Fluctuation-dissipation relations

\&
fluctuation theorems
I8.S995-LII

1.7 Fluctuation-dissipation relation

$$
\begin{aligned}
d x_{i} & =\frac{\partial H}{\partial p_{i}} d t \\
d p_{i} & =-\frac{\partial H}{\partial x_{i}} d t-\gamma p_{i} d t+\sqrt{2 \mathcal{D}} d B_{i}(t)
\end{aligned}
$$

1.7 Fluctuation-dissipation relation

$$
\begin{aligned}
d x_{i} & =\frac{\partial H}{\partial p_{i}} d t \\
d p_{i} & =-\frac{\partial H}{\partial x_{i}} d t-\gamma p_{i} d t+\sqrt{2 \mathcal{D}} d B_{i}(t) .
\end{aligned}
$$

If the Hamiltonian has the standard form

$$
\begin{equation*}
H=\sum_{i} \frac{p_{i}^{2}}{2 m}+U\left(x_{1}, \ldots, x_{N}\right) \tag{1.133}
\end{equation*}
$$

corresponding to momentum coordinates $p_{i}=m \dot{x}_{i}$, then the overdamped SDE is formally recovered by assuming $d p_{i} \simeq 0$ in Eq. (1.132b) and dividing by $m \gamma$, yielding

$$
\begin{equation*}
d x_{i}=-\frac{1}{m \gamma} \frac{\partial U}{\partial x_{i}} d t+\sqrt{\frac{2 \mathcal{D}}{m^{2} \gamma^{2}}} d B_{i}(t) \tag{1.134}
\end{equation*}
$$

We see that the spatial diffusion constant D and the momentum diffusion constant \mathcal{D} are related by

$$
\begin{equation*}
D=\frac{\mathcal{D}}{m^{2} \gamma^{2}} \tag{1.135}
\end{equation*}
$$

1.7 Fluctuation-dissipation relation

$$
\begin{aligned}
d x_{i} & =\frac{\partial H}{\partial p_{i}} d t \\
d p_{i} & =-\frac{\partial H}{\partial x_{i}} d t-\gamma p_{i} d t+\sqrt{2 \mathcal{D}} d B_{i}(t) .
\end{aligned}
$$

The Fokker-Planck equation (FPE) governing the phase space $\operatorname{PDF} f\left(t, x_{1}, \ldots, x_{N}, p_{1}, \ldots, p_{N}\right)$ of the stochastic process (1.132) reads

$$
\begin{equation*}
\partial_{t} f+\sum_{i}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial f}{\partial p_{i}}\right)=\sum_{i} \frac{\partial}{\partial p_{i}}\left(\gamma p_{i} f+\mathcal{D} \frac{\partial f}{\partial p_{i}}\right) \tag{1.136}
\end{equation*}
$$

1.7 Fluctuation-dissipation relation

$$
\begin{aligned}
d x_{i} & =\frac{\partial H}{\partial p_{i}} d t \\
d p_{i} & =-\frac{\partial H}{\partial x_{i}} d t-\gamma p_{i} d t+\sqrt{2 \mathcal{D}} d B_{i}(t) .
\end{aligned}
$$

The Fokker-Planck equation (FPE) governing the phase space $\operatorname{PDF} f\left(t, x_{1}, \ldots, x_{N}, p_{1}, \ldots, p_{N}\right)$ of the stochastic process (1.132) reads

$$
\begin{equation*}
\partial_{t} f+\sum_{i}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial f}{\partial p_{i}}\right)=\sum_{i} \frac{\partial}{\partial p_{i}}\left(\gamma p_{i} f+\mathcal{D} \frac{\partial f}{\partial p_{i}}\right) \tag{1.136}
\end{equation*}
$$

The lhs. vanishes if f is a function of the Hamiltonian H. The rhs. vanishes for the particular ansatz

$$
\begin{equation*}
f=\frac{1}{Z} \exp \left(-\frac{H}{k_{B} T}\right) . \tag{1.137}
\end{equation*}
$$

1.7 Fluctuation-dissipation relation

$$
\partial_{t} f+\sum_{i}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial f}{\partial p_{i}}\right)=\sum_{i} \frac{\partial}{\partial p_{i}}\left(\gamma p_{i} f+\mathcal{D} \frac{\partial f}{\partial p_{i}}\right)
$$

