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I. INTRODUCTION

Users of modern communication devices are annoyed
by any source of background hiss. Under certain circum-
stances, however, an extra dose of noise can in fact help
rather than hinder the performance of some devices.
There is now even a name for the phenomenon: stochas-
tic resonance. It is presently creating a buzz in fields such
as physics, chemistry, biomedical sciences, and engineer-
ing.

The mechanism of stochastic resonance is simple to
explain. Consider a heavily damped particle of mass m
and viscous friction g, moving in a symmetric double-
well potential V(x) [see Fig. 1(a)]. The particle is sub-
ject to fluctuational forces that are, for example, induced
by coupling to a heat bath. Such a model is archetypal
for investigations in reaction-rate theory (Hänggi,
Talkner, and Borkovec, 1990). The fluctuational forces
cause transitions between the neighboring potential
wells with a rate given by the famous Kramers rate
(Kramers, 1940), i.e.,
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with v0
25V9(xm)/m being the squared angular fre-

quency of the potential in the potential minima at 6xm ,
and vb

25uV9(xb)/mu the squared angular frequency at
the top of the barrier, located at xb; DV is the height of

the potential barrier separating the two minima. The
noise strength D5kBT is related to the temperature T .

If we apply a weak periodic forcing to the particle, the
double-well potential is tilted asymmetrically up and
down, periodically raising and lowering the potential
barrier, as shown in Fig. 1(b). Although the periodic
forcing is too weak to let the particle roll periodically
from one potential well into the other one, noise-
induced hopping between the potential wells can be-
come synchronized with the weak periodic forcing. This
statistical synchronization takes place when the average
waiting time TK(D)51/rK between two noise-induced
interwell transitions is comparable with half the period
T

V

of the periodic forcing. This yields the time-scale
matching condition for stochastic resonance, i.e.,
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In short, stochastic resonance in a symmetric double-
well potential manifests itself by a synchronization of
activated hopping events between the potential minima

FIG. 1. Stochastic resonance in a symmetric double well. (a)
Sketch of the double-well potential V(x)5(1/4)bx4

2(1/2)ax2. The minima are located at 6xm , where
xm5(a/b)1/2. These are separated by a potential barrier with
the height given by DV5a2/(4b). The barrier top is located at
xb50. In the presence of periodic driving, the double-well po-
tential V(x ,t)5V(x)2A0x cos(Vt) is tilted back and forth,
thereby raising and lowering successively the potential barriers
of the right and the left well, respectively, in an antisymmetric
manner. This cyclic variation is shown in our cartoon (b). A
suitable dose of noise (i.e., when the period of the driving
approximately equals twice the noise-induced escape time) will
make the ‘‘sad face’’ happy by allowing synchronized hopping
to the globally stable state (strictly speaking, this holds true
only in the statistical average).
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B. Residence-time distribution

In Sec. II.A we interpreted the resonant-like depen-
dence of the amplitude x (D) of the periodic response
on the noise intensity D by means of a synchronization
argument, originally formulated by Benzi and co-
workers (Benzi et al., 1981). Moreover, we pointed out
that the response amplitude does not show this synchro-
nization if the driving frequency V is tuned against the

escape rate rK . However, any experimentalist who ever
tried to reproduce stochastic resonance in a real system
(including here the analog circuits) knows by experience
that a synchronization phenomenon takes place any
time the condition rK;V is established by varying ei-
ther D or V. In Figs. 4(a) and 4(b) we depict the typical
input-output synchronization effect in the bistable sys-
tem Eqs. (2.1)–(2.3). In Fig. 4(a) the noise intensity is
increased from low (rare random switching events) up to
very large values, crossing the resonance values DSR of
Eqs. (2.8). In the latter case the output signal x(t) be-
comes tightly locked to the periodic input. In Fig. 4(b),
the noise intensity D is kept fixed and the forcing fre-
quency V is increased. At low values of V, we notice an
alternate asymmetry of the output signal towards either
positive or negative values, depending on the sign of the
input signal. However, many switches occur in both di-
rections within any half forcing period. At large values
of V, the effect of the time modulation is averaged out
and the symmetry of the output signal seems to be fully
restored. Finally, at V;rK the synchronization mecha-
nism is established with clear resemblance to Fig. 4(a).
In the following subsection we characterize stochastic
resonance as a ‘‘resonant’’ synchronization phenom-
enon, resulting from the combined action of noise and
periodic forcing in a bistable system. The tool employed
to this purpose is the residence-time distribution. Intro-
duced as a tool (Gammaitoni, Marchesoni, et al., 1989;
Zhou and Moss, 1990; Zhou, et al., 1990; Löfstedt and
Coppersmith, 1994b; Gammaitoni, Marchesoni, and
Santucci, 1995), such a notion proved useful for applica-
tions in diverse areas of natural sciences (Bulsara et al.,
1991; Longtin et al., 1991; Simon and Libchaber, 1992;
Carroll and Pecora, 1993b; Gammaitoni, Marchesoni,
et al. 1993; Mahato and Shenoy, 1994; Mannella et al.,
1995; Shulgin et al., 1995).

