and their
dynamics in shear flow (5–8), compared with the many numerical
and theoretical recent studies reported for capsules (9–11) and
red blood cells (12–16). Surprisingly, all investigations dealing
with RBC orientation in flow focus on a very particular case in

which the axis of symmetry of the cell lies in the shear plane.
Some observations, however, suggest that other cellular ori-
entations may be more stable (17, 18). Furthermore, numerical
predictions of RBC deformations show significant discrepancies
with experimental observations. Indeed, experiments report only
the stationary stretched shape of cells steadily aligned in the flow
at high shear rates, whereas recent numerical studies predict
“breathing” dynamic states with strong shape deformations at
low shear rates for both RBCs and elastic capsules (9–16).
Here, we couple two videomicroscopy approaches providing

multidirectional pictures of RBCs to elucidate the full dynamics
of an RBC in shear flow, and we analyze the mechanical origin of
the observed dynamics (shapes and regimes of motion).
Under physiological conditions, a mature cell is a biconcave

disk about 6–8 μm in diameter and 2 μm thick. Its membrane
consists of a fluid lipid bilayer and an elastic spectrin network
lying just beneath the bilayer and attached to the membrane in-
tegral proteins. The inner cell volume is filled with a solution of
hemoglobin. Although the structure of the RBC is one of the
simplest among cells, it nevertheless involves several mechanical
parameters: viscosities of the hemoglobin solution and of the lipid
bilayer, incompressibility and bending elasticity of the lipid bi-
layer, and compressibility and shear elasticity of the spectrin cy-
toskeleton. The nonspherical biconcave shape of RBCs enables
shape changes at constant volume and area. Moreover, the mem-
brane has a memory of its shape (19): after a shape deformation
induced by an external force, the membrane returns to its initial
biconcave shape and the membrane elements return to their initial
position after removal of the force. The rim, for instance, is always
formed by the same membrane elements. However, the actual de-
formation state of the membrane, even in the biconcave state, is
not known because the stress-free shape of the membrane for
which the strain energy vanishes, has not been determined.
For many years, the viscosity ratio λ, where λ is the viscosity

inside the cell relative to the viscosity of the suspending solution,
has been the only mechanical parameter used to describe the
behavior of RBCs in shear flow observed in pioneering studies
(2, 20): at high λ, RBCs have been reported to tumble (T), re-
ferred to here as the particular unsteady flipping motion (F) when
the cell axis of symmetry rotates in the shear plane. The nature
of this motion (rigid-body–like or with membrane movement)
and its stability are not experimentally known. At low λ values
and high shear rates, RBCs have a “fluid-like” tank-treading
movement in which the membrane rotates around the center of
mass of the cell and has a quasi-stable inclination (TT). The
Keller and Skalak (KS) analytical model (21), which describes an
RBC as a viscous ellipsoid of fixed shape, qualitatively recovers
(T), (TT) as a function of λ. However, recent experiments
revealed new dynamic states specifically due to the shear elas-
ticity and the shape memory of the red cell membrane (7, 8): (i)
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At the cellular scale, blood fluidity and mass transport depend on
the dynamics of red blood cells in blood flow, specifically on their
deformation and orientation. These dynamics are governed by
cellular rheological properties, such as internal viscosity and
cytoskeleton elasticity. In diseases in which cell rheology is altered
genetically or by parasitic invasion or by changes in the microen-
vironment, blood flow may be severely impaired. The nonlinear
interplay between cell rheology and flow may generate complex
dynamics, which remain largely unexplored experimentally. Under
simple shear flow, only two motions, “tumbling” and “tank-tread-
ing,” have been described experimentally and relate to cell me-
chanics. Here, we elucidate the full dynamics of red blood cells in
shear flow by coupling two videomicroscopy approaches provid-
ing multidirectional pictures of cells, and we analyze the mechan-
ical origin of the observed dynamics. We show that contrary to
common belief, when red blood cells flip into the flow, their ori-
entation is determined by the shear rate. We discuss the “rolling”
motion, similar to a rolling wheel. This motion, which permits the
cells to avoid energetically costly deformations, is a true signature
of the cytoskeleton elasticity. We highlight a hysteresis cycle and
two transient dynamics driven by the shear rate: an intermittent
regime during the “tank-treading-to-flipping” transition and a Fris-
bee-like “spinning” regime during the “rolling-to-tank-treading”
transition. Finally, we reveal that the biconcave red cell shape is
highly stable under moderate shear stresses, and we interpret this
result in terms of stress-free shape and elastic buckling.
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Blood is a concentrated suspension of cells: 45% in volume is
occupied by red blood cells (RBCs). Its fluidity strongly

depends on its behavior in flow, which is a key factor of proper
tissue perfusion. At the cellular scale, blood flow behavior is
affected primarily by the RBC response to the hydrodynamic stress
in terms of cell orientation relative to the flow direction and of cell
deformation. For example, on one hand, at low shear rates, similar
cell orientations may favor the formation of stacks (rouleaux) (1)
of RBCs, like rolls of coins, which increases blood viscosity. On the
other hand, at high shear rates, the individualization of RBCs,
their alignment, and their stretching in the flow (2) decrease blood
viscosity (3). The orientation and the deformation in flow of RBCs
are governed by their rheological properties. They result from the
viscoelastic contributions of all components of the cell composite
structure. Moreover, RBC rheological properties also depend on
the microenvironment and on metabolic functionality (4). Both
local and systemic disturbances of homeostasis (in diabetes mel-
litus, hypertension) have the potential to induce RBC rheological
alterations and consequently to impair blood circulation. It there-
fore is crucial to understand the relationships between the rhe-
ological properties of RBCs and their orientation and deformation
in flow. This question is far from trivial because even in a simple
shear flow, RBCs present a variety of dynamic states, such as steady
tank-treading, swinging, unsteady tumbling, and chaotic motion.
To date, there has been little experimental work on the con-

nection between the mechanical properties of RBCs and their
dynamics in shear flow (5–8), compared with the many numerical
and theoretical recent studies reported for capsules (9–11) and
red blood cells (12–16). Surprisingly, all investigations dealing
with RBC orientation in flow focus on a very particular case in

which the axis of symmetry of the cell lies in the shear plane.
Some observations, however, suggest that other cellular ori-
entations may be more stable (17, 18). Furthermore, numerical
predictions of RBC deformations show significant discrepancies
with experimental observations. Indeed, experiments report only
the stationary stretched shape of cells steadily aligned in the flow
at high shear rates, whereas recent numerical studies predict
“breathing” dynamic states with strong shape deformations at
low shear rates for both RBCs and elastic capsules (9–16).
Here, we couple two videomicroscopy approaches providing

multidirectional pictures of RBCs to elucidate the full dynamics
of an RBC in shear flow, and we analyze the mechanical origin of
the observed dynamics (shapes and regimes of motion).
Under physiological conditions, a mature cell is a biconcave

disk about 6–8 μm in diameter and 2 μm thick. Its membrane
consists of a fluid lipid bilayer and an elastic spectrin network
lying just beneath the bilayer and attached to the membrane in-
tegral proteins. The inner cell volume is filled with a solution of
hemoglobin. Although the structure of the RBC is one of the
simplest among cells, it nevertheless involves several mechanical
parameters: viscosities of the hemoglobin solution and of the lipid
bilayer, incompressibility and bending elasticity of the lipid bi-
layer, and compressibility and shear elasticity of the spectrin cy-
toskeleton. The nonspherical biconcave shape of RBCs enables
shape changes at constant volume and area. Moreover, the mem-
brane has a memory of its shape (19): after a shape deformation
induced by an external force, the membrane returns to its initial
biconcave shape and the membrane elements return to their initial
position after removal of the force. The rim, for instance, is always
formed by the same membrane elements. However, the actual de-
formation state of the membrane, even in the biconcave state, is
not known because the stress-free shape of the membrane for
which the strain energy vanishes, has not been determined.
For many years, the viscosity ratio λ, where λ is the viscosity

inside the cell relative to the viscosity of the suspending solution,
has been the only mechanical parameter used to describe the
behavior of RBCs in shear flow observed in pioneering studies
(2, 20): at high λ, RBCs have been reported to tumble (T), re-
ferred to here as the particular unsteady flipping motion (F) when
the cell axis of symmetry rotates in the shear plane. The nature
of this motion (rigid-body–like or with membrane movement)
and its stability are not experimentally known. At low λ values
and high shear rates, RBCs have a “fluid-like” tank-treading
movement in which the membrane rotates around the center of
mass of the cell and has a quasi-stable inclination (TT). The
Keller and Skalak (KS) analytical model (21), which describes an
RBC as a viscous ellipsoid of fixed shape, qualitatively recovers
(T), (TT) as a function of λ. However, recent experiments
revealed new dynamic states specifically due to the shear elas-
ticity and the shape memory of the red cell membrane (7, 8): (i)
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length variation of the long cell axis is less than 10% for the
entire studied range of shear stresses. This behavior was not
highlighted in previous experimental studies, but previously
published pictures already suggested it (7, 18). We show it clearly
by visualizing on the same sequence the rotation of a small bead
attached to the membrane and the presence of a dimple on the
shape. Again, it is in contradiction with the numerical simulations
that show strong nonstationary deformation on TT cells close to
the transition (12, 13, 24).
From rolling to tank-treading. The R–S-TT transition is induced by
further increasing _γ above a critical value _γ+c . All steps of the
transition are illustrated in Fig. 5A using a bead attached to the
cell membrane to visualize the motion of the membrane. Starting
from rolling in the shear plane, the cell progressively tilts and
hovers in the flow while its membrane spins around the axis of
revolution. This one does not precess during the motion and
rises slowly by turning around the direction of the flow. The cell
motion looks like a flying Frisbee, although there is no inertial
effect. Finally, after a rotation of 90°, the axis of revolution
arrives in the shear plane and the cell lies perpendicular to the
shear plane. Tank-treading occurs when the streamlines on the
membrane change from circular spinning around the axis of
revolution to tank-treading, i.e., a back-and-forth motion along
the flow direction. This drastic change of motion is achieved
without strong shape deformation, as shown in Fig. 5A and Movie
S3. However, often one observes parts of the membrane that ro-
tate as if they were not fluidized: a small solid section is embedded
in the fluidized part and moves as a whole. Typical triconcave
deformations are shown in Fig. 5B and Movie S4. The shapes
obtained are very similar to knizocytes observed in newborns (25) or
in patients with lecithin/cholesterol acyltransferase deficiency
(26), and are attributed to impaired membrane deformability
and fluidity. This suggests that at the critical _γ−c value, the transi-
tion toward a fluidized dynamic regime of the cell is still incomplete
and the RBC behaves like a cell with unpaired deformability.
When _γ is increased further, the cellular deformation disappears
and the cell recovers its biconcave shape. Several hysteresis
cycles of shear rate have been performed on a cell, during which
_γ decreased from above _γ+c to below _γ−c and then increased to
above _γ+c again. Both transitions always occur at the same value
of _γ−c and _γ+c .
The transition between rigid-body–like and fluidized cell occurs

in a hysteretic domain of shear rates, f _γ−c − _γ+c g. In this domain
both flipping/rolling and tank treading are stable, each dynamic
state depends on how it is reached, either by increasing or de-
creasing _γ. The mechanisms of transition toward F and toward
TT are different. In the TT-to-F transition, TT stabilizes the cell
orbit. In the R-to-TT transition, the cell axis of symmetry has to
rotate through a π/2 angle. The streamlines on the cell membrane
have to change abruptly with a sharp increase of shear strain
energy. This can be achieved only at a higher shear rate value.
Finally, the values found for the critical shear stresses η0 _γ−c

(0.023 Pa) and η0 _γ+c (0.086 Pa) are in agreement with that
reported in ref. 7.