The lhs. vanishes if f is a function of the Hamiltonian H. The rhs. vanishes for the particular ansatz

$$
\begin{equation*}
f=\frac{1}{Z} \exp \left(-\frac{H}{k_{B} T}\right) . \tag{1.137}
\end{equation*}
$$

1.7 Fluctuation-dissipation relation

$$
\partial_{t} f+\sum_{i}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial f}{\partial p_{i}}\right)=\sum_{i} \frac{\partial}{\partial p_{i}}\left(\gamma p_{i} f+\mathcal{D} \frac{\partial f}{\partial p_{i}}\right)
$$

The lhs. vanishes if f is a function of the Hamiltonian H. The rhs. vanishes for the particular ansatz

$$
\begin{equation*}
f=\frac{1}{Z} \exp \left(-\frac{H}{k_{B} T}\right) . \tag{1.137}
\end{equation*}
$$

where T is the temperature of the surrounding heat bath. To see this, note that

$$
\begin{equation*}
\frac{\partial f}{\partial p_{i}}=-\frac{1}{k_{B} T} \frac{\partial H}{\partial p_{i}} \frac{1}{Z} \exp \left(-\frac{H}{k_{B} T}\right)=-\frac{1}{k_{B} T} \frac{p_{i}}{m} f \tag{1.138}
\end{equation*}
$$

so that the components of the dissipative momentum current,

$$
\begin{equation*}
J_{i}=-\left(\gamma p_{i} f+\mathcal{D} \frac{\partial f}{\partial p_{i}}\right)=-\left(\gamma p_{i} f-\frac{\mathcal{D}}{k_{B} T} \frac{p_{i}}{m} f\right)=-\left(\gamma-\frac{\mathcal{D}}{m k_{B} T}\right) p_{i} f \tag{1.139}
\end{equation*}
$$

1.7 Fluctuation-dissipation relation

$$
\partial_{t} f+\sum_{i}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial f}{\partial p_{i}}\right)=\sum_{i} \frac{\partial}{\partial p_{i}}\left(\gamma p_{i} f+\mathcal{D} \frac{\partial f}{\partial p_{i}}\right)
$$

The lhs. vanishes if f is a function of the Hamiltonian H. The rhs. vanishes for the particular ansatz

$$
\begin{equation*}
f=\frac{1}{Z} \exp \left(-\frac{H}{k_{B} T}\right) . \tag{1.137}
\end{equation*}
$$

where T is the temperature of the surrounding heat bath. To see this, note that

$$
\begin{equation*}
\frac{\partial f}{\partial p_{i}}=-\frac{1}{k_{B} T} \frac{\partial H}{\partial p_{i}} \frac{1}{Z} \exp \left(-\frac{H}{k_{B} T}\right)=-\frac{1}{k_{B} T} \frac{p_{i}}{m} f \tag{1.138}
\end{equation*}
$$

so that the components of the dissipative momentum current,

$$
\begin{equation*}
J_{i}=-\left(\gamma p_{i} f+\mathcal{D} \frac{\partial f}{\partial p_{i}}\right)=-\left(\gamma p_{i} f-\frac{\mathcal{D}}{k_{B} T} \frac{p_{i}}{m} f\right)=-\left(\gamma-\frac{\mathcal{D}}{m k_{B} T}\right) p_{i} f \tag{1.139}
\end{equation*}
$$

vanishes if

$$
\begin{equation*}
\mathcal{D}=\gamma m k_{B} T \quad \Leftrightarrow \quad D=\frac{k_{B} T}{\gamma m} . \tag{1.140}
\end{equation*}
$$

1.8 Fluctuation theorems

http://hansmalab.physics.ucsb.edu/forcespec.html

Single-molecule force measuring experiments by using AFM (a) and laser tweezers (b).

