
Transport problems
18.S995 - L20

dunkel@math.mit.edu

mailto:dunkel@math.mit.edu


Root systems



Katifori lab, MPI Goettingen



dunkel@math.mit.edu

Maze solving

Nakagaki et al (2000) Nature

 1 cm

time = 0 after 8 hours

mailto:dunkel@math.mit.edu


Tree graphs



Spanning trees

Minimal spanning tree



Kirchhoff’s theorem

L

L11

L 11det      =8

Number of spanning trees

sufficient to consider  since  row and column sums 
of Laplacian are zero 



Max-Flow Min-Cut

An example of a flow network with a maximum flow. The source is s, and the sink t. !
The numbers denote flow and capacity.



Deterministic transport



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

5

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

S

6

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 62

7

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Min cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 28

8

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s,  sink node t.

Max flow problem. Assign flow to edges so as to:
! Equalize inflow and outflow at every intermediate vertex.
! Maximize flow sent from s to t.

Maximum Flow Problem

same input as min cut problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4capacity

sinksource



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

5

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

S

6

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 62

7

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Min cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 28

8

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s,  sink node t.

Max flow problem. Assign flow to edges so as to:
! Equalize inflow and outflow at every intermediate vertex.
! Maximize flow sent from s to t.

Maximum Flow Problem

same input as min cut problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4capacity

sinksource



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

5

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

S

6

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 62

7

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Min cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 28

8

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s,  sink node t.

Max flow problem. Assign flow to edges so as to:
! Equalize inflow and outflow at every intermediate vertex.
! Maximize flow sent from s to t.

Maximum Flow Problem

same input as min cut problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4capacity

sinksource



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

5

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

S

6

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 62

7

A cut is a node partition (S, T) such that s is in S and t is in T.
! capacity(S, T)  = sum of weights of edges leaving S.

Min cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 28

8

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s,  sink node t.

Max flow problem. Assign flow to edges so as to:
! Equalize inflow and outflow at every intermediate vertex.
! Maximize flow sent from s to t.

Maximum Flow Problem

same input as min cut problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4capacity

sinksource



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

9

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0

0

0 0

0 4 4

0
4 0

00

Value = 4

except at s or t

0

capacity
flow

10

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

11

1 10

3 8 8

0
4 0

00

Value = 2411

capacity
flow

except at s or t

11

Max flow problem:  find flow that maximizes net flow into sink.

Maximum Flow Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

14

4 10

4 8 9

1
0 0

00

Value = 2814

capacity
flow

12

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

0 10

4 8 8

0
4 0

00
S

10

10 Value = 24



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

9

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0

0

0 0

0 4 4

0
4 0

00

Value = 4

except at s or t

0

capacity
flow

10

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

11

1 10

3 8 8

0
4 0

00

Value = 2411

capacity
flow

except at s or t

11

Max flow problem:  find flow that maximizes net flow into sink.

Maximum Flow Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

14

4 10

4 8 9

1
0 0

00

Value = 2814

capacity
flow

12

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

0 10

4 8 8

0
4 0

00
S

10

10 Value = 24



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

9

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0

0

0 0

0 4 4

0
4 0

00

Value = 4

except at s or t

0

capacity
flow

10

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

11

1 10

3 8 8

0
4 0

00

Value = 2411

capacity
flow

except at s or t

11

Max flow problem:  find flow that maximizes net flow into sink.

Maximum Flow Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

14

4 10

4 8 9

1
0 0

00

Value = 2814

capacity
flow

12

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

0 10

4 8 8

0
4 0

00
S

10

10 Value = 24



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

9

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0

0

0 0

0 4 4

0
4 0

00

Value = 4

except at s or t

0

capacity
flow

10

A flow f is an assignment of weights to edges so that:
! Capacity:  0 ! f(e)  ! u(e). 
! Flow conservation:  flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

11

1 10

3 8 8

0
4 0

00

Value = 2411

capacity
flow

except at s or t

11

Max flow problem:  find flow that maximizes net flow into sink.

