# Brownian motion <br> 18.S995-L03 \& 04 

## Typical length scales


http://www2.estrellamountain.edu/faculty/farabee/BIOBK/biobookcell2.html

## Brownian motion



IIIIT

## "Brownian" motion

## Jan Ingen-Housz (1730-1799)


åber betrigen fornte, barf man nut in ben Brempunct
 gefofener $\mathfrak{\Omega o b l e}$ fegen; man titb biefe תirperdgen in sinet bervirten beftansigen und beftigen Bemegung ex:
1784/1785:
 unter ciinander fortbetegen.
http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

## Robert Brown (1773-1858)



Linnean society, London

1827: irregular motion of pollen in fluid
http://www.brianjford.com/wbbrownc.htm

W. Sutherland (1858-1911)
A. Einstein (1879-1955)
M. Smoluchowski (1872-1917)


Source: www.theage.com.au

$$
D=\frac{R T}{6 \pi \eta a C}
$$

$$
\left\langle x^{2}(t)\right\rangle=2 D t
$$



Source: wikipedia.org

$$
D=\frac{R T}{N} \frac{1}{6 \pi k P}
$$

Phil. Mag. 9, 781 (1905) Ann. Phys. 17, 549 (1905)


Source: wikipedia.org

$$
D=\frac{32}{243} \frac{m c^{2}}{\pi \mu R}
$$

Ann. Phys. 17, 549 (1905) Ann. Phys. 21, 756 (1906)

## Jean Baptiste Perrin (1870-1942, Nobel prize 1926)



Mouvement brownien et réalité moléculaire, Annales de chimie et de physique VIII 18, 5-114 (1909)

- colloidal particles of radius $0.53 \mu \mathrm{~m}$
- successive positions every 30 seconds joined by straight line segments
- mesh size is $3.2 \mu \mathrm{~m}$


## Norbert Wiener

(1894-I864)

MIT


## Relevance in biology

- intracellular transport
- intercellular transport
- microorganisms must beat BM to achieve directed locomotion
- tracer diffusion $=$ important experimental "tool"
- generalized BMs (polymers, membranes, etc.)


## Polymers \& filaments $(\mathrm{D}=\mathrm{I})$



Drosophila oocyte
Physical parameters (e.g. bending rigidity) from fluctuation analysis

## Brownian tracer particles in a bacterial suspension



Bacillus subtilis


Tracer colloids

PRL 2013

Time scale


## Basic idea

## Split dynamics into

- deterministic part (drift)
- random part (diffusion)

$$
\dot{x}=f(t, x(t))+\text { noise }
$$

## Typical problems

Determine

- noise 'structure’
- transport coefficients

- first passage (escape) times

$$
\dot{x}=f(t, x(t))+\text { noise }
$$

## Probability space $\quad(\Omega, \mathcal{F}, \mathbb{P})$

$$
\mathcal{F}=\{\emptyset, \quad A, \quad \Omega / A, \quad B, \quad A \cap B, \quad A \cup B,
$$


$\mathbb{P}$
$\longrightarrow[0,1]$

$$
\begin{aligned}
& \mathbb{P}[\emptyset]=0 \\
& \mathbb{P}[\Omega]=1
\end{aligned}
$$

$$
\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]
$$

## Expectation values of discrete random variables

$$
\begin{gathered}
X: \Omega \rightarrow\left\{x_{1}, \ldots, x_{N}\right\} \\
p_{i} \geq 0, \\
\mathbb{E}[f(X)]=\sum_{i=1}^{N} p_{i}=1 \\
p_{i} f\left(x_{i}\right)
\end{gathered}
$$

$$
\mathbb{E}[\alpha f(X)+\beta g(X)]=\alpha \mathbb{E}[f(X)]+\beta \mathbb{E}[g(X)]
$$

## Expectation values of continuous random variables

$$
\begin{gathered}
X: \Omega \rightarrow \mathbb{R}^{n} \\
p(x) \geq 0, \quad \int d x p(x)=1 \\
\mathbb{E}[f(X)]=\int d \mathbb{P} f(x)=\int d x p(x) f(x)
\end{gathered}
$$

$$
\mathbb{E}[\alpha f(X)+\beta g(X)]=\alpha \mathbb{E}[f(X)]+\beta \mathbb{E}[g(X)]
$$