1. Level crossings

A deeper understanding of the mechanism of stochas-
tic resonance in a bistable system can be gained by map-
ping the continuous stochastic process x(t) (the system
output signal) into a stochastic point process

$

t i%. The
symmetric signal x(t) is converted into a point process
by setting two crossing levels, for instance at x656c
with 0<c<xm . On sampling the signal x(t) with an ap-
propriate time base, the times t i are determined as fol-
lows: data acquisition is triggered at time t050 when
x(t) crosses, say, x2 with negative time derivative
@

x(0)52c , ẋ(0),0]; t1 is the subsequent time when
x(t) first crosses x1 with positive derivative [x(t1)5c ,
ẋ(t1).0]; t2 is the time when x(t) switches back to
negative values by recrossing x2 with negative deriva-
tive, and so on. The quantities T(i)5t i2t i21 represent
the residence times between two subsequent switching
events. For simplicity and to make contact with the
theory of Sec. IV.C, we set c5xm . The statistical prop-
erties of the stochastic point process

$

t i% are the subject
of intricate theorems of probability theory (Rice, 1944;
Papoulis, 1965; Blake and Lindsey, 1973). In particular,
no systematic way is known to find the distribution of

FIG. 4. Example of input/output synchronization in the sym-
metric bistable system of Eqs. (2.1)–(2.2a). (a) Varying the
noise intensity D with V held constant. The sampled signal
shown with dashes is the input A(t) (arbitrary units). The re-
maining trajectories are the corresponding system output (in
units of xm) for increasing D values (from bottom to top). (b)
Effect of varying V with D held constant. The three output
samples x(t) (in units of xm) are displayed for increasing V

values (from top to bottom). The parameters for (a) and (b)
are Axm /DV50.1, a5104 s−1, and xm5(a/b)1/2 5 10, cf. in
Fig. 2.
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FIG. 1. (a) A juvenile paddle"sh. (b) Close-up view of clusters of electroreceptor pores on the rostrum.

FIG. 2. (a) A single Daphnia. (b) Electric potential from a tethered Daphnia measured at a distance of 0.5 cm. The oscillations
result from higher frequency feeding motions of the legs and lower frequency swimming motions of the antennae. (c) Power
spectrum of the signal from a single, tethered Daphnia showing the approximately 7 Hz feeding frequency as the sharper peak
and the broader 5}6 Hz swimming frequency.

Neiman & Russell, 2001). This sensory system
has evolved to detect the weak electric "elds
emitted into the surrounding water by the Daph-
nia's muscular activity associated with its swim-
ming and feeding motions. The electric "elds
from the Daphnia are approximately periodic in
time and dipolar in spatial shape (Neiman et al.,
2000).

We have recently shown that juvenile paddle-
"sh make use of stochastic resonance (SR) in the
detection and capture of Daphnia at the threshold
of their perception (Russell et al., 1999, 2001).
This, together with the 65 million year evolution-
ary history and some recent physiological evid-
ence (Jaramillo & Wiesenfeld, 1998), suggests
that SR is an evolved survival strategy. Juvenile
paddle"sh (of less than 1 year old) locate, track
and feed on single plankton (Wilkens et al., 1997;
Neiman et al., 2000), whereas older "sh, after
having developed gill rakers, "lter feed on
swarms. A favorite food of the paddle"sh is the

Daphnia, a plankton of 1}2 mm length commonly
found in North American fresh water, see
Fig. 2(a). Daphnia emit weak dipole-shaped elec-
tric "elds with both DC and oscillatory (4}15 Hz)
components [see Fig. 2(b) and (c)]. In this paper,
we assume the individual Daphnia to be the
source of a single-frequency sinusoidal &&signal''
[the approximately 5 Hz feeding frequency as
shown by the power spectrum in Fig. 2 (c)]. The
intensity of the signal on the surface of the "sh's
rostrum decreases approximately as the inverse
cube of the distance to the Daphnia because of the
dipole-like shape of the "eld. Indeed, it has
recently been shown, using the 1/r! drop-o!
characteristic of the dipole "eld, that the Fisher
information at the rostrum from a single Daphnia
follows the prey capture probability exhibited by
the "sh (Greenwood et al., 2000). Daphnia that
appear at larger distances from the "sh are less
likely to be detected and/or captured, because
their signals on the rostrum are weaker owing to
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Zooplankton emit weak electric "elds into the surrounding water that originate from their
own muscular activities associated with swimming and feeding. Juvenile paddle"sh prey upon
single zooplankton by detecting and tracking these weak electric signatures. The passive
electric sense in this "sh is provided by an elaborate array of electroreceptors, Ampullae of
Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the
"sh use stochastic resonance to enhance prey capture near the detection threshold of their
sensory system. However, stochastic resonance requires an external source of electrical noise in
order to function. A swarm of plankton, for example Daphnia, can provide the required noise.
We hypothesize that juvenile paddle"sh can detect and attack single Daphnia as outliers in the
vicinity of the swarm by using noise from the swarm itself. From the power spectral density of
the noise plus the weak signal from a single Daphnia, we calculate the signal-to-noise ratio,
Fisher information and discriminability at the surface of the paddle"sh's rostrum. The results
predict a speci"c attack pattern for the paddle"sh that appears to be experimentally testable.
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Introduction

Paddle"sh, Polyodon spathula, are among the
largest freshwater "sh found in the river basins of
North America, yet they feed exclusively on
planktonic prey. They are found most often near
the bottoms of rivers and lakes where turbulence

and muddy water obscure normal vision but
where plankton are plentiful. In order to adapt to
this environment, paddle"sh, primitive creatures
whose fossil record extends into the Cretaceous
(65 million years ago) (Grande & Bemis, 1991),
have evolved an elaborate array of electrorecep-
tor organs spread over an elongated rostrum
anterior to the mouth and head, see Fig. 1(a).
The organs consist of clusters of Ampullae of
Lorenzini which communicate with the water
through short (0.1 mm) canals that terminate in
pores on the skin surface, as shown in Fig. 1(b).
Prey, for example Daphnia, are detected and
tracked exclusively by means of an entirely
passive electric sense provided by the rostral ar-
ray (Wilkens et al., 1997; Neiman et al., 2000;
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FIG. 1. (a) A juvenile paddle"sh. (b) Close-up view of clusters of electroreceptor pores on the rostrum.