Final Discussion and Conclusion
It is important to note that although the biconcave shape of the
membrane remains unchanged for the shear flows we have
studied, the constitutive material elements of the membrane
generally are strained on the biconcave surface. Even in the
absence of flow, a material element may be strained if the bi-
concave shape is not the stress-free shape. When subjected to the
flow, a material element is displaced on the biconcave surface
and its strain varies as a result of the anisotropic shape of the
membrane. Furthermore, RBCs have a shape memory, which
means that the material elements of the membrane are not
equivalent. Therefore, the local strain at a given position of the
biconcave shape depends on the material element, which occu-
pies this position at the considered instant. Consequently, the
total shear strain energy of the membrane, defined as the sum of
the local strain energies of the material elements, generally is not
equal to zero. It varies over time, depending on the position of
the material elements on the surface. A question then arises: Is
the membrane strain energy related to the RBC orientation and
motion in flow? If one considers the tumbling motion, the am-
plitude of the local displacement of the material elements on the
surface increases with the shear rate, and so does the strain
energy, for instance when the elements initially at the rim ap-
proach the dimple. However, when the cell orbit drifts toward
rolling, the strains due to displacements on the surface decrease
progressively and vanish when the axis of revolution is equal to
the axis of rotation of the cell (rolling). Indeed, in the latter case,
the cell has a solid rotational motion: a membrane material el-
ement always occupies the same position on the surface so that
the total strain energy remains constant and equal to its value in
absence of flow. The observed orbit change therefore seems to
be an efficient means to prevent the increase of the total mem-
brane strain energy with the shear rate at the cost of a higher
external viscous dissipation. Similarly, the R–TT transition occurs
at a shear rate higher than the TT, because R stabilizes the motion
by minimizing the total strain energy.
Finally, the absence of significant cell shape deformation is

puzzling, especially in the case of TT, when the hydrodynamic
energy provided by the flow is high enough to strain the material
elements of the membrane when they circulate on the biconcave
shape. In this case, one may wonder what the energy is that
enables a material element to deform locally to form a dimple,
because hydrodynamic constraints tend to profile global ellip-
soidal shapes, as observed for lipid vesicles or elastic capsules in
flow. We propose an interpretation involving a buckling phe-
nomenon for which the biconcave shape is of minimal energy,
and a weak shape memory. The shape memory results from an
anisotropic stress-free shape of the membrane. The anisotropy
may come from the inhomogeneity of the spherical shell—for
instance, strengthened equatorial region or anisotropic elastic
properties (27)—or from a nonspherical shell. The latter hy-
pothesis, supported by the work of Lim, Wortis, and Mukho-
padhyay (28), allows one to find observed RBC shapes by using a
mechanical model including bending, stretch, and shear elasticity.

Fig. 5. Rolling-to-tank-treading transition
observed on RBCs bearing a bead; dextran
2 106 g/mol, c = 9% (wt/wt); scale bar, 8 μm;
top-view observation. (A) Shear rate = 3 s−1.
The symmetry axis of the rolling cell (images
1–7) rotates gradually (images 8–10). The
spinning about the symmetry axis is detec-
ted by the bead motion (images 10–19). Fi-
nally, the streamlines change and the cell
tank-treads (images 20–30). A vertical bar
separates the different movements. Sequence of 46.6 s; scale bar, 7 μm. (B) The tank-treading movement at the transition sometimes presents an overall
rotation of part of the membrane, which behaves locally like a solid by rotating as a whole. _γ = 6 s−1, time sequence of 1.98 s.
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At the cellular scale, blood fluidity and mass transport depend on
the dynamics of red blood cells in blood flow, specifically on their
deformation and orientation. These dynamics are governed by
cellular rheological properties, such as internal viscosity and
cytoskeleton elasticity. In diseases in which cell rheology is altered
genetically or by parasitic invasion or by changes in the microen-
vironment, blood flow may be severely impaired. The nonlinear
interplay between cell rheology and flow may generate complex
dynamics, which remain largely unexplored experimentally. Under
simple shear flow, only two motions, “tumbling” and “tank-tread-
ing,” have been described experimentally and relate to cell me-
chanics. Here, we elucidate the full dynamics of red blood cells in
shear flow by coupling two videomicroscopy approaches provid-
ing multidirectional pictures of cells, and we analyze the mechan-
ical origin of the observed dynamics. We show that contrary to
common belief, when red blood cells flip into the flow, their ori-
entation is determined by the shear rate. We discuss the “rolling”
motion, similar to a rolling wheel. This motion, which permits the
cells to avoid energetically costly deformations, is a true signature
of the cytoskeleton elasticity. We highlight a hysteresis cycle and
two transient dynamics driven by the shear rate: an intermittent
regime during the “tank-treading-to-flipping” transition and a Fris-
bee-like “spinning” regime during the “rolling-to-tank-treading”
transition. Finally, we reveal that the biconcave red cell shape is
highly stable under moderate shear stresses, and we interpret this
result in terms of stress-free shape and elastic buckling.
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Blood is a concentrated suspension of cells: 45% in volume is
occupied by red blood cells (RBCs). Its fluidity strongly

depends on its behavior in flow, which is a key factor of proper
tissue perfusion. At the cellular scale, blood flow behavior is
affected primarily by the RBC response to the hydrodynamic stress
in terms of cell orientation relative to the flow direction and of cell
deformation. For example, on one hand, at low shear rates, similar
cell orientations may favor the formation of stacks (rouleaux) (1)
of RBCs, like rolls of coins, which increases blood viscosity. On the
other hand, at high shear rates, the individualization of RBCs,
their alignment, and their stretching in the flow (2) decrease blood
viscosity (3). The orientation and the deformation in flow of RBCs
are governed by their rheological properties. They result from the
viscoelastic contributions of all components of the cell composite
structure. Moreover, RBC rheological properties also depend on
the microenvironment and on metabolic functionality (4). Both
local and systemic disturbances of homeostasis (in diabetes mel-
litus, hypertension) have the potential to induce RBC rheological
alterations and consequently to impair blood circulation. It there-
fore is crucial to understand the relationships between the rhe-
ological properties of RBCs and their orientation and deformation
in flow. This question is far from trivial because even in a simple
shear flow, RBCs present a variety of dynamic states, such as steady
tank-treading, swinging, unsteady tumbling, and chaotic motion.
To date, there has been little experimental work on the con-

nection between the mechanical properties of RBCs and their
dynamics in shear flow (5–8), compared with the many numerical
and theoretical recent studies reported for capsules (9–11) and
red blood cells (12–16). Surprisingly, all investigations dealing
with RBC orientation in flow focus on a very particular case in

which the axis of symmetry of the cell lies in the shear plane.
Some observations, however, suggest that other cellular ori-
entations may be more stable (17, 18). Furthermore, numerical
predictions of RBC deformations show significant discrepancies
with experimental observations. Indeed, experiments report only
the stationary stretched shape of cells steadily aligned in the flow
at high shear rates, whereas recent numerical studies predict
“breathing” dynamic states with strong shape deformations at
low shear rates for both RBCs and elastic capsules (9–16).
Here, we couple two videomicroscopy approaches providing

multidirectional pictures of RBCs to elucidate the full dynamics
of an RBC in shear flow, and we analyze the mechanical origin of
the observed dynamics (shapes and regimes of motion).
Under physiological conditions, a mature cell is a biconcave

disk about 6–8 μm in diameter and 2 μm thick. Its membrane
consists of a fluid lipid bilayer and an elastic spectrin network
lying just beneath the bilayer and attached to the membrane in-
tegral proteins. The inner cell volume is filled with a solution of
hemoglobin. Although the structure of the RBC is one of the
simplest among cells, it nevertheless involves several mechanical
parameters: viscosities of the hemoglobin solution and of the lipid
bilayer, incompressibility and bending elasticity of the lipid bi-
layer, and compressibility and shear elasticity of the spectrin cy-
toskeleton. The nonspherical biconcave shape of RBCs enables
shape changes at constant volume and area. Moreover, the mem-
brane has a memory of its shape (19): after a shape deformation
induced by an external force, the membrane returns to its initial
biconcave shape and the membrane elements return to their initial
position after removal of the force. The rim, for instance, is always
formed by the same membrane elements. However, the actual de-
formation state of the membrane, even in the biconcave state, is
not known because the stress-free shape of the membrane for
which the strain energy vanishes, has not been determined.
For many years, the viscosity ratio λ, where λ is the viscosity

inside the cell relative to the viscosity of the suspending solution,
has been the only mechanical parameter used to describe the
behavior of RBCs in shear flow observed in pioneering studies
(2, 20): at high λ, RBCs have been reported to tumble (T), re-
ferred to here as the particular unsteady flipping motion (F) when
the cell axis of symmetry rotates in the shear plane. The nature
of this motion (rigid-body–like or with membrane movement)
and its stability are not experimentally known. At low λ values
and high shear rates, RBCs have a “fluid-like” tank-treading
movement in which the membrane rotates around the center of
mass of the cell and has a quasi-stable inclination (TT). The
Keller and Skalak (KS) analytical model (21), which describes an
RBC as a viscous ellipsoid of fixed shape, qualitatively recovers
(T), (TT) as a function of λ. However, recent experiments
revealed new dynamic states specifically due to the shear elas-
ticity and the shape memory of the red cell membrane (7, 8): (i)
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At the cellular scale, blood fluidity and mass transport depend on
the dynamics of red blood cells in blood flow, specifically on their
deformation and orientation. These dynamics are governed by
cellular rheological properties, such as internal viscosity and
cytoskeleton elasticity. In diseases in which cell rheology is altered
genetically or by parasitic invasion or by changes in the microen-
vironment, blood flow may be severely impaired. The nonlinear
interplay between cell rheology and flow may generate complex
dynamics, which remain largely unexplored experimentally. Under
simple shear flow, only two motions, “tumbling” and “tank-tread-
ing,” have been described experimentally and relate to cell me-
chanics. Here, we elucidate the full dynamics of red blood cells in
shear flow by coupling two videomicroscopy approaches provid-
ing multidirectional pictures of cells, and we analyze the mechan-
ical origin of the observed dynamics. We show that contrary to
common belief, when red blood cells flip into the flow, their ori-
entation is determined by the shear rate. We discuss the “rolling”
motion, similar to a rolling wheel. This motion, which permits the
cells to avoid energetically costly deformations, is a true signature
of the cytoskeleton elasticity. We highlight a hysteresis cycle and
two transient dynamics driven by the shear rate: an intermittent
regime during the “tank-treading-to-flipping” transition and a Fris-
bee-like “spinning” regime during the “rolling-to-tank-treading”
transition. Finally, we reveal that the biconcave red cell shape is
highly stable under moderate shear stresses, and we interpret this
result in terms of stress-free shape and elastic buckling.
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Blood is a concentrated suspension of cells: 45% in volume is
occupied by red blood cells (RBCs). Its fluidity strongly

depends on its behavior in flow, which is a key factor of proper
tissue perfusion. At the cellular scale, blood flow behavior is
affected primarily by the RBC response to the hydrodynamic stress
in terms of cell orientation relative to the flow direction and of cell
deformation. For example, on one hand, at low shear rates, similar
cell orientations may favor the formation of stacks (rouleaux) (1)
of RBCs, like rolls of coins, which increases blood viscosity. On the
other hand, at high shear rates, the individualization of RBCs,
their alignment, and their stretching in the flow (2) decrease blood
viscosity (3). The orientation and the deformation in flow of RBCs
are governed by their rheological properties. They result from the
viscoelastic contributions of all components of the cell composite
structure. Moreover, RBC rheological properties also depend on
the microenvironment and on metabolic functionality (4). Both
local and systemic disturbances of homeostasis (in diabetes mel-
litus, hypertension) have the potential to induce RBC rheological
alterations and consequently to impair blood circulation. It there-
fore is crucial to understand the relationships between the rhe-
ological properties of RBCs and their orientation and deformation
in flow. This question is far from trivial because even in a simple
shear flow, RBCs present a variety of dynamic states, such as steady
tank-treading, swinging, unsteady tumbling, and chaotic motion.
To date, there has been little experimental work on the con-

