
Biological motors
18.S995 - L10



dunkel@math.mit.edu

Reynolds numbers

Boulder Summer School 2011: Introduction to Low Reynolds Number Locomotion
(Notes from Peko Hosoi’s Lecture)

0.1 Reynolds Numbers in Biology

The Reynolds number is dimensionless group that characterizes the ratio of inertial to viscous
forces. It is defined as

Re =
⇥UL

µ
=

UL

�

where ⇥ is the density of the medium the organism is moving through; µ is the dynamic viscosity
of the medium; � is the kinematic viscosity; U is a characteristic velocity of the organism; and L
is a characteristic length scale. When we discuss swimming biological organisms, we are usually
referring to creatures that are moving through water (or through a fluid with material properties
very close to those of water). This means that the material properties µ and ⇥ are fixed1 and the
Reynolds number is roughly determined by the size of the organism.

In general, the characteristic size of the organism and the characteristic swimming velocity are
related. As a rule-of-thumb, the characteristic locomotion velocity, U , in biological organisms is
related to L by U � L/second e.g. for people L � 1 m and we move at U � 1 m/s; bugs are about
L � 1 mm, and they move at about U � 1 mm/s; for microorganisms L � 100 µm and U � 100
µm/s. Obviously this is a very very very very rough estimate and one does not have to think very
hard to come up with exceptions (as is always the case in biology!). However, it serves as a good
starting point to estimate the Reynolds numbers for various biological organisms as illustrated in
the sketch in Figure ??. Note that even for organisms as small as ants, the Reynolds number is
still on the order of 1 (which is not very low). In this lecture we will focus on Re ⇥ 1 which is
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Figure 1: Typical Reynolds numbers for various biological organisms. Reynolds numbers are esti-
mated using the length scales indicated, the “rule-of-thumb” in the text, and material properties
of water.

relevant for single-cell organisms and bacteria.
1For water, � � 10�2cm2/s and ⇥ � 1 g/cm3.
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E.coli  (non-tumbling HCB 437)

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNAS
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Bacterial motors

20 nm

Berg (1999) Physics Today

source: wiki

movie:  V. Kantsler

Chen et al (2011) EMBO Journal

~20 parts
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Torque-speed relation

200 nm fluorescent bead attached to a flagellar motor  
26 steps per revolution 
30x slower than real time 
2400 frames per second 
position resolution  ~5 nm

Berry group, Oxford
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Volvox carteri

Drescher et al (2010) PRL	

somatic 	
cell

daughter colony
200 ㎛

cilia
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Goldstein et al (2011) PRL

10 ㎛ 10 ㎛

~ 50 beats / sec                           speed ~100 μm/s

Chlamydomonas alga
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Chlamy

Merchant et al (2007) Science 
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Eukaryotic motors
Sketch: dynein molecule carrying cargo down a microtubule

Yildiz lab, Berkeley
http://www.plantphysiol.org/content/127/4/1500/F4.expansion.html

mailto:dunkel@math.mit.edu
http://www.plantphysiol.org/content/127/4/1500/F4.expansion.html


dunkel@math.mit.edu

Microtubule filament “tracks”

Drosophila oocyte

Goldstein lab, PNAS 2012

Dogic Lab, Brandeis

Physical parameters	
(e.g. bending rigidity) 	

from fluctuation 
analysis
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unlike dyneins	
(most) kinesins walk towards plus end of 

microtubule

25nm
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Kinesin walks hand-over-hand
model does not require stalk rotation (9, 10). Based
on biophysical measurements that showed
no rotation of the stalk, Hua et al. (9) concluded
that an inchworm model was more likely for kine-
sin, although they could not rule out an asym-
metric hand-over-hand mechanism.

Recently, we have developed a technique,
Fluorescence Imaging One-Nanometer Accura-
cy (FIONA), that is capable of tracking the
position of a single dye with nanometer accuracy
and subsecond resolution (11). In FIONA, the
position of a dye before and after a step is
monitored by imaging the dye’s fluorescence
onto a charge-coupled detector through a total-
internal-reflection fluorescence microscope. The
image, or point-spread-function (PSF), is a dif-
fraction-limited spot with a width of !280 nm,
but the center of the image, which corresponds to
the position of the dye (12), can be located with
nanometer accuracy. We previously applied the
technique to show that myosin V walks in a
hand-over-hand manner, with each head alternat-
ing between 74-nm and 0-nm displacements,
while the center of mass moves 37 nm (11).

Here, we have performed analogous experi-
ments with a “cys-light” kinesin (7), with a
solvent-exposed cysteine inserted on each head
for labeling with a Cy3 fluorophore (Fig. 1B)
(13). The dye’s position was monitored as the
kinesin moved on microtubules that were immo-
bilized on a coverslip (13). Three different con-
structs were used: a homodimer with glutamic
acid mutated to cysteine (E215C), a second ho-
modimer with T324C, and a heterodimer with
one head lacking solvent-exposed cysteines and
the other head containing cysteines at S43C and
T324C, which are 2 nm apart (Fig. 1B). Sub-
stoichiometric labeling was used for the ho-
modimers, and single quantal bleaching of fluo-
rescence confirmed that only a single dye was
present on each kinesin analyzed (fig. S1B). The
heterodimer was labeled with an excess of dye
and both single- and double-quantal bleaching
was observed (13).