FIG. 2. (a) A single Daphnia. (b) Electric potential from a tethered Daphnia measured at a distance of 0.5 cm. The oscillations
result from higher frequency feeding motions of the legs and lower frequency swimming motions of the antennae. (c) Power
spectrum of the signal from a single, tethered Daphnia showing the approximately 7 Hz feeding frequency as the sharper peak
and the broader 5}6 Hz swimming frequency.

Neiman & Russell, 2001). This sensory system
has evolved to detect the weak electric "elds
emitted into the surrounding water by the Daph-
nia's muscular activity associated with its swim-
ming and feeding motions. The electric "elds
from the Daphnia are approximately periodic in
time and dipolar in spatial shape (Neiman et al.,
2000).

We have recently shown that juvenile paddle-
"sh make use of stochastic resonance (SR) in the
detection and capture of Daphnia at the threshold
of their perception (Russell et al., 1999, 2001).
This, together with the 65 million year evolution-
ary history and some recent physiological evid-
ence (Jaramillo & Wiesenfeld, 1998), suggests
that SR is an evolved survival strategy. Juvenile
paddle"sh (of less than 1 year old) locate, track
and feed on single plankton (Wilkens et al., 1997;
Neiman et al., 2000), whereas older "sh, after
having developed gill rakers, "lter feed on
swarms. A favorite food of the paddle"sh is the

Daphnia, a plankton of 1}2 mm length commonly
found in North American fresh water, see
Fig. 2(a). Daphnia emit weak dipole-shaped elec-
tric "elds with both DC and oscillatory (4}15 Hz)
components [see Fig. 2(b) and (c)]. In this paper,
we assume the individual Daphnia to be the
source of a single-frequency sinusoidal &&signal''
[the approximately 5 Hz feeding frequency as
shown by the power spectrum in Fig. 2 (c)]. The
intensity of the signal on the surface of the "sh's
rostrum decreases approximately as the inverse
cube of the distance to the Daphnia because of the
dipole-like shape of the "eld. Indeed, it has
recently been shown, using the 1/r! drop-o!
characteristic of the dipole "eld, that the Fisher
information at the rostrum from a single Daphnia
follows the prey capture probability exhibited by
the "sh (Greenwood et al., 2000). Daphnia that
appear at larger distances from the "sh are less
likely to be detected and/or captured, because
their signals on the rostrum are weaker owing to
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Zooplankton emit weak electric "elds into the surrounding water that originate from their
own muscular activities associated with swimming and feeding. Juvenile paddle"sh prey upon
single zooplankton by detecting and tracking these weak electric signatures. The passive
electric sense in this "sh is provided by an elaborate array of electroreceptors, Ampullae of
Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the
"sh use stochastic resonance to enhance prey capture near the detection threshold of their
sensory system. However, stochastic resonance requires an external source of electrical noise in
order to function. A swarm of plankton, for example Daphnia, can provide the required noise.
We hypothesize that juvenile paddle"sh can detect and attack single Daphnia as outliers in the
vicinity of the swarm by using noise from the swarm itself. From the power spectral density of
the noise plus the weak signal from a single Daphnia, we calculate the signal-to-noise ratio,
Fisher information and discriminability at the surface of the paddle"sh's rostrum. The results
predict a speci"c attack pattern for the paddle"sh that appears to be experimentally testable.
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Introduction

Paddle"sh, Polyodon spathula, are among the
largest freshwater "sh found in the river basins of
North America, yet they feed exclusively on
planktonic prey. They are found most often near
the bottoms of rivers and lakes where turbulence

and muddy water obscure normal vision but
where plankton are plentiful. In order to adapt to
this environment, paddle"sh, primitive creatures
whose fossil record extends into the Cretaceous
(65 million years ago) (Grande & Bemis, 1991),
have evolved an elaborate array of electrorecep-
tor organs spread over an elongated rostrum
anterior to the mouth and head, see Fig. 1(a).
The organs consist of clusters of Ampullae of
Lorenzini which communicate with the water
through short (0.1 mm) canals that terminate in
pores on the skin surface, as shown in Fig. 1(b).
Prey, for example Daphnia, are detected and
tracked exclusively by means of an entirely
passive electric sense provided by the rostral ar-
ray (Wilkens et al., 1997; Neiman et al., 2000;
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1.4 Escape problem

Escape problems are ubiquitous in biological, biophysical and biochemical processes. Promi-
nent examples include, but are not restricted to,

• unbinding of molecules from receptors,

• chemical reactions,

• transfer of ion through through pores,

• evolutionary transitions between di↵erent fitness optima.

Their mathematical treatment typically involves models that are structurally very similar
to the one-dimensional examples discussed in this section13.

1.4.1 Generic minimal model

Consider the over-damped SDE

dx(t) = �@
x

Udt+
p
2D ⇤ dB(t) (1.68a)

with a confining potential U(x)

lim
x!±1

U(x) ! 1 (1.68b)

that has two (or more) minima and maxima. A typical example is the bistable quartile
double-well

U(x) = �a

2
x2 +

b

4
x4 , a, b > 0 (1.68c)

with minima at ±
p

a/b.
Generally, we are interested in characterizing the transitions between neighboring min-

ima in terms of a rate k (units of time�1) or, equivalently, by the typical time required for
escaping from one of the minima. To this end, we shall first dicuss the general structure of
the time-dependent solution of the FPE14 for the corresponding PDF p(t, x), which reads

@
t

p = �@
x

j , j(t, x) = �[(@
x

U)p+D@
x

p], (1.68d)

and has the stationary zero-current (j ⌘ 0) solution

p
s

(x) =
e�U(x)/D

Z
, Z =

Z +1

�1
dx e�U(x)/D. (1.69)