Hummer G , and Szabo A PNAS 2001;98:3658-3661

LETTERS

DNA overwinds when stretched

Jeff Gore ${ }^{1} \dagger$, Zev Bryant ${ }^{2,4} \dagger$, Marcelo Nöllmann², Mai U. Le ${ }^{2}$, Nicholas R. Cozzarelli ${ }^{2} \ddagger$ \& Carlos Bustamante ${ }^{1-4}$

1.8 Fluctuation theorems

The total Hamiltonian comprising the system of interest, e.g. a DNA molecule described by coordinates $\boldsymbol{x}(t)$), its environment \boldsymbol{y} and mutual interactions reads

$$
\begin{equation*}
H(\boldsymbol{x}, \boldsymbol{y} ; \lambda(t))=H(\boldsymbol{x} ; \lambda(t))+H_{\mathrm{env}}(\boldsymbol{y})+H_{\mathrm{int}}(\boldsymbol{x}, \boldsymbol{y}) \tag{1.141}
\end{equation*}
$$

Fixed wall

$$
H(\boldsymbol{x} ; \lambda(t))=\sum_{i=1}^{3} \frac{p_{i}^{2}}{2 m}+\sum_{k=0}^{2} u\left(z_{k+1}-z_{k}\right)+u\left(\lambda-z_{3}\right)
$$

1.8 Fluctuation theorems

The total Hamiltonian comprising the system of interest, e.g. a DNA molecule described by coordinates $\boldsymbol{x}(t)$), its environment \boldsymbol{y} and mutual interactions reads

$$
\begin{equation*}
\mathcal{H}(\boldsymbol{x}, \boldsymbol{y} ; \lambda(t))=H(\boldsymbol{x} ; \lambda(t))+H_{\mathrm{env}}(\boldsymbol{y})+H_{\mathrm{int}}(\boldsymbol{x}, \boldsymbol{y}) \tag{1.141}
\end{equation*}
$$

1.8 Fluctuation theorems

The total Hamiltonian comprising the system of interest, e.g. a DNA molecule described by coordinates $\boldsymbol{x}(t)$), its environment \boldsymbol{y} and mutual interactions reads

$$
\begin{equation*}
\mathcal{H}(\boldsymbol{x}, \boldsymbol{y} ; \lambda(t))=H(\boldsymbol{x} ; \lambda(t))+H_{\mathrm{env}}(\boldsymbol{y})+H_{\mathrm{int}}(\boldsymbol{x}, \boldsymbol{y}) \tag{1.141}
\end{equation*}
$$

$$
\delta W:=d \lambda \frac{\partial H}{\partial \lambda}(\boldsymbol{x} ; \lambda)
$$

$$
W=\int \delta W=\int_{0}^{\tau} d t \dot{\lambda}(t) \frac{\partial H}{\partial \lambda}(\boldsymbol{x}(t) ; \lambda(t))
$$

1.8 Fluctuation theorems

Repeat process and measure

$$
W=\int \delta W=\int_{0}^{\tau} d t \dot{\lambda}(t) \frac{\partial H}{\partial \lambda}(\boldsymbol{x}(t) ; \lambda(t))
$$

we will observe different values of work $\left\{W_{1}, W_{2}, \ldots,\right\}$

$$
\begin{equation*}
\langle G(W)\rangle:=\int d W \rho(W) G(W), \tag{1.145}
\end{equation*}
$$

FTs = exact (in)equalities for certain $G(W)$

Reminder: Canonical free energy

$$
\mathcal{H}(\boldsymbol{x}, \boldsymbol{y} ; \lambda(t))=H(\boldsymbol{x} ; \lambda(t))+H_{\mathrm{env}}(\boldsymbol{y})+H_{\mathrm{int}}(\boldsymbol{x}, \boldsymbol{y}) \underset{0}{0} 0
$$

To simplify the subsequent discussion, let us assume that we are able to decouple the system from the environment ${ }^{21}$ at time $t=0$, and assume that at time $t=0$ the PDF of the system state is given by a canonical distribution

$$
\begin{equation*}
f\left(\boldsymbol{x}_{0} ; \lambda_{0}, T\right)=\frac{1}{Z\left(\lambda_{0}, T\right)} \exp \left[-\frac{H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right)}{k_{B} T}\right], \tag{1.146a}
\end{equation*}
$$

where T is the initial equilibrium temperature of system and environment at $t=0$, and

$$
\begin{equation*}
Z\left(\lambda_{0}, T\right)=\int d \boldsymbol{x}_{0} \exp \left[-\frac{H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right)}{k_{B} T}\right] \tag{1.146b}
\end{equation*}
$$

the classical partition function. In this case, the initial free energy of the system is given by

$$
\begin{equation*}
F_{0}=-k_{B} T \ln Z\left(\lambda_{0}, T\right) . \tag{1.147}
\end{equation*}
$$

