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Reynolds numbers

Boulder Summer School 2011: Introduction to Low Reynolds Number Locomotion
(Notes from Peko Hosoi’s Lecture)

0.1 Reynolds Numbers in Biology

The Reynolds number is dimensionless group that characterizes the ratio of inertial to viscous
forces. It is defined as

Re =
⇥UL

µ
=

UL

�

where ⇥ is the density of the medium the organism is moving through; µ is the dynamic viscosity
of the medium; � is the kinematic viscosity; U is a characteristic velocity of the organism; and L
is a characteristic length scale. When we discuss swimming biological organisms, we are usually
referring to creatures that are moving through water (or through a fluid with material properties
very close to those of water). This means that the material properties µ and ⇥ are fixed1 and the
Reynolds number is roughly determined by the size of the organism.

In general, the characteristic size of the organism and the characteristic swimming velocity are
related. As a rule-of-thumb, the characteristic locomotion velocity, U , in biological organisms is
related to L by U � L/second e.g. for people L � 1 m and we move at U � 1 m/s; bugs are about
L � 1 mm, and they move at about U � 1 mm/s; for microorganisms L � 100 µm and U � 100
µm/s. Obviously this is a very very very very rough estimate and one does not have to think very
hard to come up with exceptions (as is always the case in biology!). However, it serves as a good
starting point to estimate the Reynolds numbers for various biological organisms as illustrated in
the sketch in Figure ??. Note that even for organisms as small as ants, the Reynolds number is
still on the order of 1 (which is not very low). In this lecture we will focus on Re ⇥ 1 which is
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Figure 1: Typical Reynolds numbers for various biological organisms. Reynolds numbers are esti-
mated using the length scales indicated, the “rule-of-thumb” in the text, and material properties
of water.

relevant for single-cell organisms and bacteria.
1For water, � � 10�2cm2/s and ⇥ � 1 g/cm3.
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Swimming at low Reynolds number
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where � the first coe⌅cient of viscosity (related to bulk
viscosity), and µ is the second coe⌅cient of viscosity
(shear viscosity).

For an incompressible, Newtonian fluid the NSE (3)
simplify to

⇤ [⇧tu + (u ·⌥)u] = �⌥p + µ⌥2u + f , (8)

complemented by the condition (5).

C. Stokes equations

Consider an object of characteristic length L, moving
at absolute velocity U = |U | through (relative to) an in-
compressible, homogeneous Newtonian fluid of constant
viscosity µ and constant density ⇤. The object can be
imagined as a moving boundary (condition), which in-
duces a flow field u(t, x) in the fluid. The ratio of the in-
ertial (dynamic) pressure ⇤U2 and viscous shearing stress
µU/L can be characterized by the Reynolds number4

R ⌅ UL⇤/µ = UL/⇥. (9)

Example: Swimming in water with ⇥ = 10�6 m2/s

• fish/human: L ⌅ 1 m, U ⌅ 1 m/s ⇧ R ⌅ 106.

• bacteria: L ⌅ 1 µm, U ⌅ 10 µm/s ⇧ R ⌅ 10�5.

If the Reynolds number is very small, R ⇥ 1, the
NSE (8) can be approximated by the Stokes equations5

0 = µ⌥2u�⌥p + f , (10a)
0 = ⌥ · u. (10b)

These equations must still be endowed with appropriate
initial and boundary conditions, such as ,e.g.,6

�
u(t, x) = 0,

p(t, x) = p⇥,
as |x|⇤⌃ . (11)

4 Actually, the (local) Reynolds number is defined in terms of the
fluid velocity u relative to an ”appropriately” chosen reference
frame (e.g., the restframe of a confining body); Eq. (9) implicitly
assumes that u ⇤ U on the surface of the object. Moreover,
the value of the Reynolds number depends on the choice of a –
somewhat arbitrary – characteristic length scale L (sometimes
expressed through the notation RL). Specifically, one uses the
approximations |(u·⌅)u| ⇤| U·U/L| and, similarly, |⇤tu| ⇤ U/�
with a characteristic timescale � = L/|U|, yielding |(u ·⌅)u| ⇤
|⇤tu| ⇤ U2/L.

5 More precisely, by replacing Eq. (8) with Eq. (10), it is as-
sumed that for small Reynolds numbers R̃(t, x) := |⇥(u ·
⌅)u|/(µ⌅2u) ⇤ UL(⇥/µ)⇥ 1 one can approximate

⇥ [⇤tu + (u ·⌅)u]� µ⌅2u⇤ �µ⌅2u

The consistency of this approximation can be checked a posteri-
ori by inserting the solution for u into the lhs. of Eq. (8) .

6 The Stokes equations (10) may lead to unphysical results (para-
doxes) in d = 2 space dimensions (cf. discussion in Section 2-7
of (4)), e.g., in the case of a spatially unconfined system.

With the explicitly time-dependent inertial being ne-
glected, the time-dependence of the flow is instante-
neously determined by the motion of the boundaries
and/or time-dependent forces as generated by the swim-
ming objects.

Example: Assume that the local force density f can be
written as

f = �⌥⇥; (12)

e.g., gravitational e⇤ects in homogeneous fluid of con-
stant density ⇤ described by f = �⇤⌥⌅, where ⌅ is the
gravitational potential and ⇥ = ⇤⌅. In this case, we may
define a total stress tensor

�̂ = �(p + ⇥)1̂ + T̂ (13a)

with an e⇤ective total pressure

p̄ := p + ⇥, (13b)

so that the Stokes equations (10) simplify to

0 = µ⌥2u�⌥p̄, (14a)
0 = ⌥ · u. (14b)

The four equations (14) are to be used to determine
the four unknown functions (u, p), respectively. Equa-
tion (14a) is an elliptic PDE.

1. Dynamics of a single sphere

Consider the motion of a rigid body S in a quasi-infinite
fluid. The dynamics of the body (mass M) is character-
ized by its centre-of-mass position X(t), its centre-of-
mass velocity U(t) = Ẋ, and its angular velocity �(t),
defined with respect to some axis that goes through the
centre-of-mass.

a. Translation In the presence of an external force F ,
the translational centre-of-mass motion is governed by

MU̇ = F . (15a)

For example, given the stress tensor �̂ from (13a), the
force F contains a contribution

F [�̂] =
⇥

�S
dS� · �̂, (15b)

where the integral is taken over the surface ⇧S of the body
with an inward-directed surface normal element dS�.
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Effect of dimensionsand from this we find
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Inserting this expression into (5.59), we obtain the far-field dipole flow in 3D

u(x) =
F `

4⇡µ|x|2
⇥
3(n · x)2 � 1

⇤
x̂. (5.65)

As shown in Ref. [DDC+11], Eq. (5.65) agrees well with the mean flow-field of a bacterium.
Upon comparing Eqs. (5.60) and (5.65), it becomes evident that hydrodynamic inter-

actions between bacteria in a free-standing 2D film are much longer-ranged than in a 3D
bulk solution. This is a nice illustration of the fact that the number of available space
dimensions can have profound e↵ects on physical processes and interactions in biological
systems.
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some point x is given by
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where �
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in 2D and �
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ij

in 3D. If |x| � `, we can Taylor expand �
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` = 0, and find to leading order
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2D case Using our above result for @
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, and writing x
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|n| = 1, we find in 2D
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and, hence,

u(x) =
F `

2⇡µ|x|
⇥
2(n · x)2 � 1

⇤
x̂ (5.60)

where x̂ = x/|x|.

3D case To compute the dipole flow field in 3D, we need to compute the partial deriva-
tives of the Oseen tensor
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we have
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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cule flow field created by individual bacteria, we tracked gfp-
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cylindrically symmetric flow, except the azimuthal flow due to
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vector relative to the center of the dipole. Yet there are some
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the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both

2 www.pnas.org — — Footline Author

Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNASFig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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ωi = 6A
(r̂.d̂′)
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ϵijkd̂′
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Eij =
A
|r|3

ȷ

h

3(r̂.d̂′)2 − 1
i

δij + 3(r̂.d̂′)(d̂′
j r̂i + d̂′

ir̂j) −

h

15(r̂.d̂′)2 − 3
i

r̂ir̂j

ff

. [21]

Assuming the characteristic scattering time τ is sufficiently
small, which is realistic for 3D scattering due to the relatively
large swimming speeds of bacteria, we can approximate

⟨|∆θ(τ, r)|2⟩H ≃ τ 2
D

|ḋ(0)|2
E

H

= 9 (Γ + 1)2
A2τ 2

r6

D

(r̂.d̂′)2(d.d̂′)2
E

H
.