nection between the mechanical properties of RBCs and their
dynamics in shear flow (5–8), compared with the many numerical
and theoretical recent studies reported for capsules (9–11) and
red blood cells (12–16). Surprisingly, all investigations dealing
with RBC orientation in flow focus on a very particular case in

which the axis of symmetry of the cell lies in the shear plane.
Some observations, however, suggest that other cellular ori-
entations may be more stable (17, 18). Furthermore, numerical
predictions of RBC deformations show significant discrepancies
with experimental observations. Indeed, experiments report only
the stationary stretched shape of cells steadily aligned in the flow
at high shear rates, whereas recent numerical studies predict
“breathing” dynamic states with strong shape deformations at
low shear rates for both RBCs and elastic capsules (9–16).
Here, we couple two videomicroscopy approaches providing

multidirectional pictures of RBCs to elucidate the full dynamics
of an RBC in shear flow, and we analyze the mechanical origin of
the observed dynamics (shapes and regimes of motion).
Under physiological conditions, a mature cell is a biconcave

disk about 6–8 μm in diameter and 2 μm thick. Its membrane
consists of a fluid lipid bilayer and an elastic spectrin network
lying just beneath the bilayer and attached to the membrane in-
tegral proteins. The inner cell volume is filled with a solution of
hemoglobin. Although the structure of the RBC is one of the
simplest among cells, it nevertheless involves several mechanical
parameters: viscosities of the hemoglobin solution and of the lipid
bilayer, incompressibility and bending elasticity of the lipid bi-
layer, and compressibility and shear elasticity of the spectrin cy-
toskeleton. The nonspherical biconcave shape of RBCs enables
shape changes at constant volume and area. Moreover, the mem-
brane has a memory of its shape (19): after a shape deformation
induced by an external force, the membrane returns to its initial
biconcave shape and the membrane elements return to their initial
position after removal of the force. The rim, for instance, is always
formed by the same membrane elements. However, the actual de-
formation state of the membrane, even in the biconcave state, is
not known because the stress-free shape of the membrane for
which the strain energy vanishes, has not been determined.
For many years, the viscosity ratio λ, where λ is the viscosity

inside the cell relative to the viscosity of the suspending solution,
has been the only mechanical parameter used to describe the
behavior of RBCs in shear flow observed in pioneering studies
(2, 20): at high λ, RBCs have been reported to tumble (T), re-
ferred to here as the particular unsteady flipping motion (F) when
the cell axis of symmetry rotates in the shear plane. The nature
of this motion (rigid-body–like or with membrane movement)
and its stability are not experimentally known. At low λ values
and high shear rates, RBCs have a “fluid-like” tank-treading
movement in which the membrane rotates around the center of
mass of the cell and has a quasi-stable inclination (TT). The
Keller and Skalak (KS) analytical model (21), which describes an
RBC as a viscous ellipsoid of fixed shape, qualitatively recovers
(T), (TT) as a function of λ. However, recent experiments
revealed new dynamic states specifically due to the shear elas-
ticity and the shape memory of the red cell membrane (7, 8): (i)
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The viscosity of lipid bilayer membranes plays an important role in determining the diffusion constant

of embedded proteins and the dynamics of membrane deformations, yet it has historically proven very

difficult to measure. Here we introduce a new method based on quantification of the large-scale circulation

patterns induced inside vesicles adhered to a solid surface and subjected to simple shear flow in a

microfluidic device. Particle image velocimetry based on spinning disk confocal imaging of tracer

particles inside and outside of the vesicle and tracking of phase-separated membrane domains are used

to reconstruct the full three-dimensional flow pattern induced by the shear. These measurements show

excellent agreement with the predictions of a recent theoretical analysis, and allow direct determination of

the membrane viscosity.
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Ever since the work of Saffman and Delbrück on the
dynamics of inclusions in biological membranes [1] it
has been recognized that lipid bilayers can be viewed as
ultrathin fluid layers endowed with a surface viscosity.
Along with that of the surrounding fluid, this viscosity
plays an important role in determining the translational
and rotational diffusion constants of inclusions within the
membrane [2]. A body of theoretical work [3,4] suggests
that nonequilibrium dynamics of vesicles in external flows
[5] can also be sensitive to the value of this viscosity [6].
As the membrane viscosity !m can be expressed as d" !,
where d is the membrane thickness and ! is the bilayer
fluid viscosity, the nanometric scale of d renders !m very
small. Not surprisingly, it has proven difficult to measure
!m; ingenious techniques that have been developed include
measurements of the motion of membrane-bound micro-
spheres [7], diffusion constants of domains in multicom-
ponent membranes [8,9], and observation of fluctuation
dynamics in membranes near a critical point [10,11].
Further afield, monolayers admit additional experimental
techniques, including methods based on surface rheology
[12] and microrheology methods such as observing dy-
namics of submerged optically trapped [13] or membrane-
bound [14] microspheres. Rheological experiments have
the advantage of being able to detect non-Newtonian
behavior [15].

Interest in membrane dynamics also extends to flows
within vesicles, especially in plant science, as the plant
vacuole is contained within the vacuolar membrane (or
tonoplast), which can comprise some of the largest lipid

vesicles known: in internodal cells of the aquatic plant
Chara corallina, these can be cylinders 1 mm in diameter
and up to 10 cm long [16]. This tonoplast is subject to
continuous hydrodynamic shear through the action of cyto-
plasmic streaming, motion of the cytoplasm surrounding
the vacuole [17]. Because of its potential role in transport
[18] there is great interest in the three-dimensional
characteristics of such shear-induced flows [19] and the
role played by the intervening tonoplast [20].

FIG. 1 (color online). Microfluidic shear experiment.
(a) Schematic of the chamber (not to scale) and flows.
(b) Confocal imaging reconstruction of an adhering hemispheri-
cal Lo phase vesicle with small Ld domains visible on its surface.
(c)–(d) Tracking of gel domains in Ld background (c) and Ld

domains in Lo background (d), flowing across the vesicle apex at
_" ¼ 2:6 s!1 (tracks color-coded in time over $2:6 s).

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
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spheres [7], diffusion constants of domains in multicom-
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dynamics in membranes near a critical point [10,11].
Further afield, monolayers admit additional experimental
techniques, including methods based on surface rheology
[12] and microrheology methods such as observing dy-
namics of submerged optically trapped [13] or membrane-
bound [14] microspheres. Rheological experiments have
the advantage of being able to detect non-Newtonian
behavior [15].

Interest in membrane dynamics also extends to flows
within vesicles, especially in plant science, as the plant
vacuole is contained within the vacuolar membrane (or
tonoplast), which can comprise some of the largest lipid

vesicles known: in internodal cells of the aquatic plant
Chara corallina, these can be cylinders 1 mm in diameter
and up to 10 cm long [16]. This tonoplast is subject to
continuous hydrodynamic shear through the action of cyto-
plasmic streaming, motion of the cytoplasm surrounding
the vacuole [17]. Because of its potential role in transport
[18] there is great interest in the three-dimensional
characteristics of such shear-induced flows [19] and the
role played by the intervening tonoplast [20].

FIG. 1 (color online). Microfluidic shear experiment.
(a) Schematic of the chamber (not to scale) and flows.
(b) Confocal imaging reconstruction of an adhering hemispheri-
cal Lo phase vesicle with small Ld domains visible on its surface.
(c)–(d) Tracking of gel domains in Ld background (c) and Ld

domains in Lo background (d), flowing across the vesicle apex at
_" ¼ 2:6 s!1 (tracks color-coded in time over $2:6 s).
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A key development in the study of membrane fluid
dynamics was the conceptually simple experiment of
Vézy et al. [21] (see also [22]) in which a vesicle was
adhered to a solid surface and subjected to a simple shear
flow. The flow induced in the membrane took the form of
two vortices, rather than the simple overturning flow that
would occur in a hemispherical droplet of one fluid in
the background of an immiscible second fluid without
the membrane [23,24]. This difference is attributable to the
incompressibility of the membrane, which restricts the flow
field to one that is two-dimensionally divergence free, i.e.,
area conserving, on the vesicle surface [25].

Since viscosity is the coefficient of proportionality
between force per unit area on a surface and the adjacent
shear rate, it is natural to ask whether the experimental
setup of Vézy et al. [21] suggests a means to study mem-
brane fluid mechanics in detail. To this end, we describe
here a method that quantifies the flows set up by shear of
adherent vesicles, and, through a recent calculation [25],
provides a means of determining membrane viscosity. The
method uses particle image velocimetry (PIV) to measure
the three-dimensional flows inside and outside vesicles,
and particle tracking to monitor the shear-induced move-
ment of phase-separated domains within the membrane, in
a microfluidic environment.

Figure 1 shows the experimental setup: a vesicle of radius
R, typically in the range of 10–40 !m, adheres to the surface
of amicrofluidic chamber in the presence of a flowwith shear
rate _". The chamber, typically 2mmwide and 200 !m deep,
is made from polydimethylsiloxane by soft lithography and
sealedwith a glass coverslip that had been treated to promote
vesicle adhesion. Vesicles were produced by standard meth-
ods of electroformation [26] in 100 mM sucrose with or
without 0:5 !m microspheres (Invitrogen, Carlsbad, CA).
We chose lipid compositions to obtain two substantially
different membrane viscosities. One composition gives pri-
marily liquid-ordered (Lo) vesicles with a small fraction of
liquid-disordered (Ld) phase at room temperature (!23"C):
40 mol% cholesterol (Sigma-Aldrich, St. Louis, MO), 55%
DPPC (dipalmitoylphosphatidylcholine), and 5% DiPhyPC
(diphytanoylphosphatidylcholine). DPPC, DOPC, and
DiPhyPC were purchased from Avanti Polar Lipids
(Alabaster, AL) and used without further purification.
Vesicles containing primarilyLd phasewith a small fraction
of gel domains were made from 85% DOPC and 15%
DPPC. The Ld phases were labeled with 0.5% TexasRed-
DPPE (Invitrogen). Coverslips were cleaned aggressively
in NaOH and soaked in a solution of 0.001% polylysine for
30 minutes for use with Ld phase vesicles, or in 0.0005%
polyethylenimine for 5 minutes for use with Lo phase
vesicles. Vesicles were gently osmotically deflated by dilut-
ing into 130mMglucose and 10mMHEPES shortly before
loading into the chamber.

Measurements were made on a Zeiss Cell Observer spin-
ning disk confocal microscope with an electron-multiplied

CCD camera (Evolve, Photometrics, Tucson, AZ,
512#512 pixels), using an NA 1:4=63X oil-immersion
objective. Flows were controlled by a syringe pump
(PHD2000, Harvard Apparatus, Holliston, MA) and
quantified by measuring far upstream from vesicles the
speed of microspheres as a function of height above the
coverslip. Shear rates were typically in the range 1 $ _" $
6 s%1. PIV was done with Matlab by adapting standard
code [27] to track small dilute tracers by finding the
time-averaged velocity field [28]. For three-dimensional
reconstruction, movies were recorded at !30 frames per
second at intervals of 2–3 !m throughout and above
vesicles containing microspheres [Fig. 2(b)], giving
two-dimensional velocity field slices [Fig. 2(a)]. From a
stack of such slices a three-dimensional velocity field was

FIG. 2 (color online). Flow fields inside an adhering vesicle in
shear. (a) Experimental two-dimensional PIV velocity fields at
heights z=R ¼ 0:26, 0.47, 0.71 above coverslip. (b) Confocal
slices at same fractional heights as (a) show vesicle (red)
containing fluorescent microspheres. (c) Theoretical two-
dimensional velocity fields [25] for a sheared hemispherical
vesicle at z=R ¼ 0:3, 0.5, 0.7. Interior and exterior PIV vectors
in each panel of (a) and (c) have been rescaled for visual clarity.
(d) Experimental streamlines of the three-dimensional velocity
field obtained by integrating two-dimensional flow fields, com-
pared with theory (e). Large arrows in (a), (d), and (e) indicate
direction of imposed shear flow.
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determined from the incompressibility relation. Figure 2(d)
shows a representative example of such streamlines.