Moreover, since the dynamics for $t>0$ is completely Hamiltonian, we have

$$
\begin{align*}
\frac{d H}{d t} & =\sum_{i}\left(\frac{\partial H}{\partial p_{i}} \dot{p}_{i}+\frac{\partial H}{\partial z_{i}} \dot{z}_{i}\right)+\frac{\partial H}{\partial t} \\
& =\sum_{i}\left[\frac{\partial H}{\partial p_{i}}\left(-\frac{\partial H}{\partial z_{i}}\right)+\frac{\partial H}{\partial z_{i}}\left(\frac{\partial H}{\partial p_{i}}\right)\right]+\frac{\partial H}{\partial \lambda} \dot{\lambda} \\
& =\frac{\partial H}{\partial \lambda} \dot{\lambda} \tag{1.148}
\end{align*}
$$

and, therefore,

$$
\begin{equation*}
W=\int_{0}^{\tau} d t \dot{\lambda} \frac{\partial H}{\partial \lambda}=\int_{0}^{\tau} d H=H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right)-H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right) \tag{1.149}
\end{equation*}
$$

where $\boldsymbol{x}(\tau)=\boldsymbol{x}_{\tau}$

$$
W=\int_{0}^{\tau} d t \dot{\lambda} \frac{\partial H}{\partial \lambda}=\int_{0}^{\tau} d H=H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right)-H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right)
$$

$$
\langle G(W)\rangle:=\int d W \rho(W) G(W)
$$

$$
G(W)=e^{-W /\left(k_{B} T\right)}
$$

$$
W=\int_{0}^{\tau} d t \dot{\lambda} \frac{\partial H}{\partial \lambda}=\int_{0}^{\tau} d H=H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right)-H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right)
$$

$$
\langle G(W)\rangle:=\int d W \rho(W) G(W), \quad G(W)=e^{-W /\left(k_{B} T\right)}
$$

$$
\begin{align*}
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle & =\int d \boldsymbol{x}_{0} f\left(\boldsymbol{x}_{0} ; \lambda_{0}, T\right) e^{-W /\left(k_{B} T\right)} \\
& =\int d \boldsymbol{x}_{0} f\left(\boldsymbol{x}_{0} ; \lambda_{0}, T\right) e^{-\left[H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right)-H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right)\right] /\left(k_{B} T\right)} \\
& =\frac{1}{Z\left(\lambda_{0}, T\right)} \int d \boldsymbol{x}_{0} \exp \left[-\frac{H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right)}{k_{B} T}\right] e^{-\left[H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right)-H\left(\boldsymbol{x}_{0} ; \lambda_{0}\right)\right] /\left(k_{B} T\right)} \\
& =\frac{1}{Z\left(\lambda_{0}, T\right)} \int d \boldsymbol{x}_{0} e^{-H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right) /\left(k_{B} T\right)} \tag{1.150}
\end{align*}
$$

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\frac{1}{Z\left(\lambda_{0}, T\right)} \int d \boldsymbol{x}_{0} e^{-H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right) /\left(k_{B} T\right)}
$$

Changing the integration variable from $\boldsymbol{x}_{0} \mapsto \boldsymbol{x}_{\tau}$, we can write this as

$$
\begin{align*}
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle & =\frac{1}{Z\left(\lambda_{0}, T\right)} \int d \boldsymbol{x}_{\tau}\left|\frac{\partial \boldsymbol{x}_{\tau}}{\partial \boldsymbol{x}_{0}}\right|^{-1} e^{-H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right) /\left(k_{B} T\right)} \\
& =\frac{1}{Z\left(\lambda_{0}, T\right)} \int d \boldsymbol{x}_{\tau} e^{-H\left(\boldsymbol{x}_{\tau} ; \lambda_{\tau}\right) /\left(k_{B} T\right)} \\
& =\frac{Z\left(\lambda_{\tau}, T\right)}{Z\left(\lambda_{0}, T\right)} \tag{1.151}
\end{align*}
$$

Here, we have used Liouville's theorem, which states that the phase volume is conserved under a purely Hamiltonian evolution $\boldsymbol{x}_{0} \mapsto \boldsymbol{x}(\tau)$,

$$
\begin{equation*}
\left|\frac{\partial \boldsymbol{x}_{\tau}}{\partial \boldsymbol{x}_{0}}\right|=1 \tag{1.152}
\end{equation*}
$$