In the absence of ATP, kinesins were station-
ary. In the presence of 340 nM ATP, discrete
steps were observed for the three different kine-
sin constructs (Fig. 2). A total of 354 steps from
35 kinesins were observed. We typically collect-
ed 4000 photons per 0.33-s image. Traces from
relatively bright kinesins ("5000 photons per
image) are shown in Fig. 2; a histogram of 143
steps from 26 molecules is shown in Fig. 3A.
The precision of step-size determination was 1.5
to 3 nm, based on measurement of the distance
between the average positions of the PSF centers
before and after a step (11, 14). The average step
size derived from the step-size histogram (Fig.
3A) is 17.3 # 3.3 nm. We did not observe
8.3-nm steps or odd multiples of 8.3 nm. These
data therefore strongly support a hand-over-hand
mechanism and not an inchworm mechanism.

The hand-over-hand mechanism predicts that
these 17-nm steps alternate with 0-nm steps,
which are not directly observable in a graph of

position versus time. However, if the observed
17-nm steps arise from the convolution of two
sequential steps (i.e., 17 nm, 0 nm. . .), then a
dwell-time histogram of the number of steps
versus step-time duration will be the convolution
of two exponential processes (11). This yields
the dwell time probability, P(t ) $ tk2exp(–kt),
which is zero at t $ 0, rises initially, and then
falls, when k is the stepping rate constant. In
contrast, if the 17-nm steps arise from a single
process, then the dwell-time histogram would be

expected to yield an exponential decay (the
Poisson-distributed rate). The dwell-time histo-
gram of 347 steps for E215C and T324C (Fig.
3B) is well fit by the above convolution function
(with k $ 1.14 # 0.03 steps per s), and not by
the single-step decaying function. The rise near
t $ 0 is not due to instrument artifacts: An
exponential process for myosin V stepping (with
dyes located to show every step) at very similar
rates yields the expected monotonic decay with
the same instrument (11). We also have immo-

Fig. 1. (A) Examples of two al-
ternative classes of mechanisms
for processive movement by ki-
nesin. The hand-over-hand mod-
el (left) predicts that a dye on
the head of kinesin will move
alternately 16.6 nm, 0 nm, 16.6
nm, whereas the inchworm
mechanism (right) predicts uni-
form 8.3-nm steps. The inch-
worm model was adapted with
slight modification from (9). (B)
The positions of S43 (red), E215
(green), and T324 (blue) on the
rat kinesin crystal structure
[from (6), Protein Data Base
2KIN]. These residues, whose
numbers correspond to conven-
tional human kinesin, were mu-
tated to cysteines for fluorescent
dye labeling as described in the
text. The bound nucleotide
(adenosine diphosphate) is
shown as a space-filling model in
cyan. This figure was made with
MolMol (22).

Fig. 2. Position versus time for kinesin motility. The blue and green traces are from E215C
homodimer kinesin; the red trace, from the heterodimer S43C-T324C kinesin. The numbers
correspond to the step size # %&. The uncertainties were calculated as described (11). Red lines
represent average positions of each duration between steps (plateau) and when the step occurs
(jumps) based on data analysis.
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bilized beads on a coverslip and moved them in
17-nm steps with a nanometric stage at the same
average step rate and an exponentially distribut-
ed dwell time, which yielded the expected dwell-
time histogram (fig. S2). The dwell-time histo-
gram therefore provides strong support of the
hand-over-hand model.

The average step size of each mutant can also
be analyzed and compared. We observed 318
steps from 30 kinesins singly labeled at E215C,
and of these, 124 steps from 22 E215C kinesins
were chosen for their high-quality images. The
average step size was 17.4 nm ! 3.2 nm (stan-
dard deviation, "), with standard error of the
mean "# $ 0.3 nm (Fig. 2, upper left and middle
traces, and movie S1). Three T324C kinesins
displayed 12 steps with an average step size of
16.6 nm ! 4.4 nm (") and "# $ 1.3 nm. One
molecule of S43C-T324C kinesin heterodimer
was analyzed (Fig. 2, bottom trace), showing 7
steps with an average step size of 17.0 nm ! 3.4
nm and "# $ 1.3 nm. Consequently, all mutants
have an approximately 17-nm average step size,
which supports a hand-over-hand model.

Our experiments also have implications for
the number of kinesin heads that are bound while
kinesin is waiting for ATP. Kinesin is a highly
processive motor, implying that at least one head
stays bound to the microtubule during multistep
motility. Both singly and doubly bound kinesin
have been found in the presence of different
nucleotides (15, 16), and a two-headed bound
species has been inferred to exist during the
catalytic cycle based on a kinetic analysis (17)
and on fluorescence polarization measurements
at saturating ATP concentration (18). However,
whether or not kinesin is bound with one or two
heads while waiting for ATP during motility has
been unclear. If only one head is bound, then the
step size would alternate between 16.6x and x,

where x is the distance along the direction of
motion from where the dye would be if both
heads were bound (fig. S3). We see no evidence
for this modulation. For example, the average of
every other step of E215C in the upper left trace
(Fig. 2, upper left) is 16.4 ! 2.9 nm ("# $ 1.3
nm) for the even steps and 16.9 ! 3.4 nm ("# $
1.5 nm) for the odd steps. Similarly, for the green
(middle) trace of E215C, the averages are
17.9 ! 3.2 nm ("# $ 1.2 nm) for the even steps
and 19.2 ! 2.9 nm ("# $ 1.2 nm) for the odd
steps. Hence, alternating steps are experi-
mentally indistinguishable, indicating that x
is less than 2 nm. Furthermore, in the one-
foot-dangling model, x is expected to be
different for each of the different mutants
with different dye positions, which again is
not observed. Our measurements therefore
strongly indicate that the two kinesin heads
in the ATP-waiting state are either both
bound, or if one head is detached, then it is
sitting in a conformation such that it is
within 2 nm from a tubulin binding site
along the direction of motion.