## Random walk model



$$
X_{N}=x_{0}+\ell \sum_{i=1}^{N} S_{i}
$$

$$
\mathbb{E}[f(S)]=\sum_{a=1}^{2} p_{a} f\left(s_{a}\right)
$$



### 1.1 Random walks

### 1.1.1 Unbiased random walk (RW)

Consider the one-dimensional unbiased RW (fixed initial position $X_{0}=x_{0}, N$ steps of length $\ell$ )

$$
\begin{equation*}
X_{N}=x_{0}+\ell \sum_{i=1}^{N} S_{i} \tag{1.1}
\end{equation*}
$$

where $S_{i} \in\{ \pm 1\}$ are iid. random variables (RVs) with $\mathbb{P}\left[S_{i}= \pm 1\right]=1 / 2$. Noting that ${ }^{1}$

$$
\begin{equation*}
\mathbb{E}\left[S_{i}\right]=-1 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=0 \tag{1.2}
\end{equation*}
$$



### 1.1 Random walks

### 1.1.1 Unbiased random walk (RW)

Consider the one-dimensional unbiased RW (fixed initial position $X_{0}=x_{0}, N$ steps of length $\ell$ )

$$
\begin{equation*}
X_{N}=x_{0}+\ell \sum_{i=1}^{N} S_{i} \tag{1.1}
\end{equation*}
$$

where $S_{i} \in\{ \pm 1\}$ are iid. random variables (RVs) with $\mathbb{P}\left[S_{i}= \pm 1\right]=1 / 2$. Noting that ${ }^{1}$

$$
\begin{align*}
\mathbb{E}\left[S_{i}\right] & =-1 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=0  \tag{1.2}\\
\mathbb{E}\left[S_{i} S_{j}\right] & =\delta_{i j} \mathbb{E}\left[S_{i}^{2}\right]=\delta_{i j}\left[(-1)^{2} \cdot \frac{1}{2}+(1)^{2} \cdot \frac{1}{2}\right]=\delta_{i j} \tag{1.3}
\end{align*}
$$



### 1.1 Random walks

### 1.1.1 Unbiased random walk (RW)

Consider the one-dimensional unbiased RW (fixed initial position $X_{0}=x_{0}, N$ steps of length $\ell$ )

$$
\begin{equation*}
X_{N}=x_{0}+\ell \sum_{i=1}^{N} S_{i} \tag{1.1}
\end{equation*}
$$

where $S_{i} \in\{ \pm 1\}$ are iid. random variables (RVs) with $\mathbb{P}\left[S_{i}= \pm 1\right]=1 / 2$. Noting that ${ }^{1}$

$$
\begin{align*}
\mathbb{E}\left[S_{i}\right] & =-1 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=0,  \tag{1.2}\\
\mathbb{E}\left[S_{i} S_{j}\right] & =\delta_{i j} \mathbb{E}\left[S_{i}^{2}\right]=\delta_{i j}\left[(-1)^{2} \cdot \frac{1}{2}+(1)^{2} \cdot \frac{1}{2}\right]=\delta_{i j}, \tag{1.3}
\end{align*}
$$

we find for the first moment of the RW

$$
\begin{equation*}
\mathbb{E}\left[X_{N}\right]=x_{0}+\ell \sum_{i=1}^{N} \mathbb{E}\left[S_{i}\right]=x_{0} \tag{1.4}
\end{equation*}
$$

## Second moment (uncentered)

$$
\mathbb{E}\left[X_{N}^{2}\right]=\mathbb{E}\left[\left(x_{0}+\ell \sum_{i=1}^{N} S_{i}\right)^{2}\right]
$$

## Second moment (uncentered)

$$
\begin{aligned}
\mathbb{E}\left[X_{N}^{2}\right] & =\mathbb{E}\left[\left(x_{0}+\ell \sum_{i=1}^{N} S_{i}\right)^{2}\right] \\
& =\mathbb{E}\left[x_{0}^{2}+2 x_{0} \ell \sum_{i=1}^{N} S_{i}+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} S_{i} S_{j}\right]
\end{aligned}
$$