13Although things usually get more complicated in higher-dimensions.
14FPEs for over-damped processes are sometimes referred to as Smoluchowski equations.
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14FPEs for over-damped processes are sometimes referred to as Smoluchowski equations.
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To find the time-dependent solution, we can make the ansatz

p(t, x) = %(t, x) e�U(x)/(2D), (1.70)

which leads to a Schrödinger equation in imaginary time

�@
t

% =
⇥
�D@2

x

+W (x)
⇤
% =: H%, (1.71a)

with an e↵ective potential

W (x) =
1

4D
(@

x

U)2 � 1

2
@2
x

U. (1.71b)

Assuming the Hamilton operatorH has a discrete non-degenerate spectrum, �0 < �1 < . . .,
the general solution p(t, x) may be written as

p(t, x) = e�U(x)/(2D)
1X

n=0

c
n

�
n

(x) e��nt, (1.72a)

where the eigenfunctions �
n

of H satisfy
Z

dx �⇤
n

(x)�
m

(x) = �
nm

, (1.72b)

and the constants c
n

are determined by the initial conditions

c
n

=

Z
dx �⇤

n

(x) eU(x)/(2D) p(0, x). (1.72c)

At large times, t ! 1, the solution (1.72a) must approach the stationary solution (1.69),
implying that

�0 = 0 , c0 =
1p
Z

, �0(x) =
e�U(x)/(2D)

p
Z

. (1.73)

Note that �0 = 0 in particular means that the first non-zero eigenvalue �1 > 0 dominates
the relaxation dynamics at large times and, therefore,

⌧⇤ = 1/�1 (1.74)

is a natural measure of the escape time. In practice, the eigenvalue �1 can be computed
by various standard methods (WKB approximation, Ritz method, techniques exploiting
supersymmetry, etc.) depending on the specifics of the e↵ective potential W .
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1.4.2 Two-state approximation

We next illustrate a commonly used simplified description of escape problems, which can
be related to (1.74). As a specific example, we can again consider the escape of a particle
from the left well of a symmetric quartic double well-potential

U(x) = �a

2
x2 +

b

4
x4 , p(0, x) = �(x� x�) (1.75a)

where

x� = �
p
a/b (1.75b)

is the location of the left minimum, but the general approach is applicable to other types
of potentials as well.

The basic idea of the two-state approximation is to project the full FPE dynamics onto
simpler set of master equations by considering the probabilities P±(t) of the coarse-grained
particle-states ‘left well’ (�) and ‘right well’ (+), defined by

P�(t) =

Z 0

�1
dx p(t, x), (1.76a)

P+(t) =

Z 1

0

dx p(t, x). (1.76b)

If all particles start in the left well, then

P�(0) = 1 , P+(0) = 0. (1.77)

Whilst the exact dynamics of P±(t) is governed by the FPE (1.68d), the two-state approx-
imation assumes that this dynamics can be approximated by the set of master equations15

Ṗ� = �k+ P� + k� P+ , Ṗ+ = k+ P� � k� P+. (1.78)

For a symmetric potential, U(x) = U(�x), forward and backward rates are equal, k+ =
k� = k, and in this case, the solution of Eq. (1.78) is given by

P±(t) =
1

2
⌥ 1

2
e�2k t. (1.79)

For comparison, from the FPE solution (1.72a), we find in the long-time limit

p(t, x) ' p
s

(x) + c1e
�U(x)/2D�1(x) e

��1t, (1.80)

Due to the symmetry of p
s

(x), we then have

P�(t) '
1

2
+ C1 e

��1t (1.81a)

15Note that Eqs. (1.78) conserve the total probability, P�(t) + P�(t) = 1.
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where

C1 = c1

Z 0

�1
e�U(x)/2D�1(x) , c1 = �⇤

1(x�) e
U(x�)/(2D). (1.81b)

Since Eq. (1.81a) neglects higher-order eigenfunctions, C1 is in general not exactly equal
but usually close to 1/2. But, by comparing the time-dependence of (1.81a) and (1.79), it
is natural to identify

k ' �1

2
=

1

2⌧⇤
. (1.82)

We next discuss, by considering in a slightly di↵erent setting, how one can obtain an
explicit result for the rate k in terms of the parameters of the potential U .

1.4.3 Constant-current solution

Consider a bistable potential as in Eq. (1.75), but now with a particle source at x0 < x� < 0
and a sink16 at x1 > x

b

= 0. Assuming that particles are injected at x0 at constant flux
j(t, x) ⌘ J = const, the escape rate can be defined by

k :=
J

P�
, (1.83)

with P� denoting the probability of being in the left well, as defined in Eq. (1.76a) above.
To compute the rate from Eq. (1.83), we need to find a stationary constant flux solution
p
J

(x) of Eq. (1.68d), satisfying p
J

(x1) = 0 and

J = �(@
x

U)p
J

�D@
x

p
J

(1.84)

for some constant J . This solution is given by [HTB90]

p
J

(x) =
J

D
e�U(x)/D

Z
x1

x

dy eU(y)/D, (1.85)

as one can verify by di↵erentiation

�(@
x

U)p
J

�D@
x

p
J

= �(@
x

U)p
J

�D@
x


J

D
e�U(x)/D

Z
x1

x

dy eU(y)/D

�

= �(@
x

U)p
J

� J


�(@

x

U)

D
e�U(x)/D

Z
x1

x

dy eU(y)/D � 1

�

= J. (1.86)

16The source could be a protein production site and the barrier could present a semi-permeable mem-
brane.
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Therefore, the inverse rate k�1 from Eq. (1.83) can be formally expressed as

k�1 =
P�

J
=

1

D

Z
x1

�1
dx e�U(x)/D

Z
x1

x

dy eU(y)/D, (1.87)

and a partial integration yields the equivalent representation

k�1 =
1

D

Z
x1

�1
dx eU(x)/D

Z
x

�1
dy e�U(y)/D. (1.88)