To understand the flows set up in and around the vesicle,
we distill the essential results of a recent calculation [25].
Assume that the vesicle is a hemispherical cap of radius R
and origin x ¼ y ¼ z ¼ 0, adhered to the plane z ¼ 0,
and let (r, !, ") be spherical polars centered at the origin.
Given the fluid viscosity #" inside the vesicle (r < R), the
membrane viscosity#m, and the external fluid viscosity#þ
(r > R), we wish to find three velocity fields: u" inside the
vesicle, the two-dimensional flow um of the membrane,
and uþ outside the vesicle [Fig. 1(a)]. The two external
flows obey the unforced Stokes and incompressibility equa-
tions, #$r2u$ " rp$ ¼ 0 andr % u$ ¼ 0, with far-field
asymptotics uþ & _$zx̂ as r ! 1, the no-slip condition
u$ ¼ 0 on the plane ! ¼ %=2, and no radial penetration,
u$% r̂¼0 at r ¼ R. The three velocities must be continuous
across the membrane, uþ ¼ um ¼ u" at r ¼ R, and thus
there is the planar no-slip condition um ¼ 0 at ! ¼ %=2.

Without a membrane, the bulk fluids’ normal stresses
would be continuous at the interface, but a membrane can
support tension, so the bulk stresses may be discontinuous.
We assume that the membrane itself satisfies the Stokes
equations and incompressibility, r̂ % um ¼ 0, where r̂ is
the gradient operator constrained to the surface r ¼ R.
This is a well-studied problem for Langmuir monolayers
[29,30], but when the membrane is curved there is a
new contribution [31] to the force balance relation at the
membrane involving its Gaussian curvature K ¼ R"2. If
e$k ¼ er!!̂ þ er""̂ are the bulk fluids’ in-plane normal

rates of strain, the boundary condition is

#mðr̂2um þ KumÞ þ 2½#þe
þ
k " #"e

"
k *r¼R ¼ r̂!: (1)

For the case #þ ¼ #", the interior flows that emerge
from this calculation match closely those seen in experi-
ment. Cross-sectional profiles shown in Fig. 2(c) at various
elevations above the surface agree with the experimental
profiles, with significant counterflow both inside and out-
side the vesicle near its lateral edges, and over much of the
lowest cross section. The observed geometry of the internal
streamlines [Fig. 2(d)] follows that predicted theoretically
[Fig. 2(e)], and the maximum downstream membrane
speed is observed at the vesicle apex, as predicted. The
fluid motion external to the membrane and the orbiting of
domains within the membrane [Figs. 3(a) and 3(b)] are
both in agreement with theory. In addition to the circulat-
ing motion of the membrane domains we have observed
over long periods of time their gradual migration to the two
vortex centers on either side of the vesicle midline, leaving
a depleted region at the apex [Fig. 3(b)]. This appears to
be an example of the motion across streamlines described
by Bretherton [32]. Note also the existence of closed
streamlines outside the vesicle, as predicted [25].

By plotting the downstream velocity as a function of z
through the vesicle apex (Fig. 4), a direct quantitative

comparison can be made between theory and experiment.
The discontinuity in the derivative of the fluid velocity at
the membrane, set by the gradient of the membrane tension
through Eq. (1), is clearly seen in the downstream velocity
as a function of z through the vesicle apex (Fig. 4). This
provides perhaps the first direct measurement of tension
gradients within bilayer membranes under shear. For the
vesicles composed primarily of Lo phase the fluid velocity
within the vesicle is significantly lower than for Ld vesicles
as a direct consequence of the greater dissipation in the
former, as discussed further below. Returning to the

FIG. 3 (color online). Membrane and external flows.
(a) Selected external streamlines along one side of an Lo vesicle
in shear flow, showing closed orbits above the surface. (b) Time-
lapse confocal stack of an Lo vesicle, viewed from above,
illustrating circulation of Ld domains.

FIG. 4 (color online). Downstream velocity profile through
vesicle apex. Data for an Lo phase vesicle (black squares) and
an Ld phase vesicle (blue circles) are scaled by shear rate _$ and
vesicle radius R, displayed as a function of normalized height
above the coverslip surface. PIV experiments (symbols) show
quantitative agreement with theoretical velocity predictions
(lines) [25]. Inset: extended plot to show the slope discontinuity
at the membrane.
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Ever since the work of Saffman and Delbrück on the
dynamics of inclusions in biological membranes [1] it
has been recognized that lipid bilayers can be viewed as
ultrathin fluid layers endowed with a surface viscosity.
Along with that of the surrounding fluid, this viscosity
plays an important role in determining the translational
and rotational diffusion constants of inclusions within the
membrane [2]. A body of theoretical work [3,4] suggests
that nonequilibrium dynamics of vesicles in external flows
[5] can also be sensitive to the value of this viscosity [6].
As the membrane viscosity !m can be expressed as d" !,
where d is the membrane thickness and ! is the bilayer
fluid viscosity, the nanometric scale of d renders !m very
small. Not surprisingly, it has proven difficult to measure
!m; ingenious techniques that have been developed include
measurements of the motion of membrane-bound micro-
spheres [7], diffusion constants of domains in multicom-
ponent membranes [8,9], and observation of fluctuation
dynamics in membranes near a critical point [10,11].
Further afield, monolayers admit additional experimental
techniques, including methods based on surface rheology
[12] and microrheology methods such as observing dy-
namics of submerged optically trapped [13] or membrane-
bound [14] microspheres. Rheological experiments have
the advantage of being able to detect non-Newtonian
behavior [15].

Interest in membrane dynamics also extends to flows
within vesicles, especially in plant science, as the plant
vacuole is contained within the vacuolar membrane (or
tonoplast), which can comprise some of the largest lipid

vesicles known: in internodal cells of the aquatic plant
Chara corallina, these can be cylinders 1 mm in diameter
and up to 10 cm long [16]. This tonoplast is subject to
continuous hydrodynamic shear through the action of cyto-
plasmic streaming, motion of the cytoplasm surrounding
the vacuole [17]. Because of its potential role in transport
[18] there is great interest in the three-dimensional
characteristics of such shear-induced flows [19] and the
role played by the intervening tonoplast [20].

FIG. 1 (color online). Microfluidic shear experiment.
(a) Schematic of the chamber (not to scale) and flows.
(b) Confocal imaging reconstruction of an adhering hemispheri-
cal Lo phase vesicle with small Ld domains visible on its surface.
(c)–(d) Tracking of gel domains in Ld background (c) and Ld

domains in Lo background (d), flowing across the vesicle apex at
_" ¼ 2:6 s!1 (tracks color-coded in time over $2:6 s).
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Interest in membrane dynamics also extends to flows
within vesicles, especially in plant science, as the plant
vacuole is contained within the vacuolar membrane (or
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simulations and high flow uniformity (Fig. 2 and SI Appendix).
The accessible range of s was [0.05–0.32] s!1 and that of !/s was
[1.18–9.23]. To reduce error bars on S and ", the geometrical
parameters R and # of each vesicle were measured in situ from
a 3D reconstruction of its shape (20) in TT motion at low S, with
mean errors of 1.7% on R and of 6.1% on # within the range [0.3,
2.5]. Since only vesicles with " $ 1 were used in this work, there
is no error contribution from this parameter (20). Errors from
non-uniformity of the velocity field were below 2%; that cumu-
lates to overall mean errors of 8.7% on S and of 2% on ".

The experiments were performed in the following way. A
vesicle with given R and #, measured initially in situ in the same
device, was followed at a prescribed value of !/s and s in the
observation window. A feedback in the flow velocity was used to
hold a vesicle in the field of view for up to 10 TU/TR periods.
To explore the whole space of parameters (S, "), vesicles with
various values of R and # were loaded and individually observed,
and !/s was varied in steps during the experiment by changing
#P, which is the pressure difference between 2 inlets (see Fig. 1).
In this way the space of parameters (S, ") was populated with

A B

Fig. 1. (A) Schematic of the microfluidic 4-roll mill device; Q1 and Q2 are the flow discharges, whose ratio defines the flow type. The flow is driven by gravity,
and the ratio between the pressure drop P0 and the pressure difference between 2 inlets #P determines Q1/Q2. (B) f $ (1 ! !/s)/(1% !/s) as a function of the reduced
pressure drop (1- #P/P0). Inset: s as a function of (1 ! #P/P0). Large filled squares, P0 $ P; open squares, P0 $ 4/3P; small filled circles, P0 $ 5/3P, open circles, P0 $
2P (in our specific configuration P&750 Pa). The solid line is the 3D FEM simulation of the flow. Experimental imperfections due to soft lithography lead to
observable quantitative discrepancy with simulations.

Fig. 2. (A) Experimental streamlines images of the velocity fields for pure rotational (first column, !/s $ 43), mixed (second column, !/s $ 2.6) and pure shear
(third, !/s $ 1) flows; (B) Zoom of the same experimental flows; (C) velocity vector field representation of the same flows (PTV).
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An approach to quantitatively study vesicle dynamics as well as
biologically-related micro-objects in a fluid flow, which is based on
the combination of a dynamical trap and a control parameter, the
ratio of the vorticity to the strain rate, is suggested. The flow is
continuously varied between rotational, shearing, and elonga-
tional in a microfluidic 4-roll mill device, the dynamical trap, that
allows scanning of the entire phase diagram of motions, i.e.,
tank-treading (TT), tumbling (TU), and trembling (TR), using a
single vesicle even at ! " #in/#out " 1, where #in and #out are the
viscosities of the inner and outer fluids. This cannot be achieved in
pure shear flow, where the transition between TT and either TU or
TR is attained only at !>1. As a result, it is found that the vesicle
dynamical states in a general are presented by the phase diagram
in a space of only 2 dimensionless control parameters. The findings
are in semiquantitative accord with the recent theory made for a
quasi-spherical vesicle, although vesicles with large deviations
from spherical shape were studied experimentally. The physics of
TR is also uncovered.

Understanding the rheology of biofluids remains a great
challenge, whose progress relies, in a large part, on detailed

studies of the dynamics of a single cell. Vesicles are a model
system used to study the dynamic behavior of biological cells,
similar in some respects to red blood cells, and their dynamics in
shear flow have been the subject of intensive theoretical (1–8),
numerical (9–13), and experimental (14–18) investigations.