## Second moment (uncentered)

$$
\begin{aligned}
\mathbb{E}\left[X_{N}^{2}\right] & =\mathbb{E}\left[\left(x_{0}+\ell \sum_{i=1}^{N} S_{i}\right)^{2}\right] \\
& =\mathbb{E}\left[x_{0}^{2}+2 x_{0} \ell \sum_{i=1}^{N} S_{i}+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} S_{i} S_{j}\right] \\
& =x_{0}^{2}+2 x_{0} \cdot 0+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbb{E}\left[S_{i} S_{j}\right]
\end{aligned}
$$

## Second moment (uncentered)

$$
\begin{aligned}
\mathbb{E}\left[X_{N}^{2}\right] & =\mathbb{E}\left[\left(x_{0}+\ell \sum_{i=1}^{N} S_{i}\right)^{2}\right] \\
& =\mathbb{E}\left[x_{0}^{2}+2 x_{0} \ell \sum_{i=1}^{N} S_{i}+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} S_{i} S_{j}\right] \\
& =x_{0}^{2}+2 x_{0} \cdot 0+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbb{E}\left[S_{i} S_{j}\right] \\
& =x_{0}^{2}+2 x_{0} \cdot 0+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{i j}
\end{aligned}
$$

## Second moment (uncentered)

$$
\begin{align*}
\mathbb{E}\left[X_{N}^{2}\right] & =\mathbb{E}\left[\left(x_{0}+\ell \sum_{i=1}^{N} S_{i}\right)^{2}\right] \\
& =\mathbb{E}\left[x_{0}^{2}+2 x_{0} \ell \sum_{i=1}^{N} S_{i}+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} S_{i} S_{j}\right] \\
& =x_{0}^{2}+2 x_{0} \cdot 0+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbb{E}\left[S_{i} S_{j}\right] \\
& =x_{0}^{2}+2 x_{0} \cdot 0+\ell^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{i j} \\
& =x_{0}^{2}+\ell^{2} N \tag{1.5}
\end{align*}
$$

## Continuum limit



$$
X_{N}=x_{0}+\ell \sum_{i=1}^{N} S_{i}
$$

Let

$$
x_{0}=0, \quad N=t / \tau
$$

$$
P(N, K):=\mathbb{P}\left[X_{N} / \ell=K\right]
$$

## Continuum limit



$$
\begin{align*}
P(N, K) & =\left(\frac{1}{2}\right)^{N}\binom{N}{\frac{N-K}{2}} \\
& =\left(\frac{1}{2}\right)^{N} \frac{N!}{((N+K) / 2)!((N-K) / 2)!} \tag{1.8}
\end{align*}
$$

The associated probability density function (PDF) can be found by defining

$$
\begin{equation*}
p(t, x):=\frac{P(N, K)}{2 \ell}=\frac{P(t / \tau, x / \ell)}{2 \ell} \tag{1.9}
\end{equation*}
$$

and considering limit $\tau, \ell \rightarrow 0$ such that

$$
\begin{equation*}
D:=\frac{\ell^{2}}{2 \tau}=\text { const } \tag{1.10}
\end{equation*}
$$

## Continuum limit


yielding the Gaussian

## (psetl)

$$
\begin{equation*}
p(t, x) \simeq \sqrt{\frac{1}{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right) \tag{1.11}
\end{equation*}
$$

Eq. (1.11) is the fundamental solution to the diffusion equation,

$$
\begin{equation*}
\partial_{t} p=D \partial_{x x} p \tag{1.12}
\end{equation*}
$$

where $\partial_{t}, \partial_{x}, \partial_{x x}, \ldots$ denote partial derivatives. The mean square displacement of the continuous process described by Eq. (1.11) is

$$
\begin{equation*}
\mathbb{E}\left[X(t)^{2}\right]=\int d x x^{2} p(t, x)=2 D t \tag{1.13}
\end{equation*}
$$

in agreement with Eq. (1.7).