Maximum Flow Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

14

4 10

4 8 9

1
0 0

00

Value = 2814

capacity
flow

12

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

0 10

4 8 8

0
4 0

00
S

10

10 Value = 24



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

13

10

6

6

10 0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

0

10 Value = 24

14

10

6

6

10

0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0
S

10

Value = 24

15

Observation 2. Let f be a flow, and let (S, T) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

Cut capacity = 30 ! Flow value " 30

16

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity 
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity = 28   ! Flow value " 28

Flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

13

10

6

6

10 0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

0

10 Value = 24

14

10

6

6

10

0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0
S

10

Value = 24

15

Observation 2. Let f be a flow, and let (S, T) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

Cut capacity = 30 ! Flow value " 30

16

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity 
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity = 28   ! Flow value " 28

Flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

13

10

6

6

10 0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

0

10 Value = 24

14

10

6

6

10

0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0
S

10

Value = 24

15

Observation 2. Let f be a flow, and let (S, T) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

Cut capacity = 30 ! Flow value " 30

16

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity 
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity = 28   ! Flow value " 28

Flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

13

10

6

6

10 0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

0

10 Value = 24

14

10

6

6

10

0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0
S

10

Value = 24

15

Observation 2. Let f be a flow, and let (S, T) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

Cut capacity = 30 ! Flow value " 30

16

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity 
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity = 28   ! Flow value " 28

Flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15



Princeton University   •   COS 226   •   Algorithms and Data Structures   •   Spring 2004   •   Kevin Wayne   • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

! Network reliability.
! Security of statistical data.
! Distributed computing.
! Egalitarian stable matching.
! Distributed computing.
! Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Network connectivity.
! Bipartite matching.
! Data mining.
! Open-pit mining. 
! Airline scheduling.
! Image processing.
! Project selection.
! Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network:  abstraction for material FLOWING through the edges.
! Directed graph.
! Capacities on edges.
! Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

Source: 

17

Max-Flow Min-Cut Theorem

Max-flow min-cut theorem.  (Ford-Fulkerson, 1956): In any network, 
the value of max flow equals capacity of min cut.

! Proof IOU:  we find flow and cut such that Observation 3 applies.

Min cut capacity = 28    ! Max flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15

18

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.

s

4

2

5

3 t

4

0 0

0 0 0

0

4
0

4
4

10 13 10

Flow value = 0flow

capacity

19

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
! Greedy algorithm:  repeat until you get stuck.

s

4

2

5

3 t

4

0 0

0 0 0

0

4
0

4
4

10 13 10
10 10 10X X X

Flow value = 10

Bottleneck capacity of path = 10

flow

capacity

20

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
! Greedy algorithm:  repeat until you get stuck.
! Fails:  need to be able to "backtrack."

s

4

2

5

3 t10 13 10

4

4 4

10 6 10

4

4
4

4
4

Flow value = 10

Flow value = 14

s

4

2

5

3 t

4

0 0

0 0 0

0

4
0

4
4

10 13 10
10 10 10X X X

flow

capacity



Random transport



Random Walks on Graphs: A Survey 3

the asymptotic enumeration of these objects). We’ll survey some of these
applications along with a number of more structural results.

We mention three general references on random walks and finite Markov
chains: Doyle and Snell [25], Diaconis [20] and the forthcoming book of
Aldous [3].

Acknowledgement. My thanks are due to Peter Winkler, András Lukács
and Andrew Kotlov for the careful reading of the manuscript of this paper,
and for suggesting many improvements.

1. Basic notions and facts

Let G = (V, E) be a connected graph with n nodes and m edges. Consider
a random walk on G: we start at a node v0; if at the t-th step we are at
a node v

t

, we move neighbor of v
t

with probability 1/d(v
t

). Clearly, the
sequence of random nodes (v

t

: t = 0, 1, . . .) is a Markov chain. The node
v0 may be fixed, but may itself be drawn from some initial distribution P0.
We denote by P

t

the distribution of v
t

:

P
t

(i) = Prob(v
t

= i).

We denote by M = (p
ij

)
i,j2V

the matrix of transition probabilities of
this Markov chain. So

p
ij

=
Ω

1/d(i), if ij 2 E,
0, otherwise.

(1.1)

Let A
G

be the adjacency matrix of G and let D denote the diagonal matrix
with (D)

ii

= 1/d(i), then M = DA
G

. If G is d-regular, then M = (1/d)A
G

.
The rule of the walk can be expressed by the simple equation

P
t+1 = MT P

t

,

(the distribution of the t-th point is viewed as a vector in RV ), and hence

P
t

= (MT )tP0.

It follows that the probability pt

ij

that, starting at i, we reach j in t steps
is given by the ij-entry of the matrix M t.

BOLYAI SOCIETY
MATHEMATICAL STUDIES, 2

Combinatorics,
Paul Erdős is Eighty (Volume 2)
Keszthely (Hungary), 1993, pp. 1–46.