Assuming that r̂ is uniformly distributed on a sphere, and d̂
uniformly distributed on a circle in the tangential plane at
radius r, we obtain

⟨|∆θ(τ, r)|2⟩H =
3
5
(Γ + 1)2

A2τ 2

r6
. [22]

Equating this expression with rotational diffusion (see
Eq. [17]) yields the effective hydrodynamic horizon

rH ≃
»

3
20

(Γ + 1)2
A2τ
Dr

–1/6

. [23]

Note that, due to the τ 1/6- dependence, the result is rather
insensitive to the particular value used for τ and, similarly,
to changes in the other parameters. Adopting τ = a/V0

and inserting experimentally measured values (a, ℓ, F, V, Dr)
as given in the main text, we obtain rH ≃ 3.3 µm for E. coli.
Equation [23] can be viewed as an upper bound, as the dipo-
lar flow model overestimates u for r < 6 µm (see Fig. 1D in
the main text).

We may thus conclude that (near-field) hydrodynamic in-
teraction will be of relevance only if one (or more) of the
following conditions are satisfied: (i) bacterial suspensions
are sufficiently dense; (ii) self-organization and/or external
stimuli lead orientational and positional correlations between
nearby bacteria; (iii) rotational diffusion is strongly sup-
pressed (e.g., through an increase of viscosity). However,
our results strongly suggest that under natural conditions hy-
drodynamic long-range interactions are washed out by noise
and that orientational order in dense bacterial suspensions is
primarily caused by an interplay of self-motility and short-
range interactions (steric repulsion, lubrication effects, flagel-
lar bundling, etc.).

Hydrodynamic interactions with a wall
The previous section focussed on the competition between
noise and hydrodynamics in bacterial pair-scattering. We
shall now perform a similar analysis regarding the hydrody-
namic interaction between the bacterium with a wall. Specif-
ically, we are interested in the following two questions [6, 7]:

• Is long-range hydrodynamics for relevant for bacterial cell-
surface collisions?

• Can hydrodynamics trap a bacterium near a wall – and, if
so, for how long?

Dipole model.We denote the position of the bacterium by
x, its normalized orientation vector (the swimming direction)
by d̂, and the unit normal vector of the solid boundary by
n̂ (pointing into the fluid). Using Blake’s solution [8] for a
Stokeslet near an infinite planar no-slip surface one can derive
explicit expressions for the advective flow u′

i(x), the vorticity
ω′

i(x), and the symmetric rate-of-strain tensor E′
ij(x), which

act on a force dipole near a wall due to the interaction with
its hydrodynamic image [8, 6]:

u′
j(x) =

3A
8h2

ȷ

2(n̂.d̂)d̂j +
h

(n̂.d̂)2 − 1
i

n̂j

ff

, [24a]

ω′
k(x) = − 3A

4|h|3
(n̂.d̂)ϵknin̂id̂n, [24b]

E′
in(x) =

A
16|h|3

ȷ

h

5(n̂.d̂)2 − 1
i

δin − 6d̂id̂n −

12(n̂.d̂)(d̂in̂n + n̂id̂n) +

9
h

(n̂.d̂)2 + 1
i

n̂in̂n

ff

, [24c]

where h := |(x̂.n̂)| denotes the orthogonal distance to the
wall, assuming that the coordinate origin lies on the sur-
face, and ϵijk is the Levi-Civita tensor. Following Pedley and
Kessler [5], the deterministic equations of motion for a dipole
swimmer, that moves at constant swimming speed V0 in the
presence of the wall, are given by

q̇j = V0d̂j + u′
j(x), [25a]

˙̂dj =
1
2

ϵjkl ω′
k d̂l + Γ d̂i E′

in (δnj − d̂nd̂j). [25b]

As before, Γ := [(a/b)2 − 1]/[(a/b)2 + 1] is a geometric factor
for ellipsoidal particles with major axis length a and minor
axis length b. The equation [25b] for the orientation change
can be explicitly written as

˙̂
dj =

3A
8h3

(n̂.d̂)

ȷ

1 − Γ
2

h

3(n̂.d̂)2 − 1
i

ff

[(n̂.d̂)d̂j − n̂j ]. [26]

To study whether or not long-range hydrodynamics affects
the dynamics of a bacterium when it swims towards a wall,
we numerically integrated Eqs. [25b] using the experimen-
tally determined parameters for the bacterial flow field. The
results, which are summarized as Fig. 2 in the main text,
show that, due to the high self-swimming speeds of E. colie,
hydrodynamic long-range interactions are not likely to play
an important role in wall collisions - and therefore are not
relevant for the very early stages of biofilm formation.

Escape from the wall. A ‘pusher’ bacterium aligned in parallel
to a non-slip surface experiences a hydrodynamic attraction
towards the surface [6]. Orientational noise and self-swimming
may counteract this attraction. We wish to estimate the typ-
ical time scale it takes for bacterium to escape from the wall,
using the dipole model defined by Eqs. [24]-[26].

Let us assume that an inelastic collision has led to align-
ment of the swimmer parallel to the wall. According to
Eq. [24a], the hydrodynamic attraction for a dipole swimmer
pointing parallel to the surface is given by

u′
i(x) = − 3A

8h2
n̂i. [27]

Let θ denote the angle between swimmer and surface (i.e.,
θ = 0 means parallel to surface). A bacterium can escape
from the wall by virtue of its self-motility if the self-swimming
velocity in the direction perpendicular to the wall exceeds the
advective attraction [27], yielding the ‘escape inequality’

V0 sin θ
!

≥ 3A
8h2

. [28]
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E.coli  (non-tumbling HCB 437)

Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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... hitting the wall 

Fig. 2. (A) Deterministic trajectories of a dipole bacterium swimming towards a
wall at y = 0, numerically simulated from Eq. [7 ] with time-step ∆t = 10−5s us-
ing the experimentally determined parameters A = 31.8µm3/s, V0 = 22µm/s

and Γ = 0.88. The initial distance is chosen such that the swimmer would reach
the wall after 1 s if hydrodynamic interactions were not present. (B) Incidence angle
θ0 vs. collision angle θhit for the trajectories in diagram A. Both plots illustrate
that, due to the high self-swimming speeds of E. coli., hydrodynamic long-range
interactions can be regarded as small perturbations in a typical wall collision.

hydrodynamic long-range interactions or whether such colli-
sions can be viewed as quasi-ballistic random events which
are followed by alignment due to near-field lubrication and/or
steric forces.

To investigate this problem, we performed numerical colli-
sion studies by simulating the deterministic equations of mo-
tion [37] for a dipole swimmer (position q, unit orientation
vector d̂, selfswiming sepped V0) in the presence of an infinite
surface, which read in component form (we use a summation
convention for equal tensor indices i, k, l = 1, 2, 3)

q̇j = V0d̂j + uj , [7a]

˙̂
dj =

1
2

ϵjkl ωk d̂l + Γ d̂i Ein (δnj − d̂nd̂j). [7b]

Here, the over-dot indicates the time-derivative, ϵijk is the
Levi-Civita tensor, u, ω and E denote advective flow, vorticty
vector and rate-of-strain tensor due to the image swimmer (as
given in the SI), and Γ := (γ2 − 1)/(γ2 + 1) with γ = (a/b)2

is a geometry factor for ellipsoidal particles with major axis
length a and minor axis length b. By restricting ourselves to
simulations of the deterministic dynamics at this stage, we ac-
tually overestimate the relevance of hydrodynamic long-range
interactions between bacterium and wall, as random reorien-
tation due to internal and external noise further diminishes
hydrodynamic effects.

However, even with rotational diffusion being neglected,
our simulations show that long-range interactions with its hy-
drodynamic wall-image only have very little effect on the dy-
namics of a bacterium, as shown in Fig. 2. Figure 2A depicts
representative trajectories of dipole swimmers for different in-
cidence angles. The initial distance is chosen such that the
swimmer would reach the wall plane y = 0 after 1 s if hydrody-
namics interactions were absent. Each simulation is stopped
when the swimmer collides with the surface, defined here by
means of the geometric overlap criterion that the surface of
the dipole swimmer passes the wall. Figure 2B shows the
impact angle θhit as function of the initial angle θ0. The di-
agram illustrates that the difference between incidence and
collision angle is very small, unless the bacterium already has
very small incident angle. This implies that, due to the high
self-swimming speeds of bacteria, hydrodynamic long-range
interactions are not likely to play an important role in wall
collisions - and therefore are not relevant for the very early
stages of biofilm formation.