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\frac{Z\left(\lambda_{\tau}, T\right)}{Z\left(\lambda_{0}, T\right)}
$$

Rewriting further

$$
\begin{aligned}
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle & =\exp \left\{\frac{k_{B} T}{k_{B} T} \ln \left[\frac{Z\left(\lambda_{\tau}, T\right)}{Z\left(\lambda_{0}, T\right)}\right]\right\} \\
& =\exp \left\{-\frac{1}{k_{B} T}\left[-k_{B} T \ln Z\left(\lambda_{\tau}, T\right)-\left(-k_{B} T\right) \ln Z\left(\lambda_{0}, T\right)\right]\right\}
\end{aligned}
$$

one thus finds the FT

$$
\begin{equation*}
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=e^{-\Delta F /\left(k_{B} T\right)} \tag{1.153a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta F=F\left(\lambda_{\tau}, T\right)-F\left(\lambda_{0}, T\right) \tag{1.153b}
\end{equation*}
$$

Jensen's inequality

${ }^{22}$ Jensens's inequality states that, if $\phi(x)$ is convex then

$$
\mathbb{E}[\phi(X)] \geq \phi(\mathbb{E}[X])
$$

Proof: Let $L(x)=a+b x$ be a line, tangent to $\phi(x)$ at the point $x_{*}=\mathbb{E}[X]$. Since ϕ is convex, we have $\phi(x) \geq L(x)$. Hence

$$
\mathbb{E}[\phi(X)] \geq \mathbb{E}[L(X)]=a+b \mathbb{E}[X]=L(\mathbb{E}[X])=\phi(\mathbb{E}[X])
$$

$$
\left\langle e^{x}\right\rangle \geq e^{\langle x\rangle}
$$

$$
\begin{equation*}
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=e^{-\Delta F /\left(k_{B} T\right)} \tag{1.153a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta F=F\left(\lambda_{\tau}, T\right)-F\left(\lambda_{0}, T\right) \tag{1.153b}
\end{equation*}
$$

Furthermore, using Jensen's inequality

$$
\begin{equation*}
\left\langle e^{x}\right\rangle \geq e^{\langle x\rangle} \tag{1.154}
\end{equation*}
$$

we find

$$
e^{-\Delta F /\left(k_{B} T\right)}=\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle \geq e^{\left\langle-W /\left(k_{B} T\right)\right\rangle}
$$

which is equivalent to the Clausius inequality

$$
\begin{equation*}
\Delta F \leq\langle W\rangle \tag{1.155}
\end{equation*}
$$

i.e., the average work provides an upper bound for the free energy difference.

Finally, we still note that

$$
\begin{align*}
\mathbb{P}[W<\Delta F-\epsilon] & :=\int_{-\infty}^{\Delta F-\epsilon} d W \rho(W) \\
& \leq \int_{-\infty}^{\Delta F-\epsilon} d W \rho(W) e^{(\Delta F-\epsilon-W) /\left(k_{B} T\right)} \\
& \leq e^{(\Delta F-\epsilon) /\left(k_{B} T\right)} \int_{-\infty}^{\infty} d W \rho(W) e^{-W /\left(k_{B} T\right)} \\
& =e^{(\Delta F-\epsilon) /\left(k_{B} T\right)}\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle \\
& =e^{-\epsilon /\left(k_{B} T\right)} \tag{1.156}
\end{align*}
$$

That is, the probability that a certain realization W violates the Clausius relation by an amount ϵ is exponentially small.

Finally, we still note that

$$
\begin{align*}
\mathbb{P}[W<\Delta F-\epsilon] & :=\int_{-\infty}^{\Delta F-\epsilon} d W \rho(W) \\
& \leq \int_{-\infty}^{\Delta F-\epsilon} d W \rho(W) e^{(\Delta F-\epsilon-W) /\left(k_{B} T\right)} \\
& \leq e^{(\Delta F-\epsilon) /\left(k_{B} T\right)} \int_{-\infty}^{\infty} d W \rho(W) e^{-W /\left(k_{B} T\right)} \\
& =e^{(\Delta F-\epsilon) /\left(k_{B} T\right)}\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle \\
& =e^{-\epsilon /\left(k_{B} T\right)} \tag{1.156}
\end{align*}
$$

That is, the probability that a certain realization W violates the Clausius relation by an amount ϵ is exponentially small.