Assuming a su�ciently steep barrier, the integrals in Eq. (1.88) may be evaluated by
adopting steepest descent approximations near the potential minimum at x� and near the
maximum at the barrier position x

b

. More precisely, taking into account that U 0(x�) =
U 0(x

b

) = 0, one can replace the potentials in the exponents by the harmonic approximations

U(x) ' U(x�)�
1

2⌧
b

(x� x�)
2, (1.89a)

U(y) ' U(x�) +
1

2⌧�
(y � x�)

2, (1.89b)

where

⌧� = �U 00(x0) > 0 , ⌧
b

= U 00(x
b

) > 0 (1.90)

carry units of time. Inserting (1.89) into (1.88) and replacing the upper integral boundaries
by +1, one thus obtains the so-called Kramers rate [HTB90, GHJM98]

k ' e��U/D

2⇡
p
⌧�⌧b

=: kK , �U = U(x
b

)� U(x�). (1.91)

This result agrees with the well-known empirical Arrhenius law. Note that, because typi-
cally D / k

B

T for thermal noise, binding/unbinding rates depend sensitively on tempera-
ture – this is one of the reasons why many organisms tend to function properly only within
a limited temperature range.

1.5 Stochastic resonance

Noise typically impairs signal transduction, but under certain conditions an optimal dose
of randomness may actually help to enhance weak signals [GHJM98]. This remarkable
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I. INTRODUCTION

Users of modern communication devices are annoyed
by any source of background hiss. Under certain circum-
stances, however, an extra dose of noise can in fact help
rather than hinder the performance of some devices.
There is now even a name for the phenomenon: stochas-
tic resonance. It is presently creating a buzz in fields such
as physics, chemistry, biomedical sciences, and engineer-
ing.

The mechanism of stochastic resonance is simple to
explain. Consider a heavily damped particle of mass m
and viscous friction g, moving in a symmetric double-
well potential V(x) [see Fig. 1(a)]. The particle is sub-
ject to fluctuational forces that are, for example, induced
by coupling to a heat bath. Such a model is archetypal
for investigations in reaction-rate theory (Hänggi,
Talkner, and Borkovec, 1990). The fluctuational forces
cause transitions between the neighboring potential
wells with a rate given by the famous Kramers rate
(Kramers, 1940), i.e.,

rK5
v0vb

2pg

expS 2
DV
D D . (1.1)

with v0
25V9(xm)/m being the squared angular fre-

quency of the potential in the potential minima at 6xm ,
and vb

25uV9(xb)/mu the squared angular frequency at
the top of the barrier, located at xb; DV is the height of

the potential barrier separating the two minima. The
noise strength D5kBT is related to the temperature T .

If we apply a weak periodic forcing to the particle, the
double-well potential is tilted asymmetrically up and
down, periodically raising and lowering the potential
barrier, as shown in Fig. 1(b). Although the periodic
forcing is too weak to let the particle roll periodically
from one potential well into the other one, noise-
induced hopping between the potential wells can be-
come synchronized with the weak periodic forcing. This
statistical synchronization takes place when the average
waiting time TK(D)51/rK between two noise-induced
interwell transitions is comparable with half the period
T

V

of the periodic forcing. This yields the time-scale
matching condition for stochastic resonance, i.e.,

2TK~

D
!

5T
V

. (1.2)

In short, stochastic resonance in a symmetric double-
well potential manifests itself by a synchronization of
activated hopping events between the potential minima

FIG. 1. Stochastic resonance in a symmetric double well. (a)
Sketch of the double-well potential V(x)5(1/4)bx4

2(1/2)ax2. The minima are located at 6xm , where
xm5(a/b)1/2. These are separated by a potential barrier with
the height given by DV5a2/(4b). The barrier top is located at
xb50. In the presence of periodic driving, the double-well po-
tential V(x ,t)5V(x)2A0x cos(Vt) is tilted back and forth,
thereby raising and lowering successively the potential barriers
of the right and the left well, respectively, in an antisymmetric
manner. This cyclic variation is shown in our cartoon (b). A
suitable dose of noise (i.e., when the period of the driving
approximately equals twice the noise-induced escape time) will
make the ‘‘sad face’’ happy by allowing synchronized hopping
to the globally stable state (strictly speaking, this holds true
only in the statistical average).
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B. Residence-time distribution

In Sec. II.A we interpreted the resonant-like depen-
dence of the amplitude x (D) of the periodic response
on the noise intensity D by means of a synchronization
argument, originally formulated by Benzi and co-
workers (Benzi et al., 1981). Moreover, we pointed out
that the response amplitude does not show this synchro-
nization if the driving frequency V is tuned against the

escape rate rK . However, any experimentalist who ever
tried to reproduce stochastic resonance in a real system
(including here the analog circuits) knows by experience
that a synchronization phenomenon takes place any
time the condition rK;V is established by varying ei-
ther D or V. In Figs. 4(a) and 4(b) we depict the typical
input-output synchronization effect in the bistable sys-
tem Eqs. (2.1)–(2.3). In Fig. 4(a) the noise intensity is
increased from low (rare random switching events) up to
very large values, crossing the resonance values DSR of
Eqs. (2.8). In the latter case the output signal x(t) be-
comes tightly locked to the periodic input. In Fig. 4(b),
the noise intensity D is kept fixed and the forcing fre-
quency V is increased. At low values of V, we notice an
alternate asymmetry of the output signal towards either
positive or negative values, depending on the sign of the
input signal. However, many switches occur in both di-
rections within any half forcing period. At large values
of V, the effect of the time modulation is averaged out
and the symmetry of the output signal seems to be fully
restored. Finally, at V;rK the synchronization mecha-
nism is established with clear resemblance to Fig. 4(a).
In the following subsection we characterize stochastic
resonance as a ‘‘resonant’’ synchronization phenom-
enon, resulting from the combined action of noise and
periodic forcing in a bistable system. The tool employed
to this purpose is the residence-time distribution. Intro-
duced as a tool (Gammaitoni, Marchesoni, et al., 1989;
Zhou and Moss, 1990; Zhou, et al., 1990; Löfstedt and
Coppersmith, 1994b; Gammaitoni, Marchesoni, and
Santucci, 1995), such a notion proved useful for applica-
tions in diverse areas of natural sciences (Bulsara et al.,
1991; Longtin et al., 1991; Simon and Libchaber, 1992;
Carroll and Pecora, 1993b; Gammaitoni, Marchesoni,
et al. 1993; Mahato and Shenoy, 1994; Mannella et al.,
1995; Shulgin et al., 1995).