In conclusion, our results strongly support a
hand-over-hand (walking) model for kinesin mo-
tility. Combined with the lack of a stalk rotation
detected by Hua et al. for kinesin (9), our data
imply that kinesin moves by an asymmetric
hand-over-hand mechanism. Myosin V also
walks hand-over-hand (11, 19), although likely
not rotating the stalk (20), implying it too is
likely asymmetric. Such a mechanism has
rather stringent biophysical constraints (9),
including implications for how the rear head
passes by the front head. Hoenger et al. (10)
have postulated a model where the rear head
passes the front head in such a manner that
the neck-linker wraps and unwraps around
the stalk with alternating steps to minimize

the build-up of torsional strain in the stalk
region. Sideways drag slows the kinesin mo-
tor asymmetrically, which suggests left-
right asymmetry to the forward-stepping
motion and is consistent with, although it
does not compel, an asymmetric hand-over-
hand model (21). Direct detection of motion
during the step, however, requires faster
time resolution than presented here.
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Fig. 3. The step sizes of an individual
head of a kinesin dimer and dwell-time
analysis support a hand-over-hand
mechanism. (A) The kinesin step-size
histogram from 124 steps of 22 mole-
cules of E215C, 12 steps of 3 molecules
of T324C, and 7 steps of one S43C-
T324C heterodimer. The average step
size is 17.3 ! 3.3 nm (n $ 143, "# $
0.27 nm). The black solid line is
a Gaussian fit. (B) The dwell-time his-
togram of 347 steps from 33 kinesin
molecules, including 317 steps from 29
molecules of E215C and 30 steps from
4 molecules of T324C, at 340 nM ATP.
The black line is a best-fit curve to the
convolution function tk2exp(–kt), with
k $ 1.14 ! 0.03 s–1 and coefficient of
determination r2 $ 0.984.
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Myosin V Walks Hand-Over-Hand:
Single Fluorophore Imaging with

1.5-nm Localization
Ahmet Yildiz,1 Joseph N. Forkey,3 Sean A. McKinney,1,2

Taekjip Ha,1,2 Yale E. Goldman,3 Paul R. Selvin1,2*

Myosin V is a dimeric molecular motor that moves processively on actin, with
the center of mass moving !37 nanometers for each adenosine triphosphate
hydrolyzed. We have labeled myosin V with a single fluorophore at different
positions in the light-chain domain and measured the step size with a standard
deviation of "1.5 nanometers, with 0.5-second temporal resolution, and ob-
servation times of minutes. The step size alternates between 37 # 2x nm and
37 – 2x, where x is the distance along the direction of motion between the dye
and the midpoint between the two heads. These results strongly support a
hand-over-hand model of motility, not an inchworm model.

Myosin V is a cargo-carrying processive motor
that takes !37-nm center of mass steps along
actin filaments (1–3). Defects in this protein
lead to immunological and neurological diseas-
es (4). Like many other processive motors, it
has two heads held together by a coiled-coil
stalk (Fig. 1). Each head of myosin V contains
a catalytic domain responsible for actin binding
and ATP hydrolysis and a light chain–binding
domain that likely acts as a lever arm to amplify
small nucleotide-dependent conformational
changes in the catalytic domain (3, 5, 6).

How the two heads of myosin V are coor-
dinated to produce steps is a central, unresolved
question. Biochemical and biophysical studies
(3, 6, 7) suggest a hand-over-hand “walking”
model in which the two heads alternate in the
lead (Fig. 1, left). Another possibility is the
so-called “inchworm” model in which one head
always leads (Fig. 1, right). A biophysical study
of kinesin, another processive motor, concluded
an inchworm model was more likely, although
it could not rule out an asymmetric type hand-
over-hand mechanism (8).

The hand-over-hand and inchworm models
make different, testable predictions for the mo-
tions of each individual head (Fig. 1). For ex-
ample, the inchworm model predicts that the

step size of each catalytic domain is equal to the
step size of the stalk [35 to 40 nm (9, 10) or !37
nm]. In contrast, the hand-over-hand model pre-
dicts that the trailing catalytic domain takes a
step that is twice the step size of the stalk while
the leading catalytic domain does not move. For
a single fluorophore attached to the light chain
domain of myosin V, the inchworm model pre-
dicts a uniform step size of 37 nm, whereas the
hand-over-hand model predicts alternating steps
of 37 – 2x, 37 # 2x, where x is the in-plane
distance of the dye from the midpoint of the
myosin (Fig. 1).