A vesicle is a droplet of viscous fluid encapsulated by a
phospholipid bilayer membrane suspended in a fluid of either
the same or different viscosity as the inner one. Both the volume
and the surface area of the vesicle are conserved. The former
means that the vesicle membrane is considered to be imperme-
able, at least on the time scale of the experiment, and the latter
means that the membrane dilatation is neglected since it is 2D
fluid (1,2). Experimental, theoretical, and computational efforts
during the last decade led to the observation and characteriza-
tion of 3 states in vesicle dynamics in shear flow. The existence
of the first 2, tank-treading (TT) and tumbling (TU), and the
transition between them were already predicted by a phenom-
enological model of Keller and Skalak (19) and its further
extensions (2,11,12). Two control parameters, the excess area
! " A/R2-4! and the viscosity contrast " " #in/#out, determine
the transition line "c(!) between TT and TU, which is indepen-
dent of the shear rate $̇ in the approximation of a fixed vesicle
shape, with the vesicle inclination angle % with respect to the flow
direction as the only dynamical variable (2,9,10,16–19). Here, R
is the effective vesicle radius, related to the volume via V "
4/3!R3, A is the vesicle surface area, and #in and #out are the
viscosities of the inner and outer fluids. Another analytical
approach based on a quasi-spherical vesicle approximated by a
spherical harmonics expansion used a perturbation scheme
around the Lamb solution of the Stokes flow near a spherical
body in external shear flow (1). Further refinement of the model
resulted in dynamic equations for vesicle shape and inclination
angle (3,4) and described rather well both the TT motion and the
transition line "c(!), as verified by the recent experiments
(16–18). However, the recent experimental key finding of a new
type of unsteady motion, which we dubbed trembling (TR), led
to reconsider both theoretical models (17). TR differs from TU
by oscillations in % of less than !/2 (rather than 2!) and by

stronger vesicle shape deformations (3,17). Moreover, a new
aspect is the dependence on $̇ of the separate regions of
existence of TR and TU (17). Precisely these features changed
the idea of vesicle dynamics as smooth and shape-preserved
motion and called for an adequate theoretical description.
Several theoretical models were suggested to describe the dy-
namics of all 3 states in shear flow, their regions of existence, and
transitions (5,7,13). As we have verified recently, only the 1 of
them presented in ref. 5 describes adequately the experimental
data (20). The main result of this model, which is based on the
approximation of !##1, second order spherical harmonics, and
neglecting thermal noise, is a self-similar solution, which reduces
the number of the dimensionless control parameters to just 2: S
' 7!$̇#outR3/$3&! and %' 4(1 & 23"/32)$!/$30!, where &
is the bending elasticity [taken further as & " 25 kBT'10(12 erg
(21)]. The phase diagram of the vesicle dynamical states is
2-dimensional, parameterized by the variables (S,%), and inde-
pendent of other geometrical parameters. To scan all 3 regimes
of motion and to trace transitions among them in a shear flow,
one should vary both $̇ and ", that is change the viscosities of
inner and outer fluids, which is an impossible task to realize on
an individual vesicle. Because of topology of the phase diagram
(5,20), the only remaining possibility with a single vesicle is to
scan transitions from TU to TR by varying $̇.

This limitation is overcome in a general f low, where the
velocity gradient can be written as 'iVk " sik & (ikj)j, where sik
is the symmetric strain tensor, )j the vorticity vector, and s "
$tr(sik

2 )/2 the strain rate. The corresponding control parameters
for vesicles in general f low (5) are S '14!s#outR3/3$3&! and
% " 4 (1 & 23"/32)$!()/s)/$30!. In this paper, we report the
phase diagram in such general f low. This approach uses an
additional control parameter )/s, which is fixed to unity in shear
flow (s " ) " $̇/2), to study vesicle dynamics [it was suggested
first by G. I. Taylor to study emulsions in a 4-roll mill (22)]. The
ratio can be easily varied continuously in the experiment,
evidencing transitions from TT to either TU or TR and from TU
to TR on the same vesicle with given R, !, and ". The
experimental path across the phase diagram depends on the
initial state and the way )/s and s are varied. The possibility to
observe all dynamical states with the same vesicle, even for " "
1 used in the current experiment, complements the previous
views based on the shear flow dynamics (2–4,7–20). On the other
hand, the experimental approach used here will be advantageous
to study the dynamics of other flexible microobjects, including
biological membranes and red blood cells, in flow.

Results and Discussion
Measurements of the vesicle dynamics were conducted in a
microfluidic 4-roll mill device (23,24) manufactured in silicone
elastomer by soft lithography (Fig. 1). Particle tracking veloci-
metry (PTV) measurements show fair agreement with numerical
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simulations and high flow uniformity (Fig. 2 and SI Appendix).
The accessible range of s was [0.05–0.32] s!1 and that of !/s was
[1.18–9.23]. To reduce error bars on S and ", the geometrical
parameters R and # of each vesicle were measured in situ from
a 3D reconstruction of its shape (20) in TT motion at low S, with
mean errors of 1.7% on R and of 6.1% on # within the range [0.3,
2.5]. Since only vesicles with " $ 1 were used in this work, there
is no error contribution from this parameter (20). Errors from
non-uniformity of the velocity field were below 2%; that cumu-
lates to overall mean errors of 8.7% on S and of 2% on ".

The experiments were performed in the following way. A
vesicle with given R and #, measured initially in situ in the same
device, was followed at a prescribed value of !/s and s in the
observation window. A feedback in the flow velocity was used to
hold a vesicle in the field of view for up to 10 TU/TR periods.
To explore the whole space of parameters (S, "), vesicles with
various values of R and # were loaded and individually observed,
and !/s was varied in steps during the experiment by changing
#P, which is the pressure difference between 2 inlets (see Fig. 1).
In this way the space of parameters (S, ") was populated with

A B

Fig. 1. (A) Schematic of the microfluidic 4-roll mill device; Q1 and Q2 are the flow discharges, whose ratio defines the flow type. The flow is driven by gravity,
and the ratio between the pressure drop P0 and the pressure difference between 2 inlets #P determines Q1/Q2. (B) f $ (1 ! !/s)/(1% !/s) as a function of the reduced
pressure drop (1- #P/P0). Inset: s as a function of (1 ! #P/P0). Large filled squares, P0 $ P; open squares, P0 $ 4/3P; small filled circles, P0 $ 5/3P, open circles, P0 $
2P (in our specific configuration P&750 Pa). The solid line is the 3D FEM simulation of the flow. Experimental imperfections due to soft lithography lead to
observable quantitative discrepancy with simulations.

Fig. 2. (A) Experimental streamlines images of the velocity fields for pure rotational (first column, !/s $ 43), mixed (second column, !/s $ 2.6) and pure shear
(third, !/s $ 1) flows; (B) Zoom of the same experimental flows; (C) velocity vector field representation of the same flows (PTV).
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An approach to quantitatively study vesicle dynamics as well as
biologically-related micro-objects in a fluid flow, which is based on
the combination of a dynamical trap and a control parameter, the
ratio of the vorticity to the strain rate, is suggested. The flow is
continuously varied between rotational, shearing, and elonga-
tional in a microfluidic 4-roll mill device, the dynamical trap, that
allows scanning of the entire phase diagram of motions, i.e.,
tank-treading (TT), tumbling (TU), and trembling (TR), using a
single vesicle even at ! " #in/#out " 1, where #in and #out are the
viscosities of the inner and outer fluids. This cannot be achieved in
pure shear flow, where the transition between TT and either TU or
TR is attained only at !>1. As a result, it is found that the vesicle
dynamical states in a general are presented by the phase diagram
in a space of only 2 dimensionless control parameters. The findings
are in semiquantitative accord with the recent theory made for a
quasi-spherical vesicle, although vesicles with large deviations
from spherical shape were studied experimentally. The physics of
TR is also uncovered.

Understanding the rheology of biofluids remains a great
challenge, whose progress relies, in a large part, on detailed

studies of the dynamics of a single cell. Vesicles are a model
system used to study the dynamic behavior of biological cells,
similar in some respects to red blood cells, and their dynamics in
shear flow have been the subject of intensive theoretical (1–8),
numerical (9–13), and experimental (14–18) investigations.

A vesicle is a droplet of viscous fluid encapsulated by a
phospholipid bilayer membrane suspended in a fluid of either
the same or different viscosity as the inner one. Both the volume
and the surface area of the vesicle are conserved. The former
means that the vesicle membrane is considered to be imperme-
able, at least on the time scale of the experiment, and the latter
means that the membrane dilatation is neglected since it is 2D
fluid (1,2). Experimental, theoretical, and computational efforts
during the last decade led to the observation and characteriza-
tion of 3 states in vesicle dynamics in shear flow. The existence
of the first 2, tank-treading (TT) and tumbling (TU), and the
transition between them were already predicted by a phenom-
enological model of Keller and Skalak (19) and its further
extensions (2,11,12). Two control parameters, the excess area
! " A/R2-4! and the viscosity contrast " " #in/#out, determine
the transition line "c(!) between TT and TU, which is indepen-
dent of the shear rate $̇ in the approximation of a fixed vesicle
shape, with the vesicle inclination angle % with respect to the flow
direction as the only dynamical variable (2,9,10,16–19). Here, R
is the effective vesicle radius, related to the volume via V "
4/3!R3, A is the vesicle surface area, and #in and #out are the
viscosities of the inner and outer fluids. Another analytical
approach based on a quasi-spherical vesicle approximated by a
spherical harmonics expansion used a perturbation scheme
around the Lamb solution of the Stokes flow near a spherical
body in external shear flow (1). Further refinement of the model
resulted in dynamic equations for vesicle shape and inclination
angle (3,4) and described rather well both the TT motion and the
transition line "c(!), as verified by the recent experiments
(16–18). However, the recent experimental key finding of a new
type of unsteady motion, which we dubbed trembling (TR), led
to reconsider both theoretical models (17). TR differs from TU
by oscillations in % of less than !/2 (rather than 2!) and by

stronger vesicle shape deformations (3,17). Moreover, a new
aspect is the dependence on $̇ of the separate regions of
existence of TR and TU (17). Precisely these features changed
the idea of vesicle dynamics as smooth and shape-preserved
motion and called for an adequate theoretical description.
Several theoretical models were suggested to describe the dy-
namics of all 3 states in shear flow, their regions of existence, and
transitions (5,7,13). As we have verified recently, only the 1 of
them presented in ref. 5 describes adequately the experimental
data (20). The main result of this model, which is based on the
approximation of !##1, second order spherical harmonics, and
neglecting thermal noise, is a self-similar solution, which reduces
the number of the dimensionless control parameters to just 2: S
' 7!$̇#outR3/$3&! and %' 4(1 & 23"/32)$!/$30!, where &
is the bending elasticity [taken further as & " 25 kBT'10(12 erg
(21)]. The phase diagram of the vesicle dynamical states is
2-dimensional, parameterized by the variables (S,%), and inde-
pendent of other geometrical parameters. To scan all 3 regimes
of motion and to trace transitions among them in a shear flow,
one should vary both $̇ and ", that is change the viscosities of
inner and outer fluids, which is an impossible task to realize on
an individual vesicle. Because of topology of the phase diagram
(5,20), the only remaining possibility with a single vesicle is to
scan transitions from TU to TR by varying $̇.

This limitation is overcome in a general f low, where the
velocity gradient can be written as 'iVk " sik & (ikj)j, where sik
is the symmetric strain tensor, )j the vorticity vector, and s "
$tr(sik

2 )/2 the strain rate. The corresponding control parameters
for vesicles in general f low (5) are S '14!s#outR3/3$3&! and
% " 4 (1 & 23"/32)$!()/s)/$30!. In this paper, we report the
phase diagram in such general f low. This approach uses an
additional control parameter )/s, which is fixed to unity in shear
flow (s " ) " $̇/2), to study vesicle dynamics [it was suggested
first by G. I. Taylor to study emulsions in a 4-roll mill (22)]. The
ratio can be easily varied continuously in the experiment,
evidencing transitions from TT to either TU or TR and from TU
to TR on the same vesicle with given R, !, and ". The
experimental path across the phase diagram depends on the
initial state and the way )/s and s are varied. The possibility to
observe all dynamical states with the same vesicle, even for " "
1 used in the current experiment, complements the previous
views based on the shear flow dynamics (2–4,7–20). On the other
hand, the experimental approach used here will be advantageous
to study the dynamics of other flexible microobjects, including
biological membranes and red blood cells, in flow.