Random Walks on Graphs: A Survey

L. LOVÁSZ

Dedicated to the marvelous random walk
of Paul Erdős

through universities, continents, and mathematics

Various aspects of the theory of random walks on graphs are surveyed. In
particular, estimates on the important parameters of access time, commute time,
cover time and mixing time are discussed. Connections with the eigenvalues
of graphs and with electrical networks, and the use of these connections in
the study of random walks is described. We also sketch recent algorithmic
applications of random walks, in particular to the problem of sampling.

0. Introduction

Given a graph and a starting point, we select a neighbor of it at random, and
move to this neighbor; then we select a neighbor of this point at random,
and move to it etc. The (random) sequence of points selected this way is a
random walk on the graph.

A random walk is a finite Markov chain that is time-reversible (see
below). In fact, there is not much difference between the theory of random
walks on graphs and the theory of finite Markov chains; every Markov chain
can be viewed as random walk on a directed graph, if we allow weighted
edges. Similarly, time-reversible Markov chains can be viewed as random
walks on undirected graphs, and symmetric Markov chains, as random walks
on regular symmetric graphs. In this paper we’ll formulate the results in
terms of random walks, and mostly restrict our attention to the undirected
case.

BOLYAI SOCIETY
MATHEMATICAL STUDIES, 2

Combinatorics,
Paul Erdős is Eighty (Volume 2)
Keszthely (Hungary), 1993, pp. 1–46.

Random Walks on Graphs: A Survey

L. LOVÁSZ

Dedicated to the marvelous random walk
of Paul Erdős

through universities, continents, and mathematics

Various aspects of the theory of random walks on graphs are surveyed. In
particular, estimates on the important parameters of access time, commute time,
cover time and mixing time are discussed. Connections with the eigenvalues
of graphs and with electrical networks, and the use of these connections in
the study of random walks is described. We also sketch recent algorithmic
applications of random walks, in particular to the problem of sampling.

0. Introduction

Given a graph and a starting point, we select a neighbor of it at random, and
move to this neighbor; then we select a neighbor of this point at random,
and move to it etc. The (random) sequence of points selected this way is a
random walk on the graph.

A random walk is a finite Markov chain that is time-reversible (see
below). In fact, there is not much difference between the theory of random
walks on graphs and the theory of finite Markov chains; every Markov chain
can be viewed as random walk on a directed graph, if we allow weighted
edges. Similarly, time-reversible Markov chains can be viewed as random
walks on undirected graphs, and symmetric Markov chains, as random walks
on regular symmetric graphs. In this paper we’ll formulate the results in
terms of random walks, and mostly restrict our attention to the undirected
case.

4 L. Lovász

If G is regular, then this Markov chain is symmetric: the probability of
moving to u, given that we are at node v, is the same as the probability of
moving to node v, given that we are at node u. For a non-regular graph G,
this property is replaced by time-reversibility: a random walk considered
backwards is also a random walk. More exactly, this means that if we look
at all random walks (v0, . . . , vt

), where v0 is from some initial distribution
P0, then we get a probability distribution P

t

on v
t

. We also get a probability
distribution Q on the sequences (v0, . . . , vt

). If we reverse each sequence,
we get another probability distribution Q0 on such sequences. Now time-
reversibility means that this distribution Q0 is the same as the distribution
obtained by looking at random walks starting from the distribution P

t

.
(We’ll formulate a more handy characterization of time-reversibility a little
later.)

The probability distributions P0, P1, . . . are of course different in gen-
eral. We say that the distribution P0 is stationary (or steady-state) for the
graph G if P1 = P0. In this case, of course, P

t

= P0 for all t ∏ 0; we call
this walk the stationary walk.

A one-line calculation shows that for every graph G, the distribution

º(v) =
d(v)
2m

is stationary. In particular, the uniform distribution on V is stationary if the
graph is regular. It is not difficult to show that the stationary distribution
is unique (here one has to use that the graph is connected).

The most important property of the stationary distribution is that
if G is non-bipartite, then the distribution of v

t

tends to a stationary
distribution, as t!1 (we shall see a proof of this fact, using eigenvalues,
a little later). This is not true for bipartite graphs if n > 1, since then the
distribution P

t

is concentrated on one color class or the other, depending
on the parity of t.