1. Level crossings

A deeper understanding of the mechanism of stochas-
tic resonance in a bistable system can be gained by map-
ping the continuous stochastic process x(t) (the system
output signal) into a stochastic point process

$

t i%. The
symmetric signal x(t) is converted into a point process
by setting two crossing levels, for instance at x656c
with 0<c<xm . On sampling the signal x(t) with an ap-
propriate time base, the times t i are determined as fol-
lows: data acquisition is triggered at time t050 when
x(t) crosses, say, x2 with negative time derivative
@

x(0)52c , ẋ(0),0]; t1 is the subsequent time when
x(t) first crosses x1 with positive derivative [x(t1)5c ,
ẋ(t1).0]; t2 is the time when x(t) switches back to
negative values by recrossing x2 with negative deriva-
tive, and so on. The quantities T(i)5t i2t i21 represent
the residence times between two subsequent switching
events. For simplicity and to make contact with the
theory of Sec. IV.C, we set c5xm . The statistical prop-
erties of the stochastic point process

$

t i% are the subject
of intricate theorems of probability theory (Rice, 1944;
Papoulis, 1965; Blake and Lindsey, 1973). In particular,
no systematic way is known to find the distribution of

FIG. 4. Example of input/output synchronization in the sym-
metric bistable system of Eqs. (2.1)–(2.2a). (a) Varying the
noise intensity D with V held constant. The sampled signal
shown with dashes is the input A(t) (arbitrary units). The re-
maining trajectories are the corresponding system output (in
units of xm) for increasing D values (from bottom to top). (b)
Effect of varying V with D held constant. The three output
samples x(t) (in units of xm) are displayed for increasing V

values (from top to bottom). The parameters for (a) and (b)
are Axm /DV50.1, a5104 s−1, and xm5(a/b)1/2 5 10, cf. in
Fig. 2.
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Stochastic resonance
1. a nonlinear measurement device17,

2. a periodic signal weaker than the threshold of measurement device,

3. additional input noise, uncorrelated with the signal of interest.

To provide some intuition, assume that a weak periodic signal (frequency ⌦) is detected
by a particle that can move move in the bistable double well-potential (1.75). For weak
noise, the particle will remain trapped in one of the minima and we will be unable to
infer the signal from the particle’s motion. Similarly, not much information about the
underlying signal can be gained if the noise is too strong, for in this case the particle will
jump randomly back and forth between the minima. If, however, the noise strength is
tuned such that the Kramers escape rate (1.91) is of the order of the driving frequency,

kK ⇠ ⌦, (1.92)

then it is plausible to expect that the particle’s escape dynamics will be closely correlated
with the driving frequency, thus exhibiting SR.

1.5.1 Generic model

To illustrate SR more quantitatively, consider the periodically driven SDE

dX(t) = �@
x

U dt+ A cos(⌦t) dt+
p
2D ⇤ dB(t), (1.93a)

where A is the signal amplitude and

U(x) = �a

2
x2 +

b

4
x4 (1.93b)

a symmetric double-well potential with minima at ±x⇤ = ±
p
a/b and barrier height

�U = a2/(4b). Introducing rescaled variables

x0 = x/x⇤ , t0 = at , A0 = A/(ax⇤) , D0 = D/(ax2
⇤) , ⌦0 = ⌦/a.

and dropping primes. we can rewrite (1.93a) in the dimensionless form

dX(t) = (x� x3) dt+ A cos(⌦t) dt+
p
2D ⇤ dB(t), (1.93c)

with a rescaled barrier height �U = 1/4. The associated FPE reads

@
t

p = �@
x

{[�(@
x

U) + A cos(⌦t)]p�D@
x

p}. (1.94)

For our subsequent discussion, it is useful to rearrange terms on the rhs. as

@
t

p = @
x

[(@
x

U)p+D@
x

p]� A cos(⌦t)@
x

p. (1.95)

17That is, the input-output relationship between the input signal and the observable must be nonlinear
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Therefore, the inverse rate k�1 from Eq. (1.83) can be formally expressed as

k�1 =
P�

J
=

1

D

Z
x1

�1
dx e�U(x)/D

Z
x1

x

dy eU(y)/D, (1.87)

and a partial integration yields the equivalent representation

k�1 =
1

D

Z
x1

�1
dx eU(x)/D

Z
x

�1
dy e�U(y)/D. (1.88)

Assuming a su�ciently steep barrier, the integrals in Eq. (1.88) may be evaluated by
adopting steepest descent approximations near the potential minimum at x� and near the
maximum at the barrier position x

b

. More precisely, taking into account that U 0(x�) =
U 0(x

b

) = 0, one can replace the potentials in the exponents by the harmonic approximations

U(x) ' U(x�)�
1

2⌧
b

(x� x�)
2, (1.89a)

U(y) ' U(x�) +
1

2⌧�
(y � x�)

2, (1.89b)

where

⌧� = �U 00(x0) > 0 , ⌧
b

= U 00(x
b

) > 0 (1.90)

carry units of time. Inserting (1.89) into (1.88) and replacing the upper integral boundaries
by +1, one thus obtains the so-called Kramers rate [HTB90, GHJM98]

k ' e��U/D

2⇡
p
⌧�⌧b

=: kK , �U = U(x
b

)� U(x�). (1.91)

This result agrees with the well-known empirical Arrhenius law. Note that, because typi-
cally D / k

B

T for thermal noise, binding/unbinding rates depend sensitively on tempera-
ture – this is one of the reasons why many organisms tend to function properly only within
a limited temperature range.

