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Brownian motion



“Brownian” motionÜbersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Jan Ingen-Housz (1730-1799)

1784/1785:

http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

Jörn Dunkel Di�usionsprozesse und Thermostatistik in der speziellen Relativitätstheorie



Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Robert Brown (1773-1858)

1827: irreguläre Eigenbewegung von Pollen in Flüssigkeit

http://www.brianjford.com/wbbrownc.htm

Jörn Dunkel Di�usionsprozesse und Thermostatistik in der speziellen Relativitätstheorie

irregular motion of pollen in fluid

Linnean society, London
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Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Jean Baptiste Perrin (1870-1942, Nobelpreis 1926)

Mouvement brownien et réalité moléculaire, Annales de chimie et de
physique VIII 18, 5-114 (1909)

Les Atomes, Paris, Alcan (1913)

� colloidal particles of
radius 0.53µm

� successive positions
every 30 seconds
joined by straight line
segments

� mesh size is 3.2µm

Experimenteller Nachweis der atomistischen Struktur der Materie

Jörn Dunkel Di�usionsprozesse und Thermostatistik in der speziellen Relativitätstheorie

experimental evidence for 
atomistic structure of matter

Nobel prize 



Norbert Wiener
(1894-1864)

MIT



dunkel@math.mit.edu

Relevance in biology

• intracellular transport  	

• intercellular transport 	

• microorganisms must beat BM to achieve directed 

locomotion	

• tracer diffusion = important experimental “tool” 	

• generalized BMs (polymers, membranes, etc.)

mailto:dunkel@math.mit.edu
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Polymers & filaments (D=1)

Drosophila oocyte

Goldstein lab, PNAS 2012

Dogic Lab, Brandeis

Physical parameters	
(e.g. bending rigidity) 	

from fluctuation 
analysis

mailto:dunkel@math.mit.edu


Brownian tracer particles in a 
bacterial suspension

PRL 2013

Bacillus subtilis Tracer colloids



http://web.mit.edu/mbuehler/www/research/f103.jpg
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Basic idea

Split dynamics into	

• deterministic part (drift)	

• random part (diffusion)



Typical problems

Determine	

• noise ‘structure’	

• transport coefficients 	

• first passage (escape) times ht
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Probability space

A
[0, 1]

B

P[;] = 0



Expectation values of 	
discrete random variables



Expectation values of 	
continuous random variables



Chapter 1

Di↵usion and SDE models

Excellent reviews of the topics discussed in this chapter can be found in Refs. [CPB08,
HTB90, GHJM98, HM09].

1.1 Random walks

1.1.1 Unbiased random walk (RW)

Consider the one-dimensional unbiased RW (fixed initial position X0 = x0, N steps of
length `)

X
N

= x0 + `

NX

i=1

S
i

(1.1)

where S
i

2 {±1} are iid. random variables (RVs) with P[S
i

= ±1] = 1/2. Noting that 1

E[S
i

] = �1 · 1
2
+ 1 · 1

2
= 0, (1.2)

E[S
i

S
j

] = �
ij

E[S2
i

] = �
ij


(�1)2 · 1

2
+ (1)2 · 1

2

�
= �

ij

, (1.3)

we find for the first moment of the RW

E[X
N

] = x0 + `

NX

i=1

E[S
i

] = x0 (1.4)

1By definition, for some RV X with normalized non-negative probability density p(x) = d

dx

P[X  x],
we have E[F (X)] =

R
dx p(x)F (x). For discrete RVs, we can think of p(x) as being a sum of suitably

normalized �-distributions.
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and for the second moment

E[X2
N

] = E[(x0 + `
NX

i=1

S
i

)2]

= E[x2
0 + 2x0`

NX

i=1

S
i

+ `2
NX

i=1

NX

j=1

S
i

S
j

]

= x2
0 + 2x0 · 0 + `2

NX

i=1

NX

j=1

E[S
i

S
j

]

= x2
0 + 2x0 · 0 + `2

NX

i=1

NX

j=1

�
ij

= x2
0 + `2N. (1.5)

The variance (second centered moment)

E
⇥
(X

N

� E[X
N

])2
⇤

= E[X2
N

� 2X
N

E[X
N

] + E[X
N

]2]

= E[X2
N

]� 2E[X
N

]E[X
N

] + E[X
N

]2]

= E[X2
N

]� E[X
N

]2 (1.6)

therefore grows linearly with the number of steps:

E
⇥
(X

N

� E[X
N

])2
⇤
= `2N. (1.7)

Continuum limit From now on, assume x0 = 0 and consider an even number of steps
N = t/⌧ , where ⌧ > 0 is the time required for a single step of the RW and t the total time.
The probability P (N,K) := P[X

N

/` = K] to be at an even position x/` = K � 0 after N
steps is given by the binomial coe�cient

P (N,K) =

✓
1

2

◆
N

✓
N

N�K

2

◆

=

✓
1

2

◆
N

N !