Fig. 3. Escape time te from Eq. [13] as a function of the distance q⊥ from
the wall for experimentally determined parameter values A = 31.8µm3/s, V0 =

22µm/s, Dr = 0.4 rad2/s. For distances q⊥ < he the bacterium becomes ef-
fectively trapped by hydrodynamics. Show for different 0.1Dr , 0.01Dr , 0.001Dr

Hydrodynamic trapping by surfaces.Although hydrodynam-
ics is negligible before a surface-collision, it can lead to trap-
ping after the collision. A ‘pusher’ bacterium aligned in par-
allel to a non-slip surface experiences a hydrodynamic attrac-
tion towards the surface [29]. Orientational noise and self-
swimming may counteract this attraction, and we would like
to estimate the typical time scale it takes for bacterium to
escape from the wall.

Let us assume that an inelastic collision has led to align-
ment of the swimmer parallel to the wall. The hydrodynamic
attraction for a dipole swimmer pointing parallel to the sur-
face is given by (see SI for details)

ui(q) = − 3A
8q2

⊥

ŵi, [8]

where ŵ is the normal vector of the boundary pointing into
the fluid, and q⊥ the orthogonal distance of the bacterium
from the boundary. Let θ denote the angle between swimmer
and surface (i.e., θ = 0 means parallel to surface). A bac-
terium can escape from the wall by virtue of its self-motility
if its self-swimming velocity in the direction perpendicular to
the wall exceeds the advective attraction [8], yielding the ‘es-
cape inequality’

V0 sin θ
!

≥ 3A
8q2

⊥

. [9]

This allows us define an escape angle θe as function of the
vertical distance q⊥ from the wall by

θe(q⊥) = arcsin

„

3A
8q2

⊥V0

«

; [10]

i.e., swimmers with θ ≥ θe are able to escape. If a bacterium
that was initially aligned with the surface is turned away by
rotational diffusion,this angular motion is counteracted by hy-
drodynamics. As shown in the SI, for elongated bacteria with
Γ ≃ 1, the hydrodynamic re-alignment torque assumes its
maximum for (ŵ.d̂)2 ≃ 1/2, corresponding to the maximum
angular re-alignment speed

|θ̇+| ≃
√

χ
A
q3
⊥

, χ ≃ 0.033. [11]

Assuming that rotational Brownian motion away from the
wall is normal, ⟨|θ(t)|2⟩D = 2Drt, and is counteracted by a
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both

2 www.pnas.org — — Footline Author

Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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resulted in a slightly different flow field (Fig. 1E). Although
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from surfaces, the field decays much faster due to the proxim-
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existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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this approximation is also valid for bacteria that swim close to
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and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
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ity of a no-slip surface (Fig. 1H). In addition, the inward and
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Confining surfaces play crucial roles in dynamics, transport, and order in many physical systems, but

their effects on active matter, a broad class of dynamically self-organizing systems, are poorly understood.

We investigate here the influence of global confinement and surface curvature on collective motion

by studying the flow and orientational order within small droplets of a dense bacterial suspension.

The competition between radial confinement, self-propulsion, steric interactions, and hydrodynamics

robustly induces an intriguing steady single-vortex state, in which cells align in inward spiraling patterns

accompanied by a thin counterrotating boundary layer. A minimal continuum model is shown to be in

good agreement with these observations.

DOI: 10.1103/PhysRevLett.110.268102 PACS numbers: 87.18.Hf, 47.54.!r, 47.63.Gd, 87.17.Jj

Geometric boundaries and surface interactions are
known to have profound effects on transport and order in
condensed matter systems, with examples ranging from
nanoscale edge currents in quantum Hall devices [1,2] to
topological frustration in liquid crystals (LCs) tuned by
manipulating molecular alignment at confining surfaces
[3]. By contrast, in spite of considerable recent interest
[4–8], the effects of external geometric constraints and
confining interfaces on collective dynamics of active bio-
logical matter [9,10], such as polar gels [11,12] and bacte-
rial [13–18] or algal suspensions [19], are not yet well
understood, not least owing to a lack of well-controlled
experimental systems.

At high concentrations, motile rodlike cells exhibit self-
organization akin to nematic LC ordering [13,14,20], with
the added facet of polar alignment driven by collective
swimming [21,22]. Unlike passive LCs, cellular suspen-
sions are in a constant state of flux: at scales between
10 !m and 1 mm, coherent structures (swirls, jets, and
plumes) continually emerge and persist for seconds at a
time [14–17,23,24]. While some progress has been made in
understanding the dynamics of dense bacterial suspensions
in bulk [16,18,23–26], microorganisms often live in porous
habitats like soil, where encounters with interfaces or
three-phase contact lines are common [13,14,27]. Recent
work has clarified how single cells interact with surfaces
[28–31], but it remains unclear how global geometric con-
straints influence their collective motion.

Here, we combine experiment and theory to investigate
how confinement and boundary curvature affect stability

and topology of collective dynamics in active suspensions.
The physical system we study is an oil emulsion containing
droplets of a highly concentrated aqueous suspension of
Bacillus subtilis [Fig. 1(a)]. For drops of diameter d ¼
30–70 !m and height h#25!m, we find that the suspen-
sion self-organizes into a single stable vortex [Fig. 1(b)]
that persists as long as oxygen is available. This pattern is
reminiscent of structures seen in colonies on the surface of
agar [32], spontaneously circulating cytoplasmic extracts
of algal cells [6], and the rotating interior of fibroblasts
on micropatterned surfaces [33]. The vortex flow described
here is purely azimuthal and accompanied by a thin coun-
terrotating boundary layer, consisting of cells swimming
opposite to the bulk. Surprisingly, we observe that the cells
arrange in spirals with a maximum pitch angle of up to 35$

relative to the azimuthal bulk flow direction [Fig. 1(b)].
We suggest that this intriguing helical pattern results from
the interplay of boundary curvature and steric and hydro-
dynamic interactions. Building on this hypothesis, we for-
mulate a simple continuummodel and find good agreement
between its predictions and experimental results.

FIG. 1 (color online). Overview. (a) Experimental setup.
(b) Bright field image of a 40 !m drop, and definition of cell
orientation angle relative to main circulation direction.
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... bacteria create their own BCs !



Vortex characterization

B. subtilis (wild-type strain 168) were grown in standard
Terrific Broth (TB, Sigma) at 35! C on a shaker. An over-
night culture was diluted 200" and grown for 5 h until the
end of exponential growth when the proportion of motile
cells is maximal [34]. Cells were then centrifuged at 1500g
for 10 min. The pellet was gently mixed and transferred
to 4 volumes of mineral oil, with 10 mg=mL diphytanoyl
phosphatidylcholine (DiPhyPC, Avanti) added to prevent
the emulsion from coalescing. Small drops were created
by slowly pipetting the suspension, 10 !L of which was
placed between two coverslips such that it spread by
surface tension to the coverslip edge. This procedure
yielded many flattened drops with h# 25 !m and diam-
eters ranging from 10–150 !m, and bacterial volume
fraction ’# 0:4. The surrounding oil provided a source
of oxygen necessary for bacterial motion. The relatively
smaller diffusive influx in the largest drops resulted in
an oxygen gradient that we avoided by taking movies
in the very first minutes of the experiment, while bacteria in
smaller drops would swim in a steady state vortex for more
than 10 min. Coverslips were rendered hydrophobic with
silane, resulting in pancake-shaped drops that are wider at
the midplane of the chamber than at the top and bottom
[Fig. 1(a)]. Movies were acquired at 125 fps with a high-
speed camera (Fastcam, Photron) on an inverted microscope
(Cell Observer, Zeiss), using a 100" oil-immersion objec-
tive and analyzed with custom Matlab algorithms. Flows
were imaged in the center of the chamber to minimize
optical distortions.