To test these models, we have developed a
single molecule fluorescence imaging technique

capable of locating a single molecule in two
dimensions to within 1.5 nm, with subsecond
temporal resolution and with a photostability that
allows observation for several minutes. Total in-
ternal reflection epifluorescence microscopy
(TIRF) (11–13) was used to excite and image
many individual fluorophores onto a slow-scan
back-thinned charge-coupled device (CCD)
with frame-transfer capability, enabling acqui-
sition of multiple sequential images with no
interframe deadtime (14 ). Our technique [flu-
orescence imaging with one-nanometer accu-
racy (FIONA)] is a 20-fold improvement in the
localization accuracy of single fluorophores at
room temperature using wide-field methods
(15, 16 ) and a !10-fold improvement in pho-
tostability. Scanning confocal microscopy
methods using two nanocrystals of different
emission wavelengths have previously
achieved a precision of $6 nm with a total
integration time of 20 s (17 ). Fluorescence (18)
and scattering (19) from large (30 and 150 nm,
respectively) beads have achieved !2-nm lo-
calization within unspecified time resolution
and 30 ms, respectively.
FIONA. A single fluorescent molecule

forms a diffraction-limited image of width %
&/2 N.A., or % 250 nm for visible light,
where N.A. is the numerical aperture of the
collection lens. The center of the image,
which, under appropriate conditions, corre-
sponds to the position of the dye, can be
located to arbitrarily high precision by col-
lecting a sufficient number of photons. Our
method for determining the center relies on
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2Physics Department, University of Illinois, Urbana-
Champaign, IL 61801, USA. 3University of Pennsylva-
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Fig. 1. Hand-over-hand
versus inchworm model
of myosin V motility. A
calmodulin light chain is
labeled with a single flu-
orescent dye and ex-
changed into the myosin
V light chain domain,
where it binds in one of
several possible positions
(black dot, schematic
representation of dye po-
sition). In the hand-over-
hand model, the rear
head moves 74-nm for-
ward but the front head
does not move, the stalk
moves 37 nm, and the
dye takes alternating
37$ 2x nm steps. (If the dye is a different distance from the stalk in the forward versus rear light chain
domains, due to asymmetry in the myosin V structure, then x is the average distance of the dye from
the stalk.) In the inchworm model, all parts of the myosin move 37-nm forward, and one head always
leads. Adapted with permission from (32).
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of spots displayed single quantal bleaching, in-
dicative of a single molecule. Step sizes were
analyzed only for singly labeled myosins.

In the absence of ATP, the fluorescent spots
were immobile. The addition of !300 nM ATP
led to discernable steps, and the average step-
ping rate increased with increasing ATP con-
centration. In total, we observed 49 different
BR-labeled myosin V molecules and detected
552 total steps. We observed three different
populations of myosin V molecules, exhibiting
either uniform 74-nm steps, alternating 52- and
23-nm (52-23) steps, or alternating 42- and 33-
nm (42-33) steps. Uniform 37-nm steps were
not observed.

Specifically we detected 365 steps from 38
myosin V’s, each of which stepped ! 74 nm
(Fig. 3; Movie S1). Thirty-two of these mole-
cules were bright enough to yield a
signal-to-noise ratio (SNR) " 10 for a total of
231 steps. A histogram of these steps showed that
the step size is 73.8 # 5.3 nm (mean # SD), with
an excellent fit to a normal distribution (r2 $
0.994, %2

r$ 1.67) (Fig. 3). We also detected six
molecules that took a total of 92 alternating 52-23
steps (Fig. 4), and six other molecules that took a
total of 69 alternating 42-33 steps (Fig. 5). The
histogram of the step size data shows three very
distinct peaks for both the 52-23 and 42-33 data
sets. For the 52-23 data, the averages of these
peaks are 51.7 # 4.1 nm, 23.1 # 3.4 nm, and
73.6 # 5.3 nm (mean # SD). For the 42-33 data,
the averages are 42.4 # 2.9 nm, 32.8 # 2.1 nm,
and 74.1 # 2.2 nm. The peak centered around 74
nm is consistent with myosin V molecules taking
two steps (e.g., 52 nm & 23 nm $ 75 nm) within
0.5 or 1 s, which could not be fully resolved
because of the 0.5-s time resolution. The percent-
age of such missed steps is consistent with a
probability distribution corresponding to expo-
nentially distributed dwell times with an average
step rate of 0.3 s'1 (Fig. 6).

When the myosin V was labeled with a Cy3-
calmodulin, the observed step sizes were consis-
tent with those measured with BR (Figs. 3 and 5).
This acts as a control to ensure that the stepping
characteristics we see are not specific to a partic-
ular dye. In particular, BR, which is attached by
two points to the light chain, is highly polarized
on the 0.5-s time scale (6), whereas Cy3, a
monofunctional dye, is expected to have signifi-
cantly lower polarization on this time scale and
its residual orientation to be at a different angle
with respect to the myosin than BR. For highly
immobile single dyes, Bartko and Dickson (27)
have shown that the PSF can take unusual shapes,
including asymmetric ones, if spherical aberra-
tions are present. However, the agreement be-
tween BR- and Cy3-labeled myosin V implies
this is not a problem. Furthermore, in all cases,
our PSFs are highly symmetric and are well fit by
a Gaussian. This indicates that spherical aber-
rations are insignificant and that fluorophore
orientation does not affect our ability to accu-
rately measure translational motion.