Remark One often classifies diffusion processes by the (asymptotic) power-law growth of the mean square displacement,

$$
\begin{equation*}
\mathbb{E}\left[(X(t)-X(0))^{2}\right] \sim t^{\mu} \tag{1.14}
\end{equation*}
$$

- $\mu=0$ : Static process with no movement.
- $0<\mu<1$ : Sub-diffusion, arises typically when waiting times between subsequent jumps can be long and/or in the presence of a sufficiently large number of obstacles (e.g. slow diffusion of molecules in crowded cells).
- $\mu=1$ : Normal diffusion, corresponds to the regime governed by the standard Central Limit Theorem (CLT).
- $1<\mu<2$ : Super-diffusion, occurs when step-lengths are drawn from distributions with infinite variance (Lévy walks; considered as models of bird or insect movements).
- $\mu=2$ : Ballistic propagation (deterministic wave-like process).


## Brownian motion

non-Brownian
Levy-flight




### 1.1.2 Biased random walk (BRW)

Consider a one-dimensional hopping process on a discrete lattice (spacing $\ell$ ), defined such that during a time-step $\tau$ a particle at position $X(t)=\ell j \in \ell \mathbb{Z}$ can either
(i) jump a fixed distance $\ell$ to the left with probability $\lambda$, or
(ii) jump a fixed distance $\ell$ to the right with probability $\rho$, or
(iii) remain at its position $x$ with probability $(1-\lambda-\rho)$.

Assuming that the process is Markovian (does not depend on the past), the evolution of the associated probability vector $P(t)=(P(t, x))=\left(P_{j}(t)\right)$, where $x=\ell j$, is governed by the master equation

$$
\begin{equation*}
P(t+\tau, x)=(1-\lambda-\rho) P(t, x)+\rho P(t, x-\ell)+\lambda P(t, x+\ell) . \tag{1.15}
\end{equation*}
$$

## Master equations



$$
\begin{equation*}
P(t+\tau, x)=(1-\lambda-\rho) P(t, x)+\rho P(t, x-\ell)+\lambda P(t, x+\ell) . \tag{1.15}
\end{equation*}
$$

Technically, $\rho, \lambda$ and $(1-\lambda-\rho)$ are the non-zero-elements of the corresponding transition matrix $W=\left(W_{i j}\right)$ with $W_{i j}>0$ that governs the evolution of the column probability vector $P(t)=\left(P_{j}(t)\right)=(P(t, y))$ by

$$
\begin{equation*}
P_{i}(t+\tau)=W_{i j} P_{j}(t) \tag{1.16a}
\end{equation*}
$$

or, more generally, for $n$ steps

$$
\begin{equation*}
P(t+n \tau)=W^{n} P(t) \tag{1.16b}
\end{equation*}
$$

The stationary solutions are the eigenvectors of $W$ with eigenvalue 1 . To preserve normalization, one requires $\sum_{i} W_{i j}=1$.

Continuum limit Define the density $p(t, x)=P(t, x) / \ell$. Assume $\tau, \ell$ are small, so that we can Taylor-expand

$$
\begin{align*}
p(t+\tau, x) & \simeq p(t, x)+\tau \partial_{t} p(t, x)  \tag{1.17a}\\
p(t, x \pm \ell) & \simeq p(t, x) \pm \ell \partial_{x} p(t, x)+\frac{\ell^{2}}{2} \partial_{x x} p(t, x) \tag{1.17b}
\end{align*}
$$

Continuum limit Define the density $p(t, x)=P(t, x) / \ell$. Assume $\tau, \ell$ are small, so that we can Taylor-expand

$$
\begin{align*}
p(t+\tau, x) & \simeq p(t, x)+\tau \partial_{t} p(t, x)  \tag{1.17a}\\
p(t, x \pm \ell) & \simeq p(t, x) \pm \ell \partial_{x} p(t, x)+\frac{\ell^{2}}{2} \partial_{x x} p(t, x) \tag{1.17b}
\end{align*}
$$