Confinement by the oil interface stabilizes rapidly rotat-
ing vortices (Fig. 2 and Video 1 in the Supplemental
Material [35]). To quantify this effect, we determined the
local bacterial velocity field vðxÞ, using a customized
version of the particle image velocimetry (PIV) toolbox
mPIV [36] that averages pixel correlations over two

seconds [37]. The PIV algorithm yields the local mean
velocity of the bacteria, reflecting locomotion due to swim-
ming and advection by flow [Fig. 2(a)]. The emergence
of stable azimuthal flow is captured by the vortex order
parameter

! ¼
P

i jvi ' tij=
P

j kvjk( 2="

1( 2="
;

where vi is the in-plane velocity and ti the azimuthal unit
vector [Fig. 1(b)] at PIV grid point xi. ! ¼ 1 for steady
azimuthal circulation, ! ¼ 0 for disordered chaotic flows,
and !< 0 for predominantly radial flows. Plotting ! as a
function of drop diameter reveals that a highly ordered
single-vortex state with !> 0:7 forms if d( < d< dþ
with d(#30!m and dþ#70!m [Fig. 2(c)]. Clockwise
and counterclockwise vortices occur with equal probabil-
ity. The lower critical diameter d( depends on the chamber
height h [Fig. 2(d)]. Lowering h restores the quasi-2D
nature of the confinement and allows for formation of
vortex states at smaller diameter d. The upper critical
diameter dþ is consistent with the size of the transient
turbulent swirls observed in 3D bulk bacterial suspensions
[16,18,24]. In drops slightly larger than dþ flow is still
azimuthal near the boundary regions but the vortex order
decreases toward the center. Drops with d * 100 !m
show fully developed bacterial turbulence as seen in
quasi-infinite suspensions [14,16,18,24].
The azimuthal flow speed in a vortex state is maximal

at a distance #d=4 from the center [Fig. 2(e)]. Across
experiments, the maximum speed increases with d, reach-
ing #40 !m=s for dþ, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis suspen-
sions [16,17]. While our setup does not supply oxygen, and
the bacterial motility decreases [18] with time, recent

FIG. 2 (color online). Steady-state circulation in highly concentrated B. subtilis droplets. (a) PIV flow field for a droplet with a
volume filling fraction ’# 0:4. For clarity, not all PIV vectors are shown. (b) Enlarged region reveals the counterrotating boundary
layer. All PIV vectors are shown. (c),(d) Vortex order parameter ! for varying diameter d. (c) Drops of constant height h# 25 !m.
Dashed lines denote the highly ordered single-vortex regime. (d) Averaged vortex order parameter ! (5 !m bins) for h# 15 !m
(red dashed line) and h# 25 !m (blue solid line). Error bars indicate the standard deviation. (e) Azimuthal flow vtðrÞ ¼ hv ' ti#
profile for three different experiments (blue solid lines), compared with continuum bulk flow model results (red dashed lines). Negative
flow indicates the counterrotating boundary layer.
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Material [35]). To quantify this effect, we determined the
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where vi is the in-plane velocity and ti the azimuthal unit
vector [Fig. 1(b)] at PIV grid point xi. ! ¼ 1 for steady
azimuthal circulation, ! ¼ 0 for disordered chaotic flows,
and !< 0 for predominantly radial flows. Plotting ! as a
function of drop diameter reveals that a highly ordered
single-vortex state with !> 0:7 forms if d( < d< dþ
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nature of the confinement and allows for formation of
vortex states at smaller diameter d. The upper critical
diameter dþ is consistent with the size of the transient
turbulent swirls observed in 3D bulk bacterial suspensions
[16,18,24]. In drops slightly larger than dþ flow is still
azimuthal near the boundary regions but the vortex order
decreases toward the center. Drops with d * 100 !m
show fully developed bacterial turbulence as seen in
quasi-infinite suspensions [14,16,18,24].
The azimuthal flow speed in a vortex state is maximal

at a distance #d=4 from the center [Fig. 2(e)]. Across
experiments, the maximum speed increases with d, reach-
ing #40 !m=s for dþ, roughly four times the typical
swimming speed of an isolated bacterium [17] and in
agreement with measurements in open B. subtilis suspen-
sions [16,17]. While our setup does not supply oxygen, and
the bacterial motility decreases [18] with time, recent
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RESULTS AND DISCUSSION

Our swimmers were green fluorescent protein (GFP)-ex-
pressing motile (E. coli) bacteria (strain RP 437/pGFP!2).
They were initially uniformly spread in both compartments
filled with LB medium. Individual bacteria were tracked as
they approached and left the internal walls of the chamber, far
removed from the funnels. Figure 1C shows that for the 70
tracks examined, the impinging distribution (angles "out) was
dramatically different from the distribution of the angles of
incidence ("in). The latter was effectively a uniform random
distribution over the 0°-to-80° range (measured with respect to
the surface normal; we discarded all tracks with "in values of
#80° for reasons of ambiguity). The outgoing angles were
strongly confined to "out values of #80°. This indicates that the
bacteria practically follow walls and lose information about
their initial angle of attack. They keep this direction during an
entire straight run, even if the wall ends. Thus, near the walls,
the motion of bacteria is not a random walk but instead cor-
relates with the constraining geometry. We indeed observed a
concentration of swimming bacteria, as shown in Fig. 2, sup-
porting the mechanism depicted in Fig. 1A. After a uniform
initial distribution (Fig. 2A), the E. coli cells became increas-
ingly concentrated with time on the restricted exit side of the
funnel array (Fig. 2B). In about an hour, there were three
times more cells on the right side than on the left. As a control,
we filled the chip with an aqueous solution of 100-nm-diameter
fluorescent polystyrene beads, which remained uniformly dis-

tributed during a 24-h period, and thus this population imbal-
ance occurs only if the objects actively swim, as opposed to
spreading due to diffusion (data not shown). Since bacteria
communicate with each other (1) and (moreover) move to-
wards one another (9, 10), it is possible that such quorum-
chemotaxis processes could strongly influence the results
shown in Fig. 2. We did control experiments to show that in
this case the concentration was due to swimming motility and
was not a result of bacterial chemotaxis (data not shown). A
motile strain with the chemosensing network knocked out (RP
437 cheAW/pGFPu2) showed the same concentration increase
with time, thus showing that the process is not due to chemo-
taxis. A flat wall with evenly spaced openings but no funnels
showed no development of asymmetry in cell density, demon-
strating the necessity for broken symmetry of the funnel wall
(Fig. 3).

We used the average fluorescence intensity in the two com-
partments as a measure of the cell density. Figure 2C shows
how the density ratio [A(t) $ %R/%L] changes with time (with %R

and %L being the densities on the right and left, respectively).
A simple model (see Appendix) with two differential equa-

tions (equations A1) describing the changes in the density of
cells due to growth and transfer between the compartments
can be used to characterize the kinetics of the system. The two
parameters are the fractions of the populations on the two
sides that cross the funnel wall in unit time (cLR for crossing
left to right and cRL for crossing right to left). The solution of

FIG. 1. Microstructures with funnel walls. (A) Schematic drawing of the interaction of bacteria with the funnel opening. Bacteria on the left
side may (trace 1) or may not (trace 2) get through the gap, depending on the angle of attack. On the right, all bacteria colliding with the wall are
diverted away from the gap (traces 3 and 4). (B) Scanning electron micrograph of the device. (C) Distribution of incoming and outgoing angles
for bacteria colliding with a wall. Data were taken for 70 events.

FIG. 2. Distribution of bacteria in a structure with a funnel wall. (A) Uniform distribution after injection. (B) Steady-state distribution after
80 min. (C) Ratios of densities in the left and right compartments versus time. The blue circles are experimental data, and the dashed red line is
a fit of equation A2 from the Appendix.
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their initial angle of attack. They keep this direction during an
entire straight run, even if the wall ends. Thus, near the walls,
the motion of bacteria is not a random walk but instead cor-
relates with the constraining geometry. We indeed observed a
concentration of swimming bacteria, as shown in Fig. 2, sup-
porting the mechanism depicted in Fig. 1A. After a uniform
initial distribution (Fig. 2A), the E. coli cells became increas-
ingly concentrated with time on the restricted exit side of the
funnel array (Fig. 2B). In about an hour, there were three
times more cells on the right side than on the left. As a control,
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spreading due to diffusion (data not shown). Since bacteria
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wards one another (9, 10), it is possible that such quorum-
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shown in Fig. 2. We did control experiments to show that in
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Scattering analysis

boundary is, in fact, mainly determined by the contact interactions
between their flagella and the surface, whereas hydrodynamic
effects only play a secondary role. Building on these insights, we
derive a simple criterion to predict an efficient ratchet design for
Chlamydomonas and confirm its validity experimentally, thereby

demonstrating that robust rectification of algal locomotion is pos-
sible. More generally, our results show that the interactions be-
tween swimming microorganisms and surfaces are more complex
than previously recognized, suggesting the need for a thorough
revision of currently accepted paradigms. Because mechano-elastic

A

B

C

Fig. 1. Surface scattering of bull spermatozoa is governed by ciliary contact interactions, as evident from the scattering sequences of individual cells at two
temperature values: (A) T = 10 °C and (B) T = 29 °C. The background has been subtracted from the micrographs to enhance the visibility of the cilia. The cyan-
colored line indicates the corner-shaped boundary of themicrofluidic channels (seeMovies S1 and S2 for raw imaging data). The horizontal dotted line in the last
image inB defines θ = 0. (Scale bars: 20 μm.) (C) Theprobability distributions of scattering angles θ from the corner peak at negative angles, due to the fact that the
beat amplitude of the cilia exceeds the size of the cell body (sample size: n = 116 for T = 10 °C and n = 115 for T = 29 °C). At higher temperatures, the cilia exhibit
a larger oscillation amplitude and beat frequency (29), resulting in a larger swimming speed and shifting the typical scattering angles to larger absolute values.