These results strongly support a hand-over-
hand model and are not consistent with an inch-
worm model. The hand-over-hand model pre-
dicts the dye will take alternating steps equal to
the stalk-step-size # 2x, and we interpret the
uniform 74-nm steps arising from a dye attached
to a light chain near the catalytic domain (stalk-
step-size $ 37 nm; x $ 18.5 nm), perhaps on the
first light chain. Using the same model, we in-
terpret the 52-23 steps arising from a dye 6.5 to

7 nm from the midpoint in the direction of
motion, probably corresponding to a dye on the
fifth light chain, and the 42-33 steps arising from
a dye 2 to 2.5 nm from the midpoint, probably
corresponding to a dye on the sixth light chain
(Fig. 1).

The hand-over-hand model predicts that
for a dye very close to, or on, one catalytic
domain, the steps will alternate between 74
nm and 0 nm (74-0) (Fig. 1). The 0-nm steps

Fig. 3. Stepping traces of three different myosin V molecules displaying 74-nm steps and histogram
(inset) of a total of 32 myosin V’s taking 231 steps. Calculation of the standard deviation of step sizes
can be found (14). Traces are for BR-labeled myosin V unless noted as Cy3 Myosin V. Lower right trace,
see Movie S1.

Fig. 4. Stepping traces of two different BR-labeledmyosin Vmolecules displaying alternating 52-23 steps,
and histogram of a total of six myosin V’s taking 92 steps. Due to the 0.5-s time resolution of
measurements, some steps are missed and yield 74-nm apparent steps, the sum of two steps. On the
basis of the alternating step size, we infer that the dye is 7 nm from the center of mass along the direction
of motion.
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• some form of noise (not necessarily thermal)	

• some form of nonlinear interaction potential	

• spatial symmetry breaking	

• non-equilibrium (broken detailed balance) due to 
presence of external bias, energy input, periodic 
forcing, memory, etc.

Basic ingredients for 
rectification
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Eukaryotic motors
Sketch: dynein molecule carrying cargo down a microtubule
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Adopting these rates and considering the asymptotic limit t0 ! �1, one can Taylor-
expand the exact solution (1.112) for Ax⇤ ⌧ D to obtain

P±(t) = kK
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These approximations are valid for slow driving (adiabatic regime), and they allow us to
compute expectation values to leading order in Ax⇤/D. In particular, one then finds for
the mean position the asymptotic linear response result [GHJM98]

E[X(t)] = X cos(⌦t� ') (1.115a)
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with kK denoting Kramers rate as defined in Eq. (1.91). Note that Eqs. (1.115) are con-
sistent with our earlier result (1.107).

1.6 Brownian motors

Many biophysical processes, from muscular contractions to self-propulsion of microorgan-
isms or intracellular transport, rely on biological motors. These are, roughly speaking,
collections of proteins that are capable of rectifying thermal and other random fluctua-
tions to achieve directed motion. Here, we focus on a minimal mathematical model that
captures, in a simplified manner, the main building principles of Brownian motors:19

• a spatially periodic structure (ratchet potential) that violates reflection symmetry,

• thermal or non-thermal random fluctuations, and

• a deterministic or stochastic pumping process that drives the system away from
thermal equilibrium.

Generally speaking, the combination of broken spatial symmetry and non-equilibrium driv-
ing is su�cient for generating stationary currents by means of a ratchet e↵ect.

Most biological micro-motors operate in the low Reynolds number regime, where inertia
is negligible. A minimal model can therefore be formulated in terms of an over-damped
Ito-SDE

dX(t) = �U 0(X) dt+ F (t)dt+
p

2D(t) ⇤ dB(t). (1.116)

19For further reading, we refer to the review articles [HM09, Rei02].
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25Here, U is a periodic potential

U(x) = U(x+ L) (1.117a)

with broken reflection symmetry, i.e., there is no �x such that

U(�x) = U(x+ �x). (1.117b)

A typical example is

U = U0[sin(2⇡x/L) +
1

4
sin(4⇡x/L)]. (1.117c)

The function F (t) is a deterministic driving force, and the noise amplitude D(t) can be
time-dependent as well.

The corresponding FPE for the associated PDF p(t, x) reads

@
t

p = �@
x

j , j(t, x) = �{[U 0 � F (t)]p+D(t)@
x

p}, (1.118)

and we assume that p is normalized to the total number of particles, i.e.