1.5 Stochastic resonance

Noise typically impairs signal transduction, but under certain conditions an optimal dose
of randomness may actually help to enhance weak signals [GHJM98]. This remarkable
phenomenon is known as stochastic resonance (SR). Whilst SR was originally proposed as
a possible explanation for periodically recurring climate cycles [NN81, BPSV83], experi-
ments suggest [FSGB+02] that some organisms like juvenile paddle-fish might exploit SR
to enhance signal detection while foraging for food.

The occurrence of SR requires three main ‘ingredients’
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Focussing on the liner response regime, corresponding to powers A0 and A1, we find
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Equation (1.98a) is just an ordinary time-independent FPE, and we know its stationary
solution is just the Boltzmann distribution
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2. a periodic signal weaker than the threshold of measurement device,

3. additional input noise, uncorrelated with the signal of interest.

To provide some intuition, assume that a weak periodic signal (frequency ⌦) is detected
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First-order correction
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ȧ1m = ��
m

a1m �M
m0 cos(⌦t), (1.103)

with ‘transition matrix’ elements

M
m0 =

Z
dx �

m

eU(x)/(2D)@
x

p0. (1.104)

22

The asymptotic solution of Eq. (1.103) reads

a1m(t) = �M
m0


⌦

�2
m

+ ⌦2
sin(⌦t) +

�
m

�2
m

+ ⌦2
cos(⌦t)

�
. (1.105)

Note that, because @
x

p0 is an antisymmetric function, the matrix elements M
m0 vanish18

for even valuesm = 0, 2, 4, . . ., so that only the contributions from odd valuesm = 1, 3, 5 . . .
are asymptotically relevant.

Focussing on the leading order contribution, m = 1, and noting that p0(x) = p0(�x),
we can estimate the position mean value

E[X(t)] =

Z
dx p(t, x) x (1.106)

from

E[X(t)] ' A

Z
dx p1(t, x) x

' A

Z
dx e�U(x)/(2D) a11(t)�1(x) x

= �AM10


⌦

�2
1 + ⌦2

sin(⌦t) +
�1

�2
1 + ⌦2

cos(⌦t)

� Z
dx e�U(x)/(2D) �1(x) x

Using �1 = 2kK, where kK is the Kramers rate from Eq. (1.91), we can rewrite this more
compactly as

E[X(t)] = X cos(⌦t� ') (1.107a)

with phase shift

' = arctan

✓
⌦

2kK

◆
(1.107b)

and amplitude

X = �A
M10

(4k2
K + ⌦2)1/2

Z
dx e�U(x)/(2D) �1(x) x. (1.107c)

The amplitude X depends on the noise strength D through kK, through the integral factor
and also through the matrix element

M10 =

Z
dx �1 e

U(x)/(2D)@
x

p0. (1.108)

18The potential U(x) is symmetric and, therefore, the e↵ective Hamiltonian commutes with parity
operator, implying that the eigenfunctions �2k are symmetric under x 7! �x, whereas eigenfunctions
�2k+1 are antisymmetric under this map.
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To compute X, one first needs to determine the eigenfunction �1 of H0 as defined in
Eq. (1.101). For the quartic double-well potential (1.93b), this cannot be done analytically
but there exist standard techniques (e.g., Ritz method) for approximating �1 by functions
that are orthogonal to �0 =

p
p0/Z0. Depending on the method employed, analytical

estimates for X may vary quantitatively but always show a non-monotonic dependence on
the noise strength D for fixed potential-parameters (a, b). As discussed in [GHJM98], a
reasonably accurate estimate for X is given by

X ' Aa

Db

✓
4k2

K

4k2
K + ⌦2

◆1/2

, (1.109)

which exhibits a maximum for a critical value D⇤ determined by

4k2
K = ⌦2

✓
�U

D⇤
� 1

◆
. (1.110)

That is, the value D⇤ corresponds to the optimal noise strength, for which the mean
value E[X(t)] shows maximal response to the underlying periodic signal – hence the name
‘stochastic resonance’ (SR).

1.5.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P±(t) of the coarse-grained particle-states ‘left well’ (�) and ‘right well’ (+),
as defined by Eq. (1.76). This approach leads to the following two-state master equations
with time-dependent rates

Ṗ�(t) = �k+(t)P� + k�(t)P+, (1.111a)

Ṗ+(t) = k+(t)P� � k�(t)P+. (1.111b)

The general solution of this pair of ODEs is given by [GHJM98]

P±(t) = g(t)


P±(t0) +

Z
t

t0

ds
k±(s)

g(s)

�
(1.112a)

where

g(t) = exp

⇢
�
Z

t

t0

ds [k+(s) + k�(s)]

�
. (1.112b)

To discuss SR within this framework, it is plausible to postulate time-dependent Arrhenius-
type rates,

k±(t) = kK exp


±Ax⇤

D
cos(⌦t)

�
. (1.113)
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The amplitude X depends on the noise strength D through kK, through the integral factor
and also through the matrix element

M10 =

Z
dx �1 e

U(x)/(2D)@
x

p0. (1.108)