Fig. 2. Surface scattering of Chlamydomonas is governed by ciliary contact interactions. (A) Scattering sequence for WT Chlamydomonas CC-125 (Movie S3).
(Upper) Originalmicrographs. (Lower) Cilia manually marked red. Results for the long-flagellamutant lf3-2 and the short-flagellamutant shf1 look qualitatively
similar (Movies S4 and S5). (Scale bar: 20 μm.) (B) Themutant pushermbo1 remains trapped for several seconds (Movie S6). (Scale bar: 20 μm.) (C) The conditional
probability distributions P(θoutjθin) indicate that, for all four strains, memory of the incidence angle is lost during the collision process, due to multiple flagellar
contact with the surface. (D) The cumulative scattering distribution P(θout) shows how cilia length and swimming mechanisms determine the effective surface-
scattering law. (E) Schematic illustration of the flagella-induced scattering and trapping mechanisms.
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E. coli (7, 8), as these species glide along surfaces after collision. The
challenge is to find the optimal rectification geometry for puller
organisms, which scatter at a finite angle θout > 0 off solid surfaces.
To demonstrate the optimization procedure, we focus on the WT
Chlamydomonas strain, which has the peak angle θout ∼ 168, and
consider wedge-shaped obstacles, like those successfully used in
bacterial rectification (7, 8) (Fig. 3B). Optimal rectification requires
maximizing the ratio jF/jB between the algae currents in forward and
backward directions. The diffusive backward flux jB is driven by
gradients in the algal concentrations across the obstacle rows (Fig.
3C) and can be minimized by decreasing the gap distance dG be-
tween neighboring obstacles relative to the effective width dB of
a single barrier, dG ! dB (Fig. 3B). At the same time, the forward
current jF can be maximized by adjusting the wedge angle α of the
barriers to exploit secondary scattering (Fig. 3B). Assuming a fixed
angle θout, basic geometric considerations yield the criterion 2α +
θout ≤ π/2 for secondary scattering in the forward direction. Thus,

for ideal deterministic scatterers with θout = θout, one would expect
maximal rectification for α* ≈ π=4− θout=2, yielding α*∼ 37° forWT
Chlamydomonas. This estimate should, however, be viewed as an
upper bound for the optimal opening angle, because the measured
scattering distributions P(θout) have large-angle tails (Fig. 2D) that
shift the optimal α-value to smaller angles.
We tested this prediction in numerical simulations of a mini-

mal 2D model and by performing quasi-2D microfluidic experi-
ments (Fig. 3). In our simulations (see Materials and Methods for
details), microswimmers are represented by noninteracting point
particles whose motion captures the main observed features of
Chlamydomonas trajectories. Each particle moves ballistically at
a constant speed V, performs random turns after exponentially
distributed run-periods (15) with persistence time τ ∼ 1.5 s, and
scatters from boundaries at a random angle θout. Both V and θout
are drawn from distributions that mimic the experimentally
measured speed distributions and scattering laws (Materials and
Methods). The value of τ is consistent with estimates from the
mean square displacement of WT Chlamydomonas, as measured
in the quasi-2D microfluidic chambers (height, 25 μm) used for
the rectification experiments (Fig. 3A). Compared with 3D
chambers, the typical swimming speed of the algae (V ∼ 30 μm/s
in quasi-2D chambers) is reduced by approximately a factor of 2
due to the presence of nearby no-slip surfaces, which also tend to
suppress hydrodynamic interactions (35).
In both experiments and simulations, we considered chambers

with four compartments separated by rows of wedge-shaped
barriers with gaps of length dG (Fig. 3 B and C). For each wedge
angle α, the arm length L of the barriers was chosen such that the
length of the longest possible deterministic trajectory leading
through the gap after scattering is equal to the persistence path
length Lp of the algae (Fig. 3B). We then systematically quan-
tified the rectification efficiency by scanning the (dG, α) pa-
rameter space (Fig. 3D). Here, the rectification efficiency is
defined by the ratio R =〈N4〉/〈N1〉, where〈Ni〉denotes the
steady-state time average of the number of swimmers in com-
partment i. Both simulations and experiments show maximal
rectification for parameter values (dG = 20 μm, α’ 30°) that are
close to the theoretically predicted optimum (Fig. 3D). Thus,
although the minimal model neglects variability in swimming
behavior and hydrodynamic effects, it captures the main features
of the experiments.
Generally, our numerical and experimental results support the

hypothesis that rectification of microorganisms in environments
with broken reflection symmetry is a universal phenomenon (36–
43). The ratchets mimic Maxwell’s demon, but there is no con-
flict with thermodynamics due to the nonequilibrium nature of
living systems.

Discussion
Our analysis of individual sperm–surface and alga–surface inter-
actions shows that, in contrast to prevailing theoretical views,
multiple flagellar contact determines the surface scattering of
these eukaryotic cells. The puller-swimmer C. reinhardtii exhibits a
complex ciliary contact dynamics over the course of the scattering
process, which spans a large number of successive swimming
strokes and leads to an almost complete erasure of memory about
the incidence angle. Direct contact of the flagella with nearby walls
may also be the main factor in the surface interactions of other
motile algae, as the general structure of cilia is highly conserved
across many eukaryotic species. The flagella-induced self-trapping
of bull spermatozoa and the Chlamydomonas mutant mbo1 sug-
gests that similar steric mechanisms could also be responsible for
the long surface-residence times of other pusher-type micro-
organisms (4, 6), possibly even in the case of bacteria, where the
role of hydrodynamic interactions as the main determinant of
surface scattering has recently been questioned (4–6). With regard
to future theoretical studies, our experimental results anticipate

Fig. 3. Rectification of algal locomotion in microfluidic ratchets. (A) When
confined in a quasi-2D chamber (height, 25 μm), WT CC125 perform run-and-
turn motions, moving ballistically (average speed V ∼ 30 μm/s) on short time
scales (<2 s) and diffusively on larger time scales. (B) Ratchet geometry and
schematic representation of secondary algal scattering. (C) Rectified steady
state for a chamber with four compartments (Movie S7). (Scale bar: 0.5 mm.)
(D) In both simulations of the minimal model (Materials and Methods) and
experiments, the rectification efficiency R= hN4i=hN1i exhibits a maximum
near to the theoretically predicted optimal ratchet parameters. Each data
point (circles) represents an average over three to five different experi-
ments. Rectification efficiencies are linearly interpolated. The SD for differ-
ent experiments is less than 30% of the mean value.
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details), microswimmers are represented by noninteracting point
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a constant speed V, performs random turns after exponentially
distributed run-periods (15) with persistence time τ ∼ 1.5 s, and
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are drawn from distributions that mimic the experimentally
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in quasi-2D chambers) is reduced by approximately a factor of 2
due to the presence of nearby no-slip surfaces, which also tend to
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through the gap after scattering is equal to the persistence path
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although the minimal model neglects variability in swimming
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43). The ratchets mimic Maxwell’s demon, but there is no con-
flict with thermodynamics due to the nonequilibrium nature of
living systems.
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multiple flagellar contact determines the surface scattering of
these eukaryotic cells. The puller-swimmer C. reinhardtii exhibits a
complex ciliary contact dynamics over the course of the scattering
process, which spans a large number of successive swimming
strokes and leads to an almost complete erasure of memory about
the incidence angle. Direct contact of the flagella with nearby walls
may also be the main factor in the surface interactions of other
motile algae, as the general structure of cilia is highly conserved
across many eukaryotic species. The flagella-induced self-trapping
of bull spermatozoa and the Chlamydomonas mutant mbo1 sug-
gests that similar steric mechanisms could also be responsible for
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organisms (4, 6), possibly even in the case of bacteria, where the
role of hydrodynamic interactions as the main determinant of
surface scattering has recently been questioned (4–6). With regard
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confined in a quasi-2D chamber (height, 25 μm), WT CC125 perform run-and-
turn motions, moving ballistically (average speed V ∼ 30 μm/s) on short time
scales (<2 s) and diffusively on larger time scales. (B) Ratchet geometry and
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Sperm near surfaces

boundary is, in fact, mainly determined by the contact interactions
between their flagella and the surface, whereas hydrodynamic
effects only play a secondary role. Building on these insights, we
derive a simple criterion to predict an efficient ratchet design for
Chlamydomonas and confirm its validity experimentally, thereby

demonstrating that robust rectification of algal locomotion is pos-
sible. More generally, our results show that the interactions be-
tween swimming microorganisms and surfaces are more complex
than previously recognized, suggesting the need for a thorough
revision of currently accepted paradigms. Because mechano-elastic
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Fig. 1. Surface scattering of bull spermatozoa is governed by ciliary contact interactions, as evident from the scattering sequences of individual cells at two
temperature values: (A) T = 10 °C and (B) T = 29 °C. The background has been subtracted from the micrographs to enhance the visibility of the cilia. The cyan-
colored line indicates the corner-shaped boundary of themicrofluidic channels (seeMovies S1 and S2 for raw imaging data). The horizontal dotted line in the last
image inB defines θ = 0. (Scale bars: 20 μm.) (C) Theprobability distributions of scattering angles θ from the corner peak at negative angles, due to the fact that the
beat amplitude of the cilia exceeds the size of the cell body (sample size: n = 116 for T = 10 °C and n = 115 for T = 29 °C). At higher temperatures, the cilia exhibit
a larger oscillation amplitude and beat frequency (29), resulting in a larger swimming speed and shifting the typical scattering angles to larger absolute values.