N
L
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Z
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0

dx p(t, x) (1.119)

gives the number of particles in [0, L]. The quantity of interest is the mean particle velocity
v
L

per period defined by

v
L

(t) :=
1

N
L

(t)

Z
L

0

dx j(t, x). (1.120)

Inserting the expression for j, we find for spatially periodic solutions with p(t, x) = p(t, x+ L)
that

v
L

=
1

N
L

(t)

Z
L

0

dx [F (t)� U 0(x)] p(t, x). (1.121)

1.6.1 Tilted Smoluchowski-Feynman ratchet

As a first example, assume that F = const. and D = const. This case can be considered
as a (very) simple model for kinesin or dynein walking along a polar microtubule, with the
constant force F � 0 accounting for the polarity. We would like to determine the mean
transport velocity v

L

for this model.
To evaluate Eq. (1.121), we focus on the long-time limit, noting that a stationary

solution p1(x) of the corresponding FPE (1.118) must yield a constant current-density j1,
i.e.,

j1 = �[(@
x

�)p1 +D@
x

p1] (1.122)
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Fig. 2.2. Typical example of a ratchet-potential V (x), periodic in space with period L and with broken spatial symmetry.
Plotted is the example from (2.3) in dimensionless units.

microscopic degrees of freedom of the environment. As discussed in detail in Sections A.1 and A.2
of Appendix A, our assumption that the environment is an equilibrium heat bath with temperature T
and that its e!ect on the system can be modeled by means of the phenomenological ansatz appearing
on the right-hand side of (2.1) completely "xes [66,77–97] all statistical properties of the #uctuations
!(t) without referring to any microscopic details of the environment (see also Sections 2.9, 3.4.1
and 8.1). Namely, !(t) is a Gaussian white noise of zero mean,

⟨!(t)⟩= 0 ; (2.4)

satisfying the !uctuation–dissipation relation [79–81]

⟨!(t)!(s)⟩= 2"kBT#(t − s) ; (2.5)

where kB is Boltzmann’s constant, 2"kBT is the noise intesity or noise strength, and #(t) is Dirac’s
delta function. Note that the only particle property which enters the characteristics of the noise is
the friction coe$cient ", which may thus be viewed as the coupling strength to the environment.
For the typically very small systems one has in mind, and for which thermal #uctuations play any

notable role at all, the dynamics (2.1) is overdamped, that is, the inertia term m %x(t) is negligible
(see also the more detailed discussion of this point in Section A.4 of Appendix A). We thus arrive
at our “minimal” Smoluchowski–Feynman ratchet model

" ẋ(t) =−V ′(x(t)) + !(t) : (2.6)

According to (2.5), the Gaussian white noise !(t) is uncorrelated in time, i.e. it is given by
independently sampled Gaussian random numbers at any time t. This feature and the concomitant
in"nitely large second moment ⟨!2(t)⟩ are mathematical idealizations. In physical reality, the correla-
tion time is meant to be "nite, but negligibly small in comparison with all other relevant time scales
of the system. In this spirit, we may introduce a small time step &t and consider a time-discretized

mailto:dunkel@math.mit.edu
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Fig. 2.3. Typical example of an e!ective potential from (2.35) “tilted to the left”, i.e. F¡0. Plotted is the ex-
ample from (2.3) in dimensionless units (see Section A.4 in Appendix A) with L = V0 = 1 and F = −1, i.e.
Ve! (x) = sin(2!x) + 0:25 sin(4!x) + x.

Fig. 2.4. Steady state current ⟨ẋ⟩ from (2.37) versus force F for the tilted Smoluchowski–Feynman ratchet dynamics (2.5),
(2.34) with the potential (2.3) in dimensionless units (see Section A.4 in Appendix A) with " = L = V0 = kB = 1 and
T = 0:5. Note the broken point-symmetry.

Our "rst observation is that a time-independent probability density P̂
st
(x) does not exclude a

non-vanishing particle current ⟨ẋ⟩. Exploiting (2.35), one readily sees that—as expected—the sign
of this current (2.37) agrees with the sign of F . Furthermore one can prove that the current is a
monotonically increasing function of F [116] and that for any "xed F-value, the current is maxi-
mal (in modulus) when V (x) = const: (see Section 4.4.1). The typical quantitative behavior of the
steady state current (2.37) as a function of the applied force F (called “response curve”, “load
curve”, or (current-force-) “characteristics”) is exempli"ed in Fig. 2.4. Note that the leading-order
(“linear response”) behavior is symmetric about the origin, but not the higher order contributions.
The occurrence of a non-vanishing particle current in (2.37) signals that (2.36) describes a steady

state which is not in thermal equilibrium, and actually far from equilibrium unless F is very small. 7

As mentioned already at the end of the previous section, while at (and near) equilibrium one may
question the need of a microscopic model like in (2.34) in view of the powerful principles of
equilibrium statistical mechanics, such an approach has the advantage of remaining valid far from
equilibrium, 8 where no such general statistical mechanical principles are available.
As pointed out at the end of the preceding section, only the reduced probability density P̂(x; t)

approaches a meaningful steady state, but not the original dynamics (2.34), extending over the entire
x-axis. Thus, stability criteria for steady states, both mechanical and thermodynamical, can only be

7 In particular, the e!ective di!usion coe#cient is no longer related to the mobility via a generalized Einstein relation
(2.11), i.e. De! = kBT 9⟨ẋ⟩=9F only holds for F = 0 [117].

8 Note that there is no inconsistency of a thermal (white) noise #(t) appearing in a system far from thermal equilibrium:
any system (equilibrium or not) can be in contact with a thermal heat bath.
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Constant current solution
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Here, U is a periodic potential

U(x) = U(x+ L) (1.117a)

with broken reflection symmetry, i.e., there is no �x such that

U(�x) = U(x+ �x). (1.117b)

A typical example is

U = U0[sin(2⇡x/L) +
1

4
sin(4⇡x/L)]. (1.117c)

The function F (t) is a deterministic driving force, and the noise amplitude D(t) can be
time-dependent as well.