Results and Discussion
Measurements of the vesicle dynamics were conducted in a
microfluidic 4-roll mill device (23,24) manufactured in silicone
elastomer by soft lithography (Fig. 1). Particle tracking veloci-
metry (PTV) measurements show fair agreement with numerical
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been identified as possible associates of Přı́bram11,12. In summer
2000, 4486 Mithra was well placed for observations by radar from
Arecibo and Goldstone. The object was found to be in unusual spin
state, double-lobed, and more severely bifurcated than any other
near-Earth asteroid targeted previously17. Such objects are typically
believed to be ‘rubble piles’, loosely bound by gravitation. During
close encounters with planets, these objects would be exposed to
tidal forces that could lead to their disruption or to the detachment
of significant amounts of near-surface rubble that would then be
found in orbits similar to that of the parent. This model could
possibly resolve the paradox of young streams containing different
classes of objects of long cosmic-ray exposure.

Further discussions of the origin of the ‘Přı́bram stream’ must
await the final results of the laboratory analyses of Neuschwanstein;
more data could be gained from clear identification of other
members of this stream (either meteorites or asteroids) in the
future. The Neuschwanstein and Přı́bram meteorites bring new
information to the discussions of the mechanisms of meteorite
delivery to the Earth, and demonstrate the importance of long-term
fireball observing programmes. A
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The ability of collapsing (cavitating) bubbles to focus and con-
centrate energy, forces and stresses is at the root of phenomena
such as cavitation damage, sonochemistry or sonolumines-
cence1,2. In a biomedical context, ultrasound-driven micro-
bubbles have been used to enhance contrast in ultrasonic
images3. The observation of bubble-enhanced sonoporation4–6—
acoustically induced rupture of membranes—has also opened up
intriguing possibilities for the therapeutic application of sono-
poration as an alternative to cell-wall permeation techniques
such as electroporation7 and particle guns8. However, these
pioneering experiments have not been able to pinpoint the
mechanism by which the violently collapsing bubble opens
pores or larger holes in membranes. Here we present an experi-
ment in which gentle (linear) bubble oscillations are sufficient to
achieve rupture of lipid membranes. In this regime, the bubble
dynamics and the ensuing sonoporation can be accurately con-
trolled. The use of microbubbles as focusing agents makes
acoustics on the micrometre scale (microacoustics) a viable
tool, with possible applications in cell manipulation and cell-
wall permeation as well as in microfluidic devices.
Most experiments assessing sonoporation have used strong

ultrasonic fields giving rise to amultitude of simultaneous phenom-
ena. The micrographs of ref. 4 suggest that the formation of
microjets may be involved, a process that is very difficult to control
andmodel9–11. Other candidates for damaging agents during bubble
collapse involve shockwaves emitted from the bubble12 and/or
subsequent heating of the cell wall13. All of these processes are
significant only when the bubble undergoes a fast, inertial collapse.
By constrast, some experiments14 demonstrated cell transfection
with moderate, off-resonance driving which should have resulted in
much weaker bubble oscillations. Our experiments use single
microbubbles fixed on a substrate, and use far smaller ultrasound
driving amplitudes, replacing the nonlinear dynamics of the inertial
collapse with gentle, linear oscillations. Linear oscillations can be
sufficient to rupture single cells, because the bubbles’ response
concentrates ultrasonic energy on the microscale, whereas it could
conventionally only be focused to about an ultrasonic wavelength (a
few centimetres or millimetres).
In our set-up (Fig. 1a), bubbles of about 10–100 mm radius are

attached by capillary forces to the walls of a quartz cuvette
(10mm £ 10mm £ 40mm), after they were generated by syringe
injection of air. A piezoelectric transducer provides a standing-wave
ultrasound field inside the cuvette, which is filled with a suspension
of either cells or lipid vesicles. We chose giant unilamellar lipid
vesicles (‘artificial cells’ consisting only of a lipid bilayer membrane)
as our primary object of study because of their well-defined
mechanical properties15,16. Using electroformation17, we obtained
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles with
radii of 10–100mm. We use fluorescence marking of either the
lipid itself or the interior of the vesicles (when grown in a fluorescent
dye solution and then transferred to the experiment). A high-speed
camera (#2,000 frames per second) connected to an inverted
microscope records phase contrast or fluorescence images of the
vesicles’ reaction to the bubble oscillation. When not using fluores-
cence, the contrast between bubbles and solution is enhanced by
growing the vesicles in a sucrose solution and transferring them to a
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been identified as possible associates of Přı́bram11,12. In summer
2000, 4486 Mithra was well placed for observations by radar from
Arecibo and Goldstone. The object was found to be in unusual spin
state, double-lobed, and more severely bifurcated than any other
near-Earth asteroid targeted previously17. Such objects are typically
believed to be ‘rubble piles’, loosely bound by gravitation. During
close encounters with planets, these objects would be exposed to
tidal forces that could lead to their disruption or to the detachment
of significant amounts of near-surface rubble that would then be
found in orbits similar to that of the parent. This model could
possibly resolve the paradox of young streams containing different
classes of objects of long cosmic-ray exposure.

Further discussions of the origin of the ‘Přı́bram stream’ must
await the final results of the laboratory analyses of Neuschwanstein;
more data could be gained from clear identification of other
members of this stream (either meteorites or asteroids) in the
future. The Neuschwanstein and Přı́bram meteorites bring new
information to the discussions of the mechanisms of meteorite
delivery to the Earth, and demonstrate the importance of long-term
fireball observing programmes. A
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The ability of collapsing (cavitating) bubbles to focus and con-
centrate energy, forces and stresses is at the root of phenomena
such as cavitation damage, sonochemistry or sonolumines-
cence1,2. In a biomedical context, ultrasound-driven micro-
bubbles have been used to enhance contrast in ultrasonic
images3. The observation of bubble-enhanced sonoporation4–6—
acoustically induced rupture of membranes—has also opened up
intriguing possibilities for the therapeutic application of sono-
poration as an alternative to cell-wall permeation techniques
such as electroporation7 and particle guns8. However, these
pioneering experiments have not been able to pinpoint the
mechanism by which the violently collapsing bubble opens
pores or larger holes in membranes. Here we present an experi-
ment in which gentle (linear) bubble oscillations are sufficient to
achieve rupture of lipid membranes. In this regime, the bubble
dynamics and the ensuing sonoporation can be accurately con-
trolled. The use of microbubbles as focusing agents makes
acoustics on the micrometre scale (microacoustics) a viable
tool, with possible applications in cell manipulation and cell-
wall permeation as well as in microfluidic devices.
Most experiments assessing sonoporation have used strong

ultrasonic fields giving rise to amultitude of simultaneous phenom-
ena. The micrographs of ref. 4 suggest that the formation of
microjets may be involved, a process that is very difficult to control
andmodel9–11. Other candidates for damaging agents during bubble
collapse involve shockwaves emitted from the bubble12 and/or
subsequent heating of the cell wall13. All of these processes are
significant only when the bubble undergoes a fast, inertial collapse.
By constrast, some experiments14 demonstrated cell transfection
with moderate, off-resonance driving which should have resulted in
much weaker bubble oscillations. Our experiments use single
microbubbles fixed on a substrate, and use far smaller ultrasound
driving amplitudes, replacing the nonlinear dynamics of the inertial
collapse with gentle, linear oscillations. Linear oscillations can be
sufficient to rupture single cells, because the bubbles’ response
concentrates ultrasonic energy on the microscale, whereas it could
conventionally only be focused to about an ultrasonic wavelength (a
few centimetres or millimetres).
In our set-up (Fig. 1a), bubbles of about 10–100 mm radius are

attached by capillary forces to the walls of a quartz cuvette
(10mm £ 10mm £ 40mm), after they were generated by syringe
injection of air. A piezoelectric transducer provides a standing-wave
ultrasound field inside the cuvette, which is filled with a suspension
of either cells or lipid vesicles. We chose giant unilamellar lipid
vesicles (‘artificial cells’ consisting only of a lipid bilayer membrane)
as our primary object of study because of their well-defined
mechanical properties15,16. Using electroformation17, we obtained
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles with
radii of 10–100mm. We use fluorescence marking of either the
lipid itself or the interior of the vesicles (when grown in a fluorescent
dye solution and then transferred to the experiment). A high-speed
camera (#2,000 frames per second) connected to an inverted
microscope records phase contrast or fluorescence images of the
vesicles’ reaction to the bubble oscillation. When not using fluores-
cence, the contrast between bubbles and solution is enhanced by
growing the vesicles in a sucrose solution and transferring them to a
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been identified as possible associates of Přı́bram11,12. In summer
2000, 4486 Mithra was well placed for observations by radar from
Arecibo and Goldstone. The object was found to be in unusual spin
state, double-lobed, and more severely bifurcated than any other
near-Earth asteroid targeted previously17. Such objects are typically
believed to be ‘rubble piles’, loosely bound by gravitation. During
close encounters with planets, these objects would be exposed to
tidal forces that could lead to their disruption or to the detachment
of significant amounts of near-surface rubble that would then be
found in orbits similar to that of the parent. This model could
possibly resolve the paradox of young streams containing different
classes of objects of long cosmic-ray exposure.

Further discussions of the origin of the ‘Přı́bram stream’ must
await the final results of the laboratory analyses of Neuschwanstein;
more data could be gained from clear identification of other
members of this stream (either meteorites or asteroids) in the
future. The Neuschwanstein and Přı́bram meteorites bring new
information to the discussions of the mechanisms of meteorite
delivery to the Earth, and demonstrate the importance of long-term
fireball observing programmes. A
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Z. Ceplecha and J. Borovička for discussions and contributions to analysis software. The German
part of the EN is operated by the German Aerospace Center (DLR), Berlin, the Czech part of the
EN is operated by the Astronomical Institute of the Academy of Sciences of the Czech Republic,
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The ability of collapsing (cavitating) bubbles to focus and con-
centrate energy, forces and stresses is at the root of phenomena
such as cavitation damage, sonochemistry or sonolumines-
cence1,2. In a biomedical context, ultrasound-driven micro-
bubbles have been used to enhance contrast in ultrasonic
images3. The observation of bubble-enhanced sonoporation4–6—
acoustically induced rupture of membranes—has also opened up
intriguing possibilities for the therapeutic application of sono-
poration as an alternative to cell-wall permeation techniques
such as electroporation7 and particle guns8. However, these
pioneering experiments have not been able to pinpoint the
mechanism by which the violently collapsing bubble opens
pores or larger holes in membranes. Here we present an experi-
ment in which gentle (linear) bubble oscillations are sufficient to
achieve rupture of lipid membranes. In this regime, the bubble
dynamics and the ensuing sonoporation can be accurately con-
trolled. The use of microbubbles as focusing agents makes
acoustics on the micrometre scale (microacoustics) a viable
tool, with possible applications in cell manipulation and cell-
wall permeation as well as in microfluidic devices.
Most experiments assessing sonoporation have used strong

ultrasonic fields giving rise to amultitude of simultaneous phenom-
ena. The micrographs of ref. 4 suggest that the formation of
microjets may be involved, a process that is very difficult to control
andmodel9–11. Other candidates for damaging agents during bubble
collapse involve shockwaves emitted from the bubble12 and/or
subsequent heating of the cell wall13. All of these processes are
significant only when the bubble undergoes a fast, inertial collapse.
By constrast, some experiments14 demonstrated cell transfection
with moderate, off-resonance driving which should have resulted in
much weaker bubble oscillations. Our experiments use single
microbubbles fixed on a substrate, and use far smaller ultrasound
driving amplitudes, replacing the nonlinear dynamics of the inertial
collapse with gentle, linear oscillations. Linear oscillations can be
sufficient to rupture single cells, because the bubbles’ response
concentrates ultrasonic energy on the microscale, whereas it could
conventionally only be focused to about an ultrasonic wavelength (a
few centimetres or millimetres).
In our set-up (Fig. 1a), bubbles of about 10–100 mm radius are