Fig. 2. Surface scattering of Chlamydomonas is governed by ciliary contact interactions. (A) Scattering sequence for WT Chlamydomonas CC-125 (Movie S3).
(Upper) Originalmicrographs. (Lower) Cilia manually marked red. Results for the long-flagellamutant lf3-2 and the short-flagellamutant shf1 look qualitatively
similar (Movies S4 and S5). (Scale bar: 20 μm.) (B) Themutant pushermbo1 remains trapped for several seconds (Movie S6). (Scale bar: 20 μm.) (C) The conditional
probability distributions P(θoutjθin) indicate that, for all four strains, memory of the incidence angle is lost during the collision process, due to multiple flagellar
contact with the surface. (D) The cumulative scattering distribution P(θout) shows how cilia length and swimming mechanisms determine the effective surface-
scattering law. (E) Schematic illustration of the flagella-induced scattering and trapping mechanisms.
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What happens in 3D ?

Figure 1: Sperm swim on upwards spirals against shear flow. (A) Background-subtracted mi-
crograph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPas
shear rate �̇ =2.1 s�1), channel boundary false-colored with black, see Movie XX for raw
data. (B) Schematic representation not drawn to scale. The conical envelope of the flagel-
lar beat holds the sperm close to the surface (11). The vertical flow gradient exerts a torque
that turns the sperm against the flow, but is counteracted by a torque from the chirality of
the flagellar wave, resulting in a mean diagonal upstream motion. (C) Tracks of bull sperm
near a flat channel surface. (D) Upstream and transverse mean velocities hv

y,x

i versus shear
flow speed u20 at 20µm from the surface for different viscosities. All velocities are normal-
ized by the sample mean speed v0µ at �̇ = 0. For human sperm, in order of increasing vis-
cosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1, and for bull sperm
v0µ = 70.4 ± 11.8, 45.6 ± 4.7, 32.4 ± 4.8, 29.6 ± 4.1µms�1, where uncertainties are stan-
dard deviations of mean values from different experiments. Each data point is an average over
> 1000 sperms (Supporting Material). (E) Histograms for selected points in (D).
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Viscosity & shear dependence

Figure 1: Sperm swim on upwards spirals against shear flow. (A) Background-subtracted mi-
crograph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPas
shear rate �̇ =2.1 s�1), channel boundary false-colored with black, see Movie XX for raw
data. (B) Schematic representation not drawn to scale. The conical envelope of the flagel-
lar beat holds the sperm close to the surface (11). The vertical flow gradient exerts a torque
that turns the sperm against the flow, but is counteracted by a torque from the chirality of
the flagellar wave, resulting in a mean diagonal upstream motion. (C) Tracks of bull sperm
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Figure 1: Sperm swim on upwards spirals against shear flow. (A) Background-subtracted mi-
crograph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPas
shear rate �̇ =2.1 s�1), channel boundary false-colored with black, see Movie XX for raw
data. (B) Schematic representation not drawn to scale. The conical envelope of the flagel-
lar beat holds the sperm close to the surface (11). The vertical flow gradient exerts a torque
that turns the sperm against the flow, but is counteracted by a torque from the chirality of
the flagellar wave, resulting in a mean diagonal upstream motion. (C) Tracks of bull sperm
near a flat channel surface. (D) Upstream and transverse mean velocities hv

y,x

i versus shear
flow speed u20 at 20µm from the surface for different viscosities. All velocities are normal-
ized by the sample mean speed v0µ at �̇ = 0. For human sperm, in order of increasing vis-
cosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1, and for bull sperm
v0µ = 70.4 ± 11.8, 45.6 ± 4.7, 32.4 ± 4.8, 29.6 ± 4.1µms�1, where uncertainties are stan-
dard deviations of mean values from different experiments. Each data point is an average over
> 1000 sperms (Supporting Material). (E) Histograms for selected points in (D).
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I. THEORY

A. Structure of the 2D equations of motion

We would like to deduce the general structure of the simplified 2D equations of motion governing the reorientation
sperm swimming under shear flow close to a solid surface. It is useful to consider non-chiral particles first. Corrections
due to chirality will be discussed subsequently.

1. Non-chiral objects

We assume a geometry as depicted in Fig. 1B of the Main Text and shear-flow near the boundary given by
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We describe the orientation of the cells by the 3D orientation vector n = (n
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) and denote the associated
orthogonal projector by

P(n) = I� nn, (3)

where I is the 3⇥3 unit matrix. According to Eq. (2.4) of Pedley & Kessler [1], reorientation of elliptical (or rod-like)
particles in shear flow u is governed to leading order by

ṅ = a! ⇥ n+ 2bn · E · P(n), (4)

where a = 1/2 and b = 0 for spherical particles. Note that the structure of Eq. (6) is such that it conserves the length
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Moreover, we may identify the cross-product ! ⇥ n with a matrix multiplication W · n, where the components of
the antisymmetric matrix W are given by

2W
mn

:= �(!⇥)
mn

= �✏

min

(✏
ijk

@

j

u

k

) = ✏

imn

(✏
ijk

@

j

u

k

) = (�
mj

�

nk

� �

mk

�

nj

)@
j

u

k

= @

m

u

n

� @

n

u

m

, (5)

⇤
Electronic address: R.E.Goldstein@damtp.cam.ac.uk

Supplementary File 1 for

‘Rheotaxis facilitates upstream navigation of mammalian sperm cells’:

Mathematical modeling and parameter estimation

Vasily Kantsler,1 Jörn Dunkel,2 Martyn Blayney,3 and Raymond E. Goldstein4, ⇤

1University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
2Department of Mathematics, Massachusetts Institute of Technology,
77 Massachusetts Avenue E17-412, Cambridge, MA 02139-4307, USA

3Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
4Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

I. THEORY

A. Structure of the 2D equations of motion

We would like to deduce the general structure of the simplified 2D equations of motion governing the reorientation
sperm swimming under shear flow close to a solid surface. It is useful to consider non-chiral particles first. Corrections
due to chirality will be discussed subsequently.

1. Non-chiral objects

We assume a geometry as depicted in Fig. 1B of the Main Text and shear-flow near the boundary given by

u =

0

@

0
��̇z

0

1

A

, (1)

where �̇ > 0 is the shear rate and � = ±1 depending on flow direction. The corresponding vorticity pseudo-vector !
and rate-of-strain tensor E read

! = r⇥ u = ���̇

0

@

1
0
0

1

A

, E =
1

2
(r|u+ru|) =

��̇

2

0

@

0 0 0
0 0 1
0 1 0

1

A

. (2)

We describe the orientation of the cells by the 3D orientation vector n = (n
x

, n

y

, n

z

) and denote the associated
orthogonal projector by

P(n) = I� nn, (3)

where I is the 3⇥3 unit matrix. According to Eq. (2.4) of Pedley & Kessler [1], reorientation of elliptical (or rod-like)
particles in shear flow u is governed to leading order by
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FIG. 1: Sperm swim on upstream spirals against shear flow. (A) Background-subtracted micro-

graph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPa·s shear rate

�̇ =2.1 s�1), channel boundary false-colored with black, see Movie 1 for raw data. (B) Schematic

representation not drawn to scale. The conical envelope of the flagellar beat holds the sperm close

to the surface [11]. The vertical flow gradient exerts a torque that turns the sperm against the

flow, but is counteracted by a torque from the chirality of the flagellar wave, resulting in a mean

diagonal upstream motion. (C) Tracks of bull sperm near a flat channel surface. (D) Upstream and

transverse mean velocities hv
y,x

i versus shear flow speed u20 at 20µm from the surface for di↵erent

viscosities. All velocities are normalised by the sample mean speed v0µ at �̇ = 0. For human

sperm, in order of increasing viscosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1,

and for bull sperm v0µ = 70.4± 11.8, 45.6± 4.7, 32.4± 4.8, 29.6± 4.1µms�1, where uncertainties

are standard deviations of mean values from di↵erent experiments. Each data point is an average

over > 1000 sperms. (E) Histograms for selected points in (D).
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2

using a component notation with sum convention for repeated Latin indices i, j, . . . = 1, 2, 3. This allows us to rewrite
Eq. (4) as
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For the flow field in (1) we find
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with a, b encoding information about the cell-shape.
Now assume that after a collision with the boundary and subsequent alignment, the sperm points into the wall

due to steric contact interactions between surface and flagellum, so that n

z

= const < 0. This means that the wall
must exert a balancing torque such that (i) ṅ

z

= 0 and (ii) n

2
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2
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2
z