The corresponding FPE for the associated PDF p(t, x) reads
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that
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1.6.1 Tilted Smoluchowski-Feynman ratchet

As a first example, assume that F = const. and D = const. This case can be considered
as a (very) simple model for kinesin or dynein walking along a polar microtubule, with the
constant force F � 0 accounting for the polarity. We would like to determine the mean
transport velocity v
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for this model.
To evaluate Eq. (1.121), we focus on the long-time limit, noting that a stationary
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where
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as a (very) simple model for kinesin or dynein walking along a polar microtubule, with the
constant force F � 0 accounting for the polarity. We would like to determine the mean
transport velocity v

L

for this model.
To evaluate Eq. (1.121), we focus on the long-time limit, noting that a stationary

solution p1(x) of the corresponding FPE (1.118) must yield a constant current-density j1,
i.e.,

j1 = �[(@
x

�)p1 +D@
x

p1] (1.122)
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Here, U is a periodic potential

U(x) = U(x+ L) (1.117a)

with broken reflection symmetry, i.e., there is no �x such that

U(�x) = U(x+ �x). (1.117b)

A typical example is

U = U0[sin(2⇡x/L) +
1

4
sin(4⇡x/L)]. (1.117c)

The function F (t) is a deterministic driving force, and the noise amplitude D(t) can be
time-dependent as well.

The corresponding FPE for the associated PDF p(t, x) reads
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p}, (1.118)

and we assume that p is normalized to the total number of particles, i.e.
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where N
L

can be expressed as

N
L

=
1

Z

Z
L

0

dx

Z
x+L

x

dy e�[�(x)��(y)]/D. (1.128)

We thus obtain the final result

v
L

= DL
1� e�FL/D

R
L

0 dx
R

x+L

x

dy e�[�(x)��(y)]/D
, (1.129)

which holds for arbitrary periodic potentials U(x). Note that there is no net-current at
equilibrium F = 0.

1.6.2 Temperature ratchet

As we have seen in the preceding sections, the combination of noise and nonlinear dynam-
ics can yield surprising transport e↵ects. Another example is the so-called temperature-
ratchet, which can be captured by the minimal SDE model

dX(t) = [F � U 0(X)] dt+
p
2D(t) dB(t), (1.130a)

where D(t) = D(t+ T ) is now a time-dependent noise amplitude, such as for instance

D(t) = D̄ {1 + A sign[sin(2⇡t/T )]} , (1.130b)

where |A| < 1. Such a temporally varying noise strength can be realized by heating
and cooling the ratchet system periodically. Transport can be quantified in terms of the
combined spatio-temporal average

hẊi :=
1

T

Z
t+T

t

ds

Z
L

0

dx j(t, x)

=
1

T

Z
t+T

t

ds

Z
L

0

dx [F � U 0(x)] p(t, x). (1.131)

This choice is motivated by the fact that the equations of motions are periodic in space
and time, which suggests an asymptotically oscillating solution p(t, x) = p(t, x + L) =
p(t + T, L) = p(t + T, x + L) for the probability density. Equation (1.130) has been
studied numerically (see slide and Sec. 2.6 in Ref. [Rei02]), and was found to predict
an counterintuitive e↵ect: In the presence of a small load force, optimally tuned periodic
thermal pumping allows particles to climb up-hill (see slides for an illustration).
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where

�(x) = U(x)� xF (1.123)

is the full e↵ective potential acting on the walker. By comparing with (1.85), one finds
that the desired constant-current solution is given by

p1(x) =
1

Z
e��(x)/D

Z
x+L

x

dy e�(y)/D. (1.124)

This solution is spatially periodic, as can be seen from
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= p1(x), (1.125)

where we have used the coordinate transformation z = y � L 2 [x, x + L] after the first
line. Inserting p1(x) into Eq. (1.121) gives
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Integrating by parts, this can be simplified to
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, (1.127)
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Fig. 2.3. Typical example of an e!ective potential from (2.35) “tilted to the left”, i.e. F¡0. Plotted is the ex-
ample from (2.3) in dimensionless units (see Section A.4 in Appendix A) with L = V0 = 1 and F = −1, i.e.
Ve! (x) = sin(2!x) + 0:25 sin(4!x) + x.

Fig. 2.4. Steady state current ⟨ẋ⟩ from (2.37) versus force F for the tilted Smoluchowski–Feynman ratchet dynamics (2.5),
(2.34) with the potential (2.3) in dimensionless units (see Section A.4 in Appendix A) with " = L = V0 = kB = 1 and
T = 0:5. Note the broken point-symmetry.