attached by capillary forces to the walls of a quartz cuvette
(10mm £ 10mm £ 40mm), after they were generated by syringe
injection of air. A piezoelectric transducer provides a standing-wave
ultrasound field inside the cuvette, which is filled with a suspension
of either cells or lipid vesicles. We chose giant unilamellar lipid
vesicles (‘artificial cells’ consisting only of a lipid bilayer membrane)
as our primary object of study because of their well-defined
mechanical properties15,16. Using electroformation17, we obtained
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles with
radii of 10–100mm. We use fluorescence marking of either the
lipid itself or the interior of the vesicles (when grown in a fluorescent
dye solution and then transferred to the experiment). A high-speed
camera (#2,000 frames per second) connected to an inverted
microscope records phase contrast or fluorescence images of the
vesicles’ reaction to the bubble oscillation. When not using fluores-
cence, the contrast between bubbles and solution is enhanced by
growing the vesicles in a sucrose solution and transferring them to a
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been identified as possible associates of Přı́bram11,12. In summer
2000, 4486 Mithra was well placed for observations by radar from
Arecibo and Goldstone. The object was found to be in unusual spin
state, double-lobed, and more severely bifurcated than any other
near-Earth asteroid targeted previously17. Such objects are typically
believed to be ‘rubble piles’, loosely bound by gravitation. During
close encounters with planets, these objects would be exposed to
tidal forces that could lead to their disruption or to the detachment
of significant amounts of near-surface rubble that would then be
found in orbits similar to that of the parent. This model could
possibly resolve the paradox of young streams containing different
classes of objects of long cosmic-ray exposure.

Further discussions of the origin of the ‘Přı́bram stream’ must
await the final results of the laboratory analyses of Neuschwanstein;
more data could be gained from clear identification of other
members of this stream (either meteorites or asteroids) in the
future. The Neuschwanstein and Přı́bram meteorites bring new
information to the discussions of the mechanisms of meteorite
delivery to the Earth, and demonstrate the importance of long-term
fireball observing programmes. A
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The ability of collapsing (cavitating) bubbles to focus and con-
centrate energy, forces and stresses is at the root of phenomena
such as cavitation damage, sonochemistry or sonolumines-
cence1,2. In a biomedical context, ultrasound-driven micro-
bubbles have been used to enhance contrast in ultrasonic
images3. The observation of bubble-enhanced sonoporation4–6—
acoustically induced rupture of membranes—has also opened up
intriguing possibilities for the therapeutic application of sono-
poration as an alternative to cell-wall permeation techniques
such as electroporation7 and particle guns8. However, these
pioneering experiments have not been able to pinpoint the
mechanism by which the violently collapsing bubble opens
pores or larger holes in membranes. Here we present an experi-
ment in which gentle (linear) bubble oscillations are sufficient to
achieve rupture of lipid membranes. In this regime, the bubble
dynamics and the ensuing sonoporation can be accurately con-
trolled. The use of microbubbles as focusing agents makes
acoustics on the micrometre scale (microacoustics) a viable
tool, with possible applications in cell manipulation and cell-
wall permeation as well as in microfluidic devices.
Most experiments assessing sonoporation have used strong

ultrasonic fields giving rise to amultitude of simultaneous phenom-
ena. The micrographs of ref. 4 suggest that the formation of
microjets may be involved, a process that is very difficult to control
andmodel9–11. Other candidates for damaging agents during bubble
collapse involve shockwaves emitted from the bubble12 and/or
subsequent heating of the cell wall13. All of these processes are
significant only when the bubble undergoes a fast, inertial collapse.
By constrast, some experiments14 demonstrated cell transfection
with moderate, off-resonance driving which should have resulted in
much weaker bubble oscillations. Our experiments use single
microbubbles fixed on a substrate, and use far smaller ultrasound
driving amplitudes, replacing the nonlinear dynamics of the inertial
collapse with gentle, linear oscillations. Linear oscillations can be
sufficient to rupture single cells, because the bubbles’ response
concentrates ultrasonic energy on the microscale, whereas it could
conventionally only be focused to about an ultrasonic wavelength (a
few centimetres or millimetres).
In our set-up (Fig. 1a), bubbles of about 10–100 mm radius are

attached by capillary forces to the walls of a quartz cuvette
(10mm £ 10mm £ 40mm), after they were generated by syringe
injection of air. A piezoelectric transducer provides a standing-wave
ultrasound field inside the cuvette, which is filled with a suspension
of either cells or lipid vesicles. We chose giant unilamellar lipid
vesicles (‘artificial cells’ consisting only of a lipid bilayer membrane)
as our primary object of study because of their well-defined
mechanical properties15,16. Using electroformation17, we obtained
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles with
radii of 10–100mm. We use fluorescence marking of either the
lipid itself or the interior of the vesicles (when grown in a fluorescent
dye solution and then transferred to the experiment). A high-speed
camera (#2,000 frames per second) connected to an inverted
microscope records phase contrast or fluorescence images of the
vesicles’ reaction to the bubble oscillation. When not using fluores-
cence, the contrast between bubbles and solution is enhanced by
growing the vesicles in a sucrose solution and transferring them to a
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Chapter 3

Membranes

The discussion in this section builds on the review article [Sei97] and the textbook [OLXY99].

3.1 Reminder: 2D di↵erential geometry

We consider an orientable surface in R3. Possible local parameterizations are

F (s
1

, s
2

) 2 R3 (3.1)

where (s
1

, s
2

) 2 U ✓ R2. Alternatively, if one chooses Cartesian coordinates (s
1

, s
2

) =
(x, y), then it su�ces to specify

z = f(x, y) (3.2a)

or, equivalently, the implicit representation

�(x, y, z) = z � f(x, y). (3.2b)

The vector representation (3.1) can be related to the ‘height’ representation (3.2a) by

F (x, y) =

0

@
x
y

f(x, y)

1

A (3.3)

Denoting derivatives by F i = @s1F , we introduce the surface metric tensor g = (gij) by

gij = F i · F j, (3.4a)

abbreviate its determinant by

|g| := det g, (3.4b)

and define the associated Laplace-Beltrami operator r2 by

r2h =
1p
|g|

@i(g
�1

ij

p
|g|@jh), (3.4c)

49

Chapter 3

Membranes

The discussion in this section builds on the review article [Sei97] and the textbook [OLXY99].

3.1 Reminder: 2D di↵erential geometry

We consider an orientable surface in R3. Possible local parameterizations are

F (s
1

, s
2

) 2 R3 (3.1)

where (s
1

, s
2

) 2 U ✓ R2. Alternatively, if one chooses Cartesian coordinates (s
1

, s
2

) =
(x, y), then it su�ces to specify

z = f(x, y) (3.2a)

or, equivalently, the implicit representation

�(x, y, z) = z � f(x, y). (3.2b)

The vector representation (3.1) can be related to the ‘height’ representation (3.2a) by

F (x, y) =

0

@
x
y

f(x, y)

1

A (3.3)

Denoting derivatives by F i = @s1F , we introduce the surface metric tensor g = (gij) by

gij = F i · F j, (3.4a)

abbreviate its determinant by

|g| := det g, (3.4b)

and define the associated Laplace-Beltrami operator r2 by

r2h =
1p
|g|

@i(g
�1

ij

p
|g|@jh), (3.4c)

49

mailto:dunkel@math.mit.edu


dunkel@math.mit.edu

Chapter 3

Membranes

The discussion in this section builds on the review article [Sei97] and the textbook [OLXY99].

3.1 Reminder: 2D di↵erential geometry

We consider an orientable surface in R3. Possible local parameterizations are

F (s
1

, s
2

) 2 R3 (3.1)

where (s
1

, s
2

) 2 U ✓ R2. Alternatively, if one chooses Cartesian coordinates (s
1

, s
2

) =
(x, y), then it su�ces to specify

z = f(x, y) (3.2a)

or, equivalently, the implicit representation

�(x, y, z) = z � f(x, y). (3.2b)

The vector representation (3.1) can be related to the ‘height’ representation (3.2a) by

F (x, y) =

0

@
x
y

f(x, y)

1

A (3.3)

Denoting derivatives by F i = @s1F , we introduce the surface metric tensor g = (gij) by

gij = F i · F j, (3.4a)

abbreviate its determinant by

|g| := det g, (3.4b)

and define the associated Laplace-Beltrami operator r2 by

r2h =
1p
|g|

@i(g
�1

ij

p
|g|@jh), (3.4c)

49for some function h(s
1

, s
2

). For the Cartesian parameterization (3.3), one finds explicitly

F x(x, y) =

0

@
1
0
fx

1

A , F y(x, y) =

0

@
0
1
fy

1

A (3.5)

and, hence, the metric tensor

g = (gij) =

✓
F x · F x F x · F y

F y · F x F y · F y

◆
=

✓
1 + f 2

x fxfy
fyfx 1 + f 2

y

◆
(3.6a)

and its determinant

|g| = 1 + f 2

x + f 2

y , (3.6b)

where fx = @xf and fy = @yf . For later use, we still note that the inverse of the metric
tensor is given by

g�1 = (g�1

ij ) =
1

1 + f 2

x + f 2

y

✓
1 + f 2

y �fxfy
�fyfx 1 + f 2

x

◆
. (3.6c)

Assuming the surface is regular at (s
1

, s
2

), which just means that the tangent vectors F
1

and F

2

are linearly independent, the local unit normal vector is defined by

N =
F

1

^ F

2

||F
1

^ F

2

|| . (3.7)

In terms of the Cartesian parameterization, this can also be rewritten as

N =
r�

||r�|| =
1p

1 + f 2

x + f 2

y

0

@
�fx
�fy
1

1

A . (3.8)

Here, we have adopted the convention that {F
1

,F
2

,N} form a right-handed system.
To formulate ‘geometric’ energy functionals for membranes, we still require the concept

of curvature, which quantifies the local bending of the membrane. We define a 2 ⇥ 2-
curvature tensor R = (Rij) by

Rij = N · (F ij) (3.9)

and local mean curvature H and local Gauss curvature K by

H =
1

2
tr (g�1 ·R) , K = det(g�1 ·R). (3.10)

Adopting the Cartesian representation (3.2a), we have

F xx =

0

@
0
0
fxx

1

A , F xy = F yx =

0

@
0
0
fxy

1

A , F yy =

0

@
0
0
fyy

1

A (3.11a)
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yielding the curvature tensor

(Rij) =

✓
N · F xx N · F xy

N · F yx N · F yy

◆
=

1p
1 + f 2

x + f 2

y

✓
fxx fxy
fyx fyy

◆
(3.11b)

Denoting the eigenvalues of the matrix g�1 · R by 
1

and 
2

, we obtain for the mean
curvature

H =
1

2
(

1

+ 
2

) =
(1 + f 2

y )fxx � 2fxfyfxy + (1 + f 2

x)fyy
2(1 + f 2

x + f 2

y )
3/2

(3.12)

and for the Gauss curvature

K = 
1

· 
2

=
fxxfyy � f 2

xy

(1 + f 2

x + f 2

y )
2

. (3.13)

An important result that relates curvature and topology is the Gauss-Bonnet theorem,
which states that any compact two-dimensional Riemannian manifold M with smooth
boundary @M , Gauss curvature K and geodesic curvature kg of @M satisfies the integral
equation

Z

M

K dA+

I

@M

kg ds = 2⇡ �(M). (3.14)

Here, dA is the area element on M , ds the line element along @M , and �(M) the Euler
characteristic of M . The latter is given by �(M) = 2�2g, where g is the genus (number of
handles) of M . For example, the 2-sphere M = S2 has g = 0 handles and hence �(S2) = 2,
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Euler characteristic:!
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Octahedron 6 12 8 2

Dodecahedron 20 30 12 2

Icosahedron 12 30 20 2
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Inserting the Lagrangian L =
p

|g|, one finds
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"
@x

 
fxp
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y

!
+ @y

 
fyp
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y

!#
(3.18)

which may be recast in the form
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x)fyy
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x + f 2

y )
3/2

= �2H. (3.19)

Thus, minimal surfaces satisfy

H = 0 , 
1

= �
2

, (3.20)

implying that each point of a minimal surface is a saddle point.