) is conserved. Assuming cylindrical
symmetry of the swimmer around its axis of swimming, the contact interaction leads to rotation of the swimmer
in the plane spanned by n and the wall normal ẑ = (0, 0, 1). The change in orientation per unit time due to wall
interactions can therefore be written as cn+ dẑ, which needs to be added to the rhs. of Eqs. (4), (6) and (7), if the
sperm is contact with the surface. The coe�cient d can be fixed by condition (i), but is not relevant for the motion
in the (x, y)-plane parallel to the surface, which becomes governed by
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Condition (ii) then gives
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The fixed point criterium (ṅ
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This result implies that, depending on the e↵ective shape parameter

↵ = �(a+ b)n
z

, (12)

the combination of shear flow and wall interaction aligns the swimmer either parallel or anti-parallel to the flow
direction. This result also indicates that, in order to account for the transverse velocity component observed in the
experiments, we also need to consider the chirality of the flagellar beat, which has been neglected so far. Before
discussing chiral e↵ects in the next section, let us still note that we may rewrite Eq. (10) in terms of the 2D unit
vector
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where � = ±1 accounts for the flow direction and constant geometric prefactors have been absorbed in the ‘shape’
coe�cient

↵ = �(a+ b)n
z

. (15)

Note that ↵ is positive for sperm-type swimmers that point into the surface, for in this case one has n
z

< 0.
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FIG. 1: Sperm swim on upstream spirals against shear flow. (A) Background-subtracted micro-

graph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPa·s shear rate

�̇ =2.1 s�1), channel boundary false-colored with black, see Movie 1 for raw data. (B) Schematic

representation not drawn to scale. The conical envelope of the flagellar beat holds the sperm close

to the surface [11]. The vertical flow gradient exerts a torque that turns the sperm against the

flow, but is counteracted by a torque from the chirality of the flagellar wave, resulting in a mean

diagonal upstream motion. (C) Tracks of bull sperm near a flat channel surface. (D) Upstream and

transverse mean velocities hv
y,x

i versus shear flow speed u20 at 20µm from the surface for di↵erent

viscosities. All velocities are normalised by the sample mean speed v0µ at �̇ = 0. For human

sperm, in order of increasing viscosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1,

and for bull sperm v0µ = 70.4± 11.8, 45.6± 4.7, 32.4± 4.8, 29.6± 4.1µms�1, where uncertainties

are standard deviations of mean values from di↵erent experiments. Each data point is an average

over > 1000 sperms. (E) Histograms for selected points in (D).
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ṅ = �a��̇

0

@

0
�n

z

n

y

1

A� b��̇

0

@

2n
x

n

y

n

z

(2n2
y

� 1)n
z

(2n2
z

� 1)n
y

1

A

, (7)

with a, b encoding information about the cell-shape.
Now assume that after a collision with the boundary and subsequent alignment, the sperm points into the wall
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interactions can therefore be written as cn+ dẑ, which needs to be added to the rhs. of Eqs. (4), (6) and (7), if the
sperm is contact with the surface. The coe�cient d can be fixed by condition (i), but is not relevant for the motion
in the (x, y)-plane parallel to the surface, which becomes governed by

✓

ṅ
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ṅ

x

ṅ
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x

, ṅ
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coe�cient

↵ = �(a+ b)n
z

. (15)

Note that ↵ is positive for sperm-type swimmers that point into the surface, for in this case one has n
z

< 0.

Steric wall effect



2

using a component notation with sum convention for repeated Latin indices i, j, . . . = 1, 2, 3. This allows us to rewrite
Eq. (4) as

ṅ
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Ṅ

x

Ṅ
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where � = ±1 accounts for the flow direction and constant geometric prefactors have been absorbed in the ‘shape’
coe�cient

↵ = �(a+ b)n
z

. (15)

Note that ↵ is positive for sperm-type swimmers that point into the surface, for in this case one has n
z

< 0.

Rewrite in terms of 2D orientation

FIG. 1: Sperm swim on upstream spirals against shear flow. (A) Background-subtracted micro-

graph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPa·s shear rate

�̇ =2.1 s�1), channel boundary false-colored with black, see Movie 1 for raw data. (B) Schematic

representation not drawn to scale. The conical envelope of the flagellar beat holds the sperm close

to the surface [11]. The vertical flow gradient exerts a torque that turns the sperm against the

flow, but is counteracted by a torque from the chirality of the flagellar wave, resulting in a mean

diagonal upstream motion. (C) Tracks of bull sperm near a flat channel surface. (D) Upstream and

transverse mean velocities hv
y,x

i versus shear flow speed u20 at 20µm from the surface for di↵erent

viscosities. All velocities are normalised by the sample mean speed v0µ at �̇ = 0. For human

sperm, in order of increasing viscosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1,

and for bull sperm v0µ = 70.4± 11.8, 45.6± 4.7, 32.4± 4.8, 29.6± 4.1µms�1, where uncertainties

are standard deviations of mean values from di↵erent experiments. Each data point is an average

over > 1000 sperms. (E) Histograms for selected points in (D).
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Spiral model

Figure 5: Rigid conical helices, as defined in Eq. (17), for different handedness � = ±1 and
different ‘initial’ phases � in their body-fixed frames, where the head rests at the origin. Colors
encode windings. Parameters: S = 4⇡, ✏1 = ✏2 = 0.1, � = 5µm.

to the head. The helicity parameter � = ±1 determines the handedness, defined here such that

� = +1 corresponds to a right-handed spiral when viewed from the head (Fig. 6).

To simplify calculations, we will from now on focus on symmetric spirals with ✏1 = ✏2 = ✏.

In this case, the enveloping cone is given by
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By rotating with �✓ about the ˆe
x

-axis, we obtain the body-centered frame ˆ
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of a flagellum

Figure 6: Rigid conical helices from Fig. 5 as viewed from the tip, using the same color coding
as in Fig. 5.
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where � = ±1 accounts for the flow direction and constant geometric prefactors have been

absorbed in the ‘shape’ coefficient

↵ = �(a+ b)n

z

. (16)

Note that ↵ is positive for sperm-type swimmers that point into the surface, for in this case one

has n
z

< 0.

Chiral objects To identify how chirality (helicity) of the flagellar beat might affect the reori-

entation rate of sperm in shear flow, we consider as a simplified sperm model a rigid 3D conical

helix C(s) in contact with a wall that defines (x, y)-plane of the lab frame ⌃ = {e
x

, e
y

, e
z

},

which is again chosen as in Fig. 1B. We denote by n = (n

x

, n

y

, n

z

) the orientation of the helix

in the lab frame ⌃. In the body-fixed frame ˆ

⌃ = {ˆe
x

,
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,
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z

}, the head (tip) is at the origin and

the tail points in �ˆe
y

-direction (Fig. 5). Specifically, we assume that, in the body-fixed frame

ˆ

⌃, the helix is described by the curve
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The length parameter � scales the size of the flagellum. The parameters ✏1 > 0 and ✏2 > 0

determine the lateral shape of the helix, and they can also be used to interpolate between helical

and planar beat patterns. The phase angle � sets the ‘initial’ direction of the flagellum relative
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Figure 6: Rigid conical helices from Fig. 5 as viewed from the tip, using the same color coding
as in Fig. 5.
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FIG. 3: Body-centered frame ⌃̂ and tilted body-centered frame ⌃̂
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are related by a rotation about the x-axis. After alignment
with the wall, which is assumed to lie in the (z = 0)-plane of ⌃̂

✏

, the orientation of the sperm in the lab frame ⌃ (not shown)
is obtained by an additional rotation of ⌃̂

✏

about the vertical axis .

Assume that the spiral is in contact with the surface along its envelope. By rotating through �✓ about the ê
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Thus, to leading order, one can identify ⇤ ' S� with the length of a flagellum, and A = ⇤✏ with the beat amplitude.
After averaging over all initial conditions �, the mean geometric center of the helix in the body-fixed frame ⌃̂

✏

is
found as

Ĉ
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✏

�

�

�

�Ĉ
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FIG. 1: Rigid conical helices, as defined in Eq. (16), for di↵erent handedness � = ±1 and di↵erent ‘initial’ phases � in their
body-fixed frames, where the head rests at the origin. Colors encode windings. Parameters: S = 4⇡, ✏1 = ✏2 = 0.1, � = 5µm.