Neglecting the higher-order terms, it follows from Eq. (1.15) that

$$
\begin{align*}
p(t, x)+\tau \partial_{t} p(t, x) \simeq & (1-\lambda-\rho) p(t, x)+ \\
& \rho\left[p(t, x)-\ell \partial_{x} p(t, x)+\frac{\ell^{2}}{2} \partial_{x x} p(t, x)\right]+ \\
& \lambda\left[p(t, x)+\ell \partial_{x} p(t, x)+\frac{\ell^{2}}{2} \partial_{x x} p(t, x)\right] . \tag{1.18}
\end{align*}
$$

Continuum limit Define the density $p(t, x)=P(t, x) / \ell$. Assume $\tau, \ell$ are small, so that we can Taylor-expand

$$
\begin{align*}
p(t+\tau, x) & \simeq p(t, x)+\tau \partial_{t} p(t, x)  \tag{1.17a}\\
p(t, x \pm \ell) & \simeq p(t, x) \pm \ell \partial_{x} p(t, x)+\frac{\ell^{2}}{2} \partial_{x x} p(t, x) \tag{1.17b}
\end{align*}
$$

Neglecting the higher-order terms, it follows from Eq. (1.15) that

$$
\begin{align*}
p(t, x)+\tau \partial_{t} p(t, x) \simeq & (1-\lambda-\rho) p(t, x)+ \\
& \rho\left[p(t, x)-\ell \partial_{x} p(t, x)+\frac{\ell^{2}}{2} \partial_{x x} p(t, x)\right]+ \\
& \lambda\left[p(t, x)+\ell \partial_{x} p(t, x)+\frac{\ell^{2}}{2} \partial_{x x} p(t, x)\right] . \tag{1.18}
\end{align*}
$$

Dividing by $\tau$, one obtains the advection-diffusion equation

$$
\begin{equation*}
\partial_{t} p=-u \partial_{x} p+D \partial_{x x} p \tag{1.19a}
\end{equation*}
$$

with drift velocity $u$ and diffusion constant $D$ given by ${ }^{2}$

$$
\begin{equation*}
u:=(\rho-\lambda) \frac{\ell}{\tau}, \quad D:=(\rho+\lambda) \frac{\ell^{2}}{2 \tau} \tag{1.19b}
\end{equation*}
$$

## Time-dependent solution

Dividing by $\tau$, one obtains the advection-diffusion equation

$$
\begin{equation*}
\partial_{t} p=-u \partial_{x} p+D \partial_{x x} p \tag{1.19a}
\end{equation*}
$$

with drift velocity $u$ and diffusion constant $D$ given by ${ }^{2}$

$$
\begin{equation*}
u:=(\rho-\lambda) \frac{\ell}{\tau}, \quad D:=(\rho+\lambda) \frac{\ell^{2}}{2 \tau} \tag{1.19b}
\end{equation*}
$$

We recover the classical diffusion equation (1.12) from Eq. (1.19a) for $\rho=\lambda=0.5$. The time-dependent fundamental solution of Eq. (1.19a) reads

$$
\begin{equation*}
p(t, x)=\sqrt{\frac{1}{4 \pi D t}} \exp \left(-\frac{(x-u t)^{2}}{4 D t}\right) \tag{1.20}
\end{equation*}
$$

Remarks Note that Eqs. (1.12) and Eq. (1.19a) can both be written in the current-form

$$
\begin{equation*}
\partial_{t} p+\partial_{x} j_{x}=0 \tag{1.21}
\end{equation*}
$$

with

$$
\begin{equation*}
j_{x}=u p-D \partial_{x} p, \tag{1.22}
\end{equation*}
$$

reflecting conservation of probability. Another commonly-used representation is

$$
\begin{equation*}
\partial_{t} p=\mathcal{L} p, \tag{1.23}
\end{equation*}
$$

where $\mathcal{L}$ is a linear differential operator; in the above example (1.19b)

$$
\begin{equation*}
\mathcal{L}:=-u \partial_{x}+D \partial_{x x} . \tag{1.24}
\end{equation*}
$$

Stationary solutions, if they exist, are eigenfunctions of $\mathcal{L}$ with eigenvalue 0 .

## (useful later when discussing Brownian motors)