In terms of the stationary distribution, it is easy to formulate the
property of time-reversibility: it is equivalent to saying that for every pair
i, j 2 V , º(i)p

ij

= º(j)p
ji

. This means that in a stationary walk, we step as
often from i to j as from j to i. From (1.1), we have º(i)p

ij

= 1/(2m) for
ij 2 E, so we see that we move along every edge, in every given direction,
with the same frequency. If we are sitting on an edge and the random
walk just passed through it, then the expected number of steps before it
passes through it in the same direction again is 2m. There is a similar
fact for nodes: if we are sitting at a node i and the random walk just



Random Walks on Graphs: A Survey 5

visited this node, then the expected number of steps before it returns is
1/º(i) = 2m/d(i). If G is regular, then this “return time” is just n, the
number of nodes.

2. Main parameters

We now formally introduce the measures of a random walk that play the
most important role in the quantitative theory of random walks, already
mentioned in the introduction.

(a) The access time or hitting time H
ij

is the expected number of steps
before node j is visited, starting from node i. The sum

∑(i, j) = H(i, j) + H(j, i)

is called the commute time: this is the expected number of steps in a
random walk starting at i, before node j is visited and then node i is
reached again. There is also a way to express access times in terms of
commute times, due to Tetali [63]:

H(i, j) =
1
2

√
∑(i, j) +

X

u

º(u)[∑(u, j)° ∑(u, i)]

!
. (2.1)

This formula can be proved using either eigenvalues or the electrical
resistance formulas (sections 3 and 4).

(b) The cover time (starting from a given distribution) is the expected
number of steps to reach every node. If no starting node (starting
distribution) is specified, we mean the worst case, i.e., the node from
which the cover time is maximum.

(c) The mixing rate is a measure of how fast the random walk converges to
its limiting distribution. This can be defined as follows. If the graph is
non-bipartite, then p(t)

ij

! d
j

/(2m) as t!1, and the mixing rate is

µ = lim sup
t!1

max
i,j

ØØØØp
(t)
ij

° d
j

2m

ØØØØ
1/t

.

(For a bipartite graph with bipartition {V1, V2}, the distribution of
v
t

oscillates between “almost proportional to the degrees on V 001 and

BOLYAI SOCIETY
MATHEMATICAL STUDIES, 2

Combinatorics,
Paul Erdős is Eighty (Volume 2)
Keszthely (Hungary), 1993, pp. 1–46.

Random Walks on Graphs: A Survey

L. LOVÁSZ

Dedicated to the marvelous random walk
of Paul Erdős

through universities, continents, and mathematics

Various aspects of the theory of random walks on graphs are surveyed. In
particular, estimates on the important parameters of access time, commute time,
cover time and mixing time are discussed. Connections with the eigenvalues
of graphs and with electrical networks, and the use of these connections in
the study of random walks is described. We also sketch recent algorithmic
applications of random walks, in particular to the problem of sampling.

0. Introduction

Given a graph and a starting point, we select a neighbor of it at random, and
move to this neighbor; then we select a neighbor of this point at random,
and move to it etc. The (random) sequence of points selected this way is a
random walk on the graph.

A random walk is a finite Markov chain that is time-reversible (see
below). In fact, there is not much difference between the theory of random
walks on graphs and the theory of finite Markov chains; every Markov chain
can be viewed as random walk on a directed graph, if we allow weighted
edges. Similarly, time-reversible Markov chains can be viewed as random
walks on undirected graphs, and symmetric Markov chains, as random walks
on regular symmetric graphs. In this paper we’ll formulate the results in
terms of random walks, and mostly restrict our attention to the undirected
case.

6 L. Lovász

“almost proportional to the degrees on V 00
2 . The results for bipartite

graphs are similar, just a bit more complicated to state, so we ignore
this case.)

One could define the notion of “mixing time” as the number of steps
before the distribution of v

t

will be close to uniform (how long should
we shuffle a deck of cards?). This number will be about (log n)/(1 ° µ).
However, the exact value depends on how (in which distance) the phrase
“close” is interpreted, and so we do not introduce this formally here. In
section 5 we will discuss a more sophisticated, but “canonical” definition of
mixing time.

The surprising fact, allowing the algorithmic applications mentioned
in the introduction, is that this “mixing time” may be much less than
the number of nodes; for an expander graph, for example, this takes only
O(log n) steps!

Example 1. To warm up, let us determine the access time for two points
of a path on nodes 0, . . . , n° 1.

First, observe that the access time H(k ° 1, k) is one less than the
expected return time of a random walk on a path with k +1 nodes, starting
at the last node. As remarked, this return time is 2k, so H(k°1, k) = 2k°1.