2. Chiral objects

To identify how chirality of the flagellar beat might a↵ect the reorientation rate of sperm in shear flow, we consider
as a simplified sperm model a rigid 3D conical helix C(s) in contact with a wall that defines the (x, y)-plane of the
lab frame ⌃ = {e

x

, e
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z

}, which is again chosen as in Fig. 1B of the Main Text.
We denote by n = (n
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}, the head rests at the origin and the tail points in the
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The length parameter � scales the size of the flagellum. The parameters ✏1 > 0 and ✏2 > 0 determine the lateral
shape of the helix, and they can also be used to interpolate between helical and planar beat patterns. The phase
angle � sets the ‘initial’ direction of the flagellum relative to the head. The chirality parameter � = ±1 determines the
handedness, defined here such that � = +1 corresponds to a right-handed spiral when viewed from the head (Fig. 2).

To simplify calculations, we henceforth focus on symmetric spirals with ✏1 = ✏2 = ✏. In this case, the enveloping
cone is given by
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Ĉ(s) =

0

@

X̂(s)
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FIG. 3: Body-centered frame ⌃̂ and tilted body-centered frame ⌃̂
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are related by a rotation about the x-axis. After alignment
with the wall, which is assumed to lie in the (z = 0)-plane of ⌃̂

✏

, the orientation of the sperm in the lab frame ⌃ (not shown)
is obtained by an additional rotation of ⌃̂
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about the vertical axis .

Assume that the spiral is in contact with the surface along its envelope. By rotating through �✓ about the ê
x

-axis,
we obtain the tilted body-centered frame ⌃̂

✏

(Fig. 3) which is defined such that the channel surface is located at z = 0

in both ⌃̂
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Due to our chosen parameterisation (16), the tangent vectors point away from the head. The length ⇤ of the curve
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Thus, to leading order, one can identify ⇤ ' S� with the length of a flagellum, and A = ⇤✏ with the beat amplitude.
After averaging over all initial conditions �, the mean geometric center of the helix in the body-fixed frame ⌃̂
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�Ĉ
✏

�

�

�

�

=

0

@

0
1
�✏

1

A+ O(✏2), (24)

3

FIG. 1: Rigid conical helices, as defined in Eq. (16), for di↵erent handedness � = ±1 and di↵erent ‘initial’ phases � in their
body-fixed frames, where the head rests at the origin. Colors encode windings. Parameters: S = 4⇡, ✏1 = ✏2 = 0.1, � = 5µm.

2. Chiral objects

To identify how chirality of the flagellar beat might a↵ect the reorientation rate of sperm in shear flow, we consider
as a simplified sperm model a rigid 3D conical helix C(s) in contact with a wall that defines the (x, y)-plane of the
lab frame ⌃ = {e

x

, e
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, e
z

}, which is again chosen as in Fig. 1B of the Main Text.
We denote by n = (n
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}, the head rests at the origin and the tail points in the
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The length parameter � scales the size of the flagellum. The parameters ✏1 > 0 and ✏2 > 0 determine the lateral
shape of the helix, and they can also be used to interpolate between helical and planar beat patterns. The phase
angle � sets the ‘initial’ direction of the flagellum relative to the head. The chirality parameter � = ±1 determines the
handedness, defined here such that � = +1 corresponds to a right-handed spiral when viewed from the head (Fig. 2).

To simplify calculations, we henceforth focus on symmetric spirals with ✏1 = ✏2 = ✏. In this case, the enveloping
cone is given by
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are related by a rotation about the x-axis. After alignment
with the wall, which is assumed to lie in the (z = 0)-plane of ⌃̂
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, the orientation of the sperm in the lab frame ⌃ (not shown)
is obtained by an additional rotation of ⌃̂
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about the vertical axis .

Assume that the spiral is in contact with the surface along its envelope. By rotating through �✓ about the ê
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-axis,
we obtain the tilted body-centered frame ⌃̂
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(Fig. 3) which is defined such that the channel surface is located at z = 0
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Using �
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Due to our chosen parameterisation (16), the tangent vectors point away from the head. The length ⇤ of the curve
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Thus, to leading order, one can identify ⇤ ' S� with the length of a flagellum, and A = ⇤✏ with the beat amplitude.
After averaging over all initial conditions �, the mean geometric center of the helix in the body-fixed frame ⌃̂

✏

is
found as

Ĉ
✏

:=
1

2⇡

Z 2⇡

0
d�

"

1

⇤

Z

S

0
ds

�

�

�

�

�

�

�

�

�

�
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FIG. 1: Rigid conical helices, as defined in Eq. (16), for di↵erent handedness � = ±1 and di↵erent ‘initial’ phases � in their
body-fixed frames, where the head rests at the origin. Colors encode windings. Parameters: S = 4⇡, ✏1 = ✏2 = 0.1, � = 5µm.

2. Chiral objects

To identify how chirality of the flagellar beat might a↵ect the reorientation rate of sperm in shear flow, we consider
as a simplified sperm model a rigid 3D conical helix C(s) in contact with a wall that defines the (x, y)-plane of the
lab frame ⌃ = {e

x

, e
y

, e
z

}, which is again chosen as in Fig. 1B of the Main Text.
We denote by n = (n
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, ê
z

}, the head rests at the origin and the tail points in the
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The length parameter � scales the size of the flagellum. The parameters ✏1 > 0 and ✏2 > 0 determine the lateral
shape of the helix, and they can also be used to interpolate between helical and planar beat patterns. The phase
angle � sets the ‘initial’ direction of the flagellum relative to the head. The chirality parameter � = ±1 determines the
handedness, defined here such that � = +1 corresponds to a right-handed spiral when viewed from the head (Fig. 2).

To simplify calculations, we henceforth focus on symmetric spirals with ✏1 = ✏2 = ✏. In this case, the enveloping
cone is given by
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are related by a rotation about the x-axis. After alignment
with the wall, which is assumed to lie in the (z = 0)-plane of ⌃̂

✏

, the orientation of the sperm in the lab frame ⌃ (not shown)
is obtained by an additional rotation of ⌃̂
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about the vertical axis .

Assume that the spiral is in contact with the surface along its envelope. By rotating through �✓ about the ê
x

-axis,
we obtain the tilted body-centered frame ⌃̂

✏

(Fig. 3) which is defined such that the channel surface is located at z = 0

in both ⌃̂
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Using �
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and, accordingly, after alignment with the wall in ⌃̂
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Due to our chosen parameterisation (16), the tangent vectors point away from the head. The length ⇤ of the curve
C(s) is obtained as
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Thus, to leading order, one can identify ⇤ ' S� with the length of a flagellum, and A = ⇤✏ with the beat amplitude.
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Ĉ
✏

(s)

#

=
S�

2

0

@

0
�1
✏

1

A+ O(✏2). (23)

The orientation n̂
✏

in the wall-aligned body-fixed frame ⌃̂
✏

is defined by

n̂
✏

:= � Ĉ
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x

-axis,
we obtain the tilted body-centered frame ⌃̂

✏

(Fig. 3) which is defined such that the channel surface is located at z = 0

in both ⌃̂
✏

and the lab frame. In ⌃̂
✏

, the helix is given by

Ĉ
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which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
✏

and lab-frame ⌃ coincide, the negative
z-component means that the swimming direction points into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame ⌃ is along the e
y

-direction,

u = ��̇ze
y

, (25)

where �̇ > 0 is the shear rate and � = ±1 determines the flow direction. Measuring the orientation angle  of the
swimmer wrt. e

y

in counterclockwise direction, we obtain the coordinates C(t, s) of the helix with head position
R(t) = (X(t), Y (t), 0) in the lab frame ⌃ by

C(t, s) = R(t) + R( (t)) · Ĉ
✏

(s), (26)

where

R( ) =

0

@

cos � sin 0
sin cos 0
0 0 1

1

A (27)

represents a rotation about the e
z

-axis. By applying the rotation matrix R( ) to the orientation vector n̂
✏

in ⌃̂
✏

, we
find that, to leading order in ✏, the 3D orientation vector n in the lab frame ⌃ is given by

n =

✓
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�✏

◆

+ O(✏2), N =

✓

N

x

N

y

◆

=

✓
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◆

, (28)

where N is the normalised (projected) 2D orientation vector in the (x, y)-plane. This allows us to rewrite the rotation
matrix as

RN =

0
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N
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0
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0
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1
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. (29)

The tangent vectors of C