Our "rst observation is that a time-independent probability density P̂
st
(x) does not exclude a

non-vanishing particle current ⟨ẋ⟩. Exploiting (2.35), one readily sees that—as expected—the sign
of this current (2.37) agrees with the sign of F . Furthermore one can prove that the current is a
monotonically increasing function of F [116] and that for any "xed F-value, the current is maxi-
mal (in modulus) when V (x) = const: (see Section 4.4.1). The typical quantitative behavior of the
steady state current (2.37) as a function of the applied force F (called “response curve”, “load
curve”, or (current-force-) “characteristics”) is exempli"ed in Fig. 2.4. Note that the leading-order
(“linear response”) behavior is symmetric about the origin, but not the higher order contributions.
The occurrence of a non-vanishing particle current in (2.37) signals that (2.36) describes a steady

state which is not in thermal equilibrium, and actually far from equilibrium unless F is very small. 7

As mentioned already at the end of the previous section, while at (and near) equilibrium one may
question the need of a microscopic model like in (2.34) in view of the powerful principles of
equilibrium statistical mechanics, such an approach has the advantage of remaining valid far from
equilibrium, 8 where no such general statistical mechanical principles are available.
As pointed out at the end of the preceding section, only the reduced probability density P̂(x; t)

approaches a meaningful steady state, but not the original dynamics (2.34), extending over the entire
x-axis. Thus, stability criteria for steady states, both mechanical and thermodynamical, can only be

7 In particular, the e!ective di!usion coe#cient is no longer related to the mobility via a generalized Einstein relation
(2.11), i.e. De! = kBT 9⟨ẋ⟩=9F only holds for F = 0 [117].

8 Note that there is no inconsistency of a thermal (white) noise #(t) appearing in a system far from thermal equilibrium:
any system (equilibrium or not) can be in contact with a thermal heat bath.

mailto:dunkel@math.mit.edu


where N
L

can be expressed as

N
L

=
1

Z

Z
L

0

dx

Z
x+L

x

dy e�[�(x)��(y)]/D. (1.128)

We thus obtain the final result

v
L

= DL
1� e�FL/D

R
L

0 dx
R

x+L

x

dy e�[�(x)��(y)]/D
, (1.129)

which holds for arbitrary periodic potentials U(x). Note that there is no net-current at
equilibrium F = 0.

1.6.2 Temperature ratchet

As we have seen in the preceding sections, the combination of noise and nonlinear dynam-
ics can yield surprising transport e↵ects. Another example is the so-called temperature-
ratchet, which can be captured by the minimal SDE model

dX(t) = [F � U 0(X)] dt+
p
2D(t) dB(t), (1.130a)

where D(t) = D(t+ T ) is now a time-dependent noise amplitude, such as for instance

D(t) = D̄ {1 + A sign[sin(2⇡t/T )]} , (1.130b)

where |A| < 1. Such a temporally varying noise strength can be realized by heating
and cooling the ratchet system periodically. Transport can be quantified in terms of the
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This choice is motivated by the fact that the equations of motions are periodic in space
and time, which suggests an asymptotically oscillating solution p(t, x) = p(t, x + L) =
p(t + T, L) = p(t + T, x + L) for the probability density. Equation (1.130) has been
studied numerically (see slide and Sec. 2.6 in Ref. [Rei02]), and was found to predict
an counterintuitive e↵ect: In the presence of a small load force, optimally tuned periodic
thermal pumping allows particles to climb up-hill (see slides for an illustration).
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can be solved numerically
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Fig. 2.5. Average particle current ⟨ẋ⟩ versus force F for the temperature ratchet dynamics (2.3), (2.34), (2.47), (2.50)
in dimensionless units (see Section A.4 in Appendix A). Parameter values are != L=T = kB = 1, V0 = 1=2", !T = 0:5,
A = 0:8. The time- and ensemble-averaged current (2.53) has been obtained by numerically evolving the Fokker–Planck
equation (2.52) until transients have died out.

Fig. 2.6. The basic working mechanism of the temperature ratchet (2.34), (2.47), (2.50). The "gure illustrates how
Brownian particles, initially concentrated at x0 (lower panel), spread out when the temperature is switched to a very high
value (upper panel). When the temperature jumps back to its initial low value, most particles get captured again in the
basin of attraction of x0, but also substantially in that of x0 + L (hatched area). A net current of particles to the right, i.e.
⟨ẋ⟩¿0 results. Note that practically the same mechanism is at work when the temperature is kept "xed and instead the
potential is turned “on” and “o#” (on–o# ratchet, see Section 4.2).

A conversion (recti"cation) of random $uctuations into useful work as exempli"ed above is called
“ratchet e!ect”. For a setup of this type, the names thermal ratchet [7,10,11], Brownian motor
[48,118], Brownian recti"er [51] (mechanical diode [11]), stochastic ratchet [119,120], or simply
ratchet are in use. 11 Since the average particle current ⟨ẋ⟩ usually depends continuously on the load
force F , it is for a qualitative analysis su%cient to consider the case F = 0: the occurrence of the
ratchet e!ect is then tantamount to a "nite current

⟨ẋ⟩ ̸=0 for F = 0 ; (2.54)

i.e. the unbiased Brownian motor implements a “particle pump”. The necessary force F which
leads to an exact cancellation of the ratchet e#ects, i.e ⟨ẋ⟩= 0, is called the “stopping force”. The
property (2.54) is the distinguishing feature between the ratchet e#ect and the somewhat related
so-called negative mobility e#ect, encountered later in Section 9.2.4.

11 The notion “molecular motor” should be reserved for models focusing speci"cally on intracellular transport processes,
see Section 7. Similarly, the notion “Brownian ratchet” has been introduced in a rather di#eren context, namely as a
possible operating principle for the translocation of proteins accross membranes [121–125].
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