Next, consider the access times H(i, k) where 0 ∑ i < k ∑ n. In order
to reach k, we have to reach node k°1; this takes, on the average, H(i, k°1)
steps. From here, we have to get to k, which takes, on the average, 2k ° 1
steps (the nodes beyond the k-th play no role). This yields the recurrence

H(i, k) = H(i, k ° 1) + 2k ° 1,

whence H(i, k) = (2i+1)+(2i+3)+ . . .+(2k° 1) = k2° i2. In particular,
H(0, k) = k2 (this formula is closely related to the well-known fact that
Brownian motion takes you distance

p
t in t time).

Assuming that we start from 0, the cover time of the path on n nodes
will also be (n°1)2, since it suffices to reach the other endnode. The reader
might find it entertaining to figure out the cover time of the path when
starting from an internal node.

¿From this it is easy to derive that the access time between two nodes
at distance k of a circuit of length n is k(n ° k). To determine the cover
time f(n) of the circuit, note that it is the same as the time needed on a
very long path, starting from the midpoint, to reach n nodes. Now we have
to reach first n°1 nodes, which takes f(n°1) steps on the average. At this



Random Walks on Graphs: A Survey 7

point, we have a subpath with n°1 nodes covered, and we are sitting at one
of its endpoints. To reach a new node means to reach one of the endnodes
of a path with n + 1 nodes from a neighbor of an endnode. Clearly, this is
the same as the access time between two consecutive nodes of a circuit of
length n. This leads to the recurrence

f(n) = f(n° 1) + (n° 1),

and through this, to the formula f(n) = n(n° 1)/2.

Example 2. As another example, let us determine the access times and
cover times for a complete graph on nodes {0, . . . , n°1}. Here of course we
may assume that we start from 0, and to find the access times, it suffices
to determine H(0, 1). The probability that we first reach node 1 in the t-th

step is clearly
≥

n°2
n°1

¥
t°1

1
n°1 , and so the expected time this happens is

H(0, 1) =
1X

t=1

t

µ
n° 2
n° 1

∂
t°1 1

n° 1
= n° 1.

The cover time for the complete graph is a little more interesting, and
is closely related to the so-called Coupon Collector Problem (if you want to
collect each of n different coupons, and you get every day a random coupon
in the mail, how long do you have to wait?). Let ø

i

denote the first time
when i vertices have been visited. So ø1 = 0 < ø2 = 1 < ø3 < . . . < ø

n

.
Now ø

i+1°ø
i

is the number of steps while we wait for a new vertex to occur
— an event with probability (n° i)/(n° 1), independently of the previous
steps. Hence

E(ø
i°1 ° ø

i

) =
n° 1
n° i

,

and so the cover time is

E(ø
n

) =
n°1X

i=1

E(ø
i+1 ° ø

i

) =
n°1X

i=1

n° 1
n° i

º n log n.

A graph with particularly bad random walk properties is obtained by
taking a clique of size n/2 and attach to it an endpoint of a path of length
n/2. Let i be any node of the clique and j, the “free” endpoint of the path.
Then

H(i, j) = Ω(n3).

BOLYAI SOCIETY
MATHEMATICAL STUDIES, 2

Combinatorics,
Paul Erdős is Eighty (Volume 2)
Keszthely (Hungary), 1993, pp. 1–46.

Random Walks on Graphs: A Survey

L. LOVÁSZ

Dedicated to the marvelous random walk
of Paul Erdős

through universities, continents, and mathematics

Various aspects of the theory of random walks on graphs are surveyed. In
particular, estimates on the important parameters of access time, commute time,
cover time and mixing time are discussed. Connections with the eigenvalues
of graphs and with electrical networks, and the use of these connections in
the study of random walks is described. We also sketch recent algorithmic
applications of random walks, in particular to the problem of sampling.

0. Introduction

Given a graph and a starting point, we select a neighbor of it at random, and
move to this neighbor; then we select a neighbor of this point at random,
and move to it etc. The (random) sequence of points selected this way is a
random walk on the graph.

A random walk is a finite Markov chain that is time-reversible (see
below). In fact, there is not much difference between the theory of random
walks on graphs and the theory of finite Markov chains; every Markov chain
can be viewed as random walk on a directed graph, if we allow weighted
edges. Similarly, time-reversible Markov chains can be viewed as random
walks on undirected graphs, and symmetric Markov chains, as random walks
on regular symmetric graphs. In this paper we’ll formulate the results in
terms of random walks, and mostly restrict our attention to the undirected
case.

0 1