((N +K)/2)! ((N �K)/2)!
. (1.8)

The associated probability density function (PDF) can be found by defining

p(t, x) :=
P (N,K)

2`
=

P (t/⌧, x/`)

2`
(1.9)

and considering limit ⌧, ` ! 0 such that

D :=
`2

2⌧
= const, (1.10)
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Continuum limit

yielding the Gaussian

p(t, x) '
r

1

4⇡Dt
exp

✓
� x2

4Dt

◆
(1.11)

Eq. (1.11) is the fundamental solution to the di↵usion equation,

@
t

p
t

= D@
xx

p, (1.12)

where @
t

, @
x

, @
xx

, . . . denote partial derivatives. The mean square displacement of the con-
tinuous process described by Eq. (1.11) is

E[X(t)2] =

Z
dx x2 p(t, x) = 2Dt, (1.13)

in agreement with Eq. (1.7).

Remark One often classifies di↵usion processes by the (asymptotic) power-law growth
of the mean square displacement,

E[(X(t)�X(0))2] ⇠ tµ. (1.14)

• µ = 0 : Static process with no movement.

• 0 < µ < 1 : Sub-di↵usion, arises typically when waiting times between subsequent
jumps can be long and/or in the presence of a su�ciently large number of obstacles
(e.g. slow di↵usion of molecules in crowded cells).

• µ = 1 : Normal di↵usion, corresponds to the regime governed by the standard Central
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• 1 < µ < 2 : Super-di↵usion, occurs when step-lengths are drawn from distributions
with infinite variance (Lévy walks; considered as models of bird or insect movements).

• µ = 2 : Ballistic propagation (deterministic wave-like process).
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1.1.2 Biased random walk (BRW)

Consider a one-dimensional hopping process on a discrete lattice (spacing `), defined such
that during a time-step ⌧ a particle at position X(t) = `j 2 `Z can either

(i) jump a fixed distance ` to the left with probability �, or

(ii) jump a fixed distance ` to the right with probability ⇢, or

(iii) remain at its position x with probability (1� �� ⇢).

Assuming that the process is Markovian (does not depend on the past), the evolution of
the associated probability vector P (t) = (P (t, x)) = (P

j

(t)), where x = `j, is governed by
the master equation

P (t+ ⌧, x) = (1� �� ⇢)P (t, x) + ⇢ P (t, x� `) + �P (t, x+ `). (1.15)

Technically, ⇢, � and (1� �� ⇢) are the non-zero-elements of the corresponding transition
matrix W = (W

ij

) with W
ij

> 0 that governs the evolution of the column probability
vector P (t) = (P

j

(t)) = (P (t, y)) by

P
i

(t+ ⌧) = W
ij

P
j

(t) (1.16)

or, more generally, for n steps P (t + n⌧) = W nP (t). The stationary solutions are the
eigenvectors of W with eigenvalue 1. To preserve normalization, one requires

P
i

W
ij

= 1.

Continuum limit Define the density p(t,x) = P (t, x)/`. Assume ⌧, ` are small, so that
we can Taylor-expand

p(t+ ⌧, x) ' p(t, x) + ⌧@
t

p(t, x) (1.17a)

p(t, x± `) ' p(t, x)± `@
x

p(t, x) +
`2

2
@
xx

p(t, x) (1.17b)

Neglecting the higher-order terms, it follows from Eq. (1.15) that

p(t, x) + ⌧@
t

p(t, x) ' (1� �� ⇢) p(t, x) +

⇢ [p(t, x)� `@
x

p(t, x) +
`2

2
@
xx

p(t, x)] +

� [p(t, x) + `@
x

p(t, x) +
`2

2
@
xx

p(t, x)]. (1.18)

Dividing by ⌧ , one obtains the advection-di↵usion equation

@
t

p = �u @
x

p+D @
xx

p (1.19a)
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t
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x

p+D @
xx

p (1.19a)

with drift velocity u and di↵usion constant D given by2

u := (⇢� �)
`

⌧
, D := (⇢+ �)

`2

2⌧
. (1.19b)

We recover the classical di↵usion equation (1.12) from Eq. (1.19a) for ⇢ = � = 0.5. The
time-dependent fundamental solution of Eq. (1.19a) reads

p(t, x) =

r
1

4⇡Dt
exp

✓
�(x� ut)2

4Dt

◆
(1.20)

Remarks Note that Eqs. (1.12) and Eq. (1.19a) can both be written in the current-form

@
t

p+ @
x

j
x

= 0 (1.21)

with

j
x

= up�D@
x

p, (1.22)

reflecting conservation of probability. Another commonly-used representation is

@
t

p = Lp, (1.23)

where L is a linear di↵erential operator; in the above example (1.19b)

L := �u @
x

+D @
xx

. (1.24)

Stationary solutions, if they exist, are eigenfunctions of L with eigenvalue 0.

2Strictly speaking, when taking the limits ⌧, ` ! 0, one requires that ⇢ and � change such that u and
D remain constant. Assuming that ⇢+ � = const, this means that (⇢� �) ⇠ `.
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Remarks Note that Eqs. (1.12) and Eq. (1.19a) can both be written in the current-form
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with
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reflecting conservation of probability. Another commonly-used representation is
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where L is a linear di↵erential operator; in the above example (1.19b)
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Stationary solutions, if they exist, are eigenfunctions of L with eigenvalue 0.

2Strictly speaking, when taking the limits ⌧, ` ! 0, one requires that ⇢ and � change such that u and
D remain constant. Assuming that ⇢+ � = const, this means that (⇢� �) ⇠ `.
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