18The potential U(x) is symmetric and, therefore, the e↵ective Hamiltonian commutes with parity
operator, implying that the eigenfunctions �2k are symmetric under x 7! �x, whereas eigenfunctions
�2k+1 are antisymmetric under this map.
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To compute X, one first needs to determine the eigenfunction �1 of H0 as defined in
Eq. (1.101). For the quartic double-well potential (1.93b), this cannot be done analytically
but there exist standard techniques (e.g., Ritz method) for approximating �1 by functions
that are orthogonal to �0 =

p
p0/Z0. Depending on the method employed, analytical

estimates for X may vary quantitatively but always show a non-monotonic dependence on
the noise strength D for fixed potential-parameters (a, b). As discussed in [GHJM98], a
reasonably accurate estimate for X is given by

X ' Aa

Db

✓
4k2

K

4k2
K + ⌦2

◆1/2

, (1.109)

which exhibits a maximum for a critical value D⇤ determined by

4k2
K = ⌦2

✓
�U

D⇤
� 1

◆
. (1.110)

That is, the value D⇤ corresponds to the optimal noise strength, for which the mean
value E[X(t)] shows maximal response to the underlying periodic signal – hence the name
‘stochastic resonance’ (SR).

1.5.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P±(t) of the coarse-grained particle-states ‘left well’ (�) and ‘right well’ (+),
as defined by Eq. (1.76). This approach leads to the following two-state master equations
with time-dependent rates

Ṗ�(t) = �k+(t)P� + k�(t)P+, (1.111a)

Ṗ+(t) = k+(t)P� � k�(t)P+. (1.111b)

The general solution of this pair of ODEs is given by [GHJM98]

P±(t) = g(t)


P±(t0) +

Z
t

t0

ds
k±(s)

g(s)

�
(1.112a)

where

g(t) = exp

⇢
�
Z

t

t0

ds [k+(s) + k�(s)]

�
. (1.112b)

To discuss SR within this framework, it is plausible to postulate time-dependent Arrhenius-
type rates,

k±(t) = kK exp


±Ax⇤

D
cos(⌦t)

�
. (1.113)
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Ṗ+(t) = k+(t)P� � k�(t)P+. (1.111b)

The general solution of this pair of ODEs is given by [GHJM98]

P±(t) = g(t)


P±(t0) +

Z
t

t0

ds
k±(s)

g(s)

�
(1.112a)

where

g(t) = exp

⇢
�
Z

t

t0

ds [k+(s) + k�(s)]

�
. (1.112b)

To discuss SR within this framework, it is plausible to postulate time-dependent Arrhenius-
type rates,

k±(t) = kK exp


±Ax⇤

D
cos(⌦t)

�
. (1.113)

24



To compute X, one first needs to determine the eigenfunction �1 of H0 as defined in
Eq. (1.101). For the quartic double-well potential (1.93b), this cannot be done analytically
but there exist standard techniques (e.g., Ritz method) for approximating �1 by functions
that are orthogonal to �0 =

p
p0/Z0. Depending on the method employed, analytical

estimates for X may vary quantitatively but always show a non-monotonic dependence on
the noise strength D for fixed potential-parameters (a, b). As discussed in [GHJM98], a
reasonably accurate estimate for X is given by

X ' Aa

Db

✓
4k2

K

4k2
K + ⌦2

◆1/2

, (1.109)

which exhibits a maximum for a critical value D⇤ determined by

4k2
K = ⌦2

✓
�U

D⇤
� 1

◆
. (1.110)

That is, the value D⇤ corresponds to the optimal noise strength, for which the mean
value E[X(t)] shows maximal response to the underlying periodic signal – hence the name
‘stochastic resonance’ (SR).

1.5.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P±(t) of the coarse-grained particle-states ‘left well’ (�) and ‘right well’ (+),
as defined by Eq. (1.76). This approach leads to the following two-state master equations
with time-dependent rates
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Adopting these rates and considering the asymptotic limit t0 ! �1, one can Taylor-
expand the exact solution (1.112) for Ax⇤ ⌧ D to obtain

P±(t) = kK

"
1± Ax⇤

D
cos(⌦t) +

✓
Ax⇤

D

◆2

cos2(⌦t)± . . .

#
. (1.114)

These approximations are valid for slow driving (adiabatic regime), and they allow us to
compute expectation values to leading order in Ax⇤/D. In particular, one then finds for
the mean position the asymptotic linear response result [GHJM98]

E[X(t)] = X cos(⌦t� ') (1.115a)

where

X =
Ax2

⇤
D

✓
4k2

K

4k2
K + ⌦2

◆1/2

, ' = arctan

✓
⌦

2kK

◆
(1.115b)

with kK denoting Kramers rate as defined in Eq. (1.91). Note that Eqs. (1.115) are con-
sistent with our earlier result (1.107).

1.6 Brownian motors

Many biophysical processes, from muscular contractions to self-propulsion of microorgan-
isms or intracellular transport, rely on biological motors. These are, roughly speaking,
collections of proteins that are capable of rectifying thermal and other random fluctua-
tions to achieve directed motion. Here, we focus on a minimal mathematical model that
captures, in a simplified manner, the main building principles of Brownian motors:19

• a spatially periodic structure (ratchet potential) that violates reflection symmetry,

• thermal or non-thermal random fluctuations, and

• a deterministic or stochastic pumping process that drives the system away from
thermal equilibrium.

Generally speaking, the combination of broken spatial symmetry and non-equilibrium driv-
ing is su�cient for generating stationary currents by means of a ratchet e↵ect.

Most biological micro-motors operate in the low Reynolds number regime, where inertia
is negligible. A minimal model can therefore be formulated in terms of an over-damped
Ito-SDE

dX(t) = �U 0(X) dt+ F (t)dt+
p

2D(t) ⇤ dB(t). (1.116)

19For further reading, we refer to the review articles [HM09, Rei02].
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