3.3 Thermal excitations of almost flat membranes

Assuming that a quasi-infinite membrane prefers a flat configuration, we postulate the
energy functional

E =

Z
dA fc , fc =

kc
2
(2H)2. (3.21a)

The constant kc is the bending rigidity and carries dimensions of energy. For an almost
planar membrane with |fx|, |fy| ⌧ 1, we may approximate

2H ' fxx + fyy, (3.22)

which gives to leading order for the energy

E ' kc
2

Z
dxdy (fxx + fyy)

2. (3.23)

Similar to our earlier discussion of polymers, we would like to express the energy in terms
of contributions from elementary excitations. To this end, we abbreviate x = (x, y) and
consider the Fourier ansatz

f(x) =

Z
d2q

(2⇡)2
f̂
q

exp(iq · x), (3.24)
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, we obtain for the mean
curvature

H =
1

2
(

1

+ 
2

) =
(1 + f 2

y )fxx � 2fxfyfxy + (1 + f 2

x)fyy
2(1 + f 2
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3/2

(3.12)

and for the Gauss curvature

K = 
1

· 
2

=
fxxfyy � f 2

xy

(1 + f 2

x + f 2

y )
2

. (3.13)

An important result that relates curvature and topology is the Gauss-Bonnet theorem,
which states that any compact two-dimensional Riemannian manifold M with smooth
boundary @M , Gauss curvature K and geodesic curvature kg of @M satisfies the integral
equation

Z

M

K dA+

I

@M

kg ds = 2⇡ �(M). (3.14)

Here, dA is the area element on M , ds the line element along @M , and �(M) the Euler
characteristic of M . The latter is given by �(M) = 2�2g, where g is the genus (number of
handles) of M . For example, the 2-sphere M = S2 has g = 0 handles and hence �(S2) = 2,
whereas a two-dimensional torus M = T2 has g = 1 handle and therefore �(T2) = 0.

Equation (3.14) implies that, for any closed surface, the integral over K is always a
constant. That is, for closed membranes, the first integral in Eq. (3.14) represents just a
trivial (constant) energetic contribution.

3.2 Minimal surfaces

Minimal surfaces are surfaces that minimize the area within a given contour @M ,

A(M |@M) =

Z

M

dA = min! (3.15)

Assuming a Cartesian parameterization z = f(x, y) and abbreviating fi = @if as before,
we have

dA =
p

|g| dxdy =
q
1 + f 2

x + f 2

y dxdy =: L dxdy, (3.16)

and the minimum condition (3.15) can be expressed in terms of the Euler-Lagrange equa-
tions

0 =
�A

�f
= �@i

@L

@fi
. (3.17)
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Inserting the Lagrangian L =
p
|g|, one finds

0 = �
"
@x

 
fxp
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!
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fyp

1 + f 2
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y

!#
(3.18)

which may be recast in the form

0 =
(1 + f 2

y )fxx � 2fxfyfxy + (1 + f 2

x)fyy
(1 + f 2

x + f 2

y )
3/2

= �2H. (3.19)

Thus, minimal surfaces satisfy

H = 0 , 
1

= �
2

, (3.20)

implying that each point of a minimal surface is a saddle point.

3.3 Thermal excitations of almost flat membranes

Assuming that a quasi-infinite membrane prefers a flat configuration, we postulate the
energy functional

E =

Z
dA fc , fc =

kc
2
(2H)2. (3.21a)

The constant kc is the bending rigidity and carries dimensions of energy. For an almost
planar membrane with |fx|, |fy| ⌧ 1, we may approximate

2H ' fxx + fyy, (3.22)

which gives to leading order for the energy

E ' kc
2

Z
dxdy (fxx + fyy)

2. (3.23)

Similar to our earlier discussion of polymers, we would like to express the energy in terms
of contributions from elementary excitations. To this end, we abbreviate x = (x, y) and
consider the Fourier ansatz

f(x) =

Z
d2q

(2⇡)2
f̂
q

exp(iq · x), (3.24)
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demanding f̂�q

= f̂ ⇤
q

to ensure real-valued solutions. Inserting the Fourier expansion
into (3.23) gives

E ' kc
2
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Z
dxdy (iq)2(iq0)2f̂

q
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q
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=
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2

Z
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q

f̂�q

=
kc
2

Z
d2q

(2⇡)2
|q|4f̂

q

f̂ ⇤
q

. (3.25)

We see that each bending mode contributes an energy E(q) / |q|4 to the total bending
energy, in agreement with our results for the bending of rigid polymers. Using standard
Gaussian path integral formulas, we can compute the thermal correlation function1

hf̂
q

f̂ ⇤
q

0i =

Z
Df̂ f̂

q

f̂ ⇤
q

0
e��E

Z

=

Z
Df̂ f̂

q
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q

0
e
�� kc

2(2⇡)2

R
d2qd2q0 �(q�q

0
)|q|4 ˆfq ˆf⇤

q0

Z

=
kBT

kc|q|4
(2⇡)2�(q � q

0). (3.27)

This result can be used to calculate the thermal mean squared deviations of the derivatives

hf 2

x + f 2

y i = �
Z

d2q

(2⇡)2

Z
d2q0

(2⇡)2
(q · q0)hf̂
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0i
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(2⇡)2
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d|q|
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kBT

kc|q|
, (3.28)

1Recall that for a d-dimensional Gaussian integral with positive-definite diagonal matrix A =
diag(A11, . . . , Add

) = (A
ii

�

ij

)

Z
d

d

x

✓
detA

2⇡

◆1/2

e

� 1
2x·A·x

x

i

x

j

=
�

ij

A

ii

. (3.26)

Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
path integral in terms of real and imaginary part and by noting that

R
dq

0
�(q� q

0) �(q0 � q

00) = �(q� q

00),
hence �

�1 = � in this sense.
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Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
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Inserting the Lagrangian L =
p
|g|, one finds
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which may be recast in the form

0 =
(1 + f 2

y )fxx � 2fxfyfxy + (1 + f 2

x)fyy
(1 + f 2

x + f 2

y )
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Thus, minimal surfaces satisfy

H = 0 , 
1
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2

, (3.20)

implying that each point of a minimal surface is a saddle point.

3.3 Thermal excitations of almost flat membranes

Assuming that a quasi-infinite membrane prefers a flat configuration, we postulate the
energy functional

E =

Z
dA fc , fc =

kc
2
(2H)2. (3.21a)

The constant kc is the bending rigidity and carries dimensions of energy. For an almost
planar membrane with |fx|, |fy| ⌧ 1, we may approximate

2H ' fxx + fyy, (3.22)

which gives to leading order for the energy

E ' kc
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Z
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2. (3.23)

Similar to our earlier discussion of polymers, we would like to express the energy in terms
of contributions from elementary excitations. To this end, we abbreviate x = (x, y) and
consider the Fourier ansatz

f(x) =

Z
d2q

(2⇡)2
f̂
q

exp(iq · x), (3.24)
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We see that each bending mode contributes an energy E(q) / |q|4 to the total bending
energy, in agreement with our results for the bending of rigid polymers. Using standard
Gaussian path integral formulas, we can compute the thermal correlation function1
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This result can be used to calculate the thermal mean squared deviations of the derivatives
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Inserting the Lagrangian L =
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which may be recast in the form
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Thus, minimal surfaces satisfy
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implying that each point of a minimal surface is a saddle point.

3.3 Thermal excitations of almost flat membranes

Assuming that a quasi-infinite membrane prefers a flat configuration, we postulate the
energy functional
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The constant kc is the bending rigidity and carries dimensions of energy. For an almost
planar membrane with |fx|, |fy| ⌧ 1, we may approximate
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Similar to our earlier discussion of polymers, we would like to express the energy in terms
of contributions from elementary excitations. To this end, we abbreviate x = (x, y) and
consider the Fourier ansatz
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We see that each bending mode contributes an energy E(q) / |q|4 to the total bending
energy, in agreement with our results for the bending of rigid polymers. Using standard
Gaussian path integral formulas, we can compute the thermal correlation function1
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This result can be used to calculate the thermal mean squared deviations of the derivatives
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Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
path integral in terms of real and imaginary part and by noting that
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Inserting the Lagrangian L =
p
|g|, one finds
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which may be recast in the form
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y )
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Thus, minimal surfaces satisfy
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2

, (3.20)

implying that each point of a minimal surface is a saddle point.

3.3 Thermal excitations of almost flat membranes

Assuming that a quasi-infinite membrane prefers a flat configuration, we postulate the
energy functional
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The constant kc is the bending rigidity and carries dimensions of energy. For an almost
planar membrane with |fx|, |fy| ⌧ 1, we may approximate
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which gives to leading order for the energy
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Similar to our earlier discussion of polymers, we would like to express the energy in terms
of contributions from elementary excitations. To this end, we abbreviate x = (x, y) and
consider the Fourier ansatz
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We see that each bending mode contributes an energy E(q) / |q|4 to the total bending
energy, in agreement with our results for the bending of rigid polymers. Using standard
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This result can be used to calculate the thermal mean squared deviations of the derivatives
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Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
path integral in terms of real and imaginary part and by noting that
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Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
path integral in terms of real and imaginary part and by noting that
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Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
path integral in terms of real and imaginary part and by noting that
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Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
path integral in terms of real and imaginary part and by noting that
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Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
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Need to introduce cut-offs ! 

where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding
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Z
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(2⇡)/L

d|q|
|q| =

kBT
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ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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which gives

�V

�f
= 1. (3.36)

For open membranes with boundary @M , a plausible energy functional is given by

Fo =

Z
dA fc + �

Z
dA+ �

I

@M

ds, (3.37)

where � is the line tension of the boundary. In this case, variation yields not only the
corresponding shape equation but also a non-trivial set of boundary conditions.
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

hf 2

x + f 2

y i =
kBT

2⇡kc

Z
(2⇡)/a

(2⇡)/L

d|q|
|q| =

kBT

2⇡kc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| ⌧ 1, we see that the notion of planar membrane
is only meaningful as long as hf 2

x + f 2

y i ⌧ 1, or equivalently if

L ⌧ LP = ae2⇡kc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition hf 2

x + f 2

y i = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2
(2H � c

0

)2 + kG K, (3.31)

where constants kc, kG are bending rigidities and c
0

is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

Z
dA fc + �

Z
dA+�p

Z
dV, (3.32)

where � is the surface tension and �p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

�p� 2�H + kc(2H � c
0

)(2H2 + c
0

H � 2K) + kcr2(2H � c
0

) = 0, (3.33)

where r2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

�A

�f
= �2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

Z
dV =

Z
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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which gives

�V

�f
= 1. (3.36)

For open membranes with boundary @M , a plausible energy functional is given by

Fo =

Z
dA fc + �

Z
dA+ �

I

@M

ds, (3.37)

where � is the line tension of the boundary. In this case, variation yields not only the
corresponding shape equation but also a non-trivial set of boundary conditions.

55

mailto:dunkel@math.mit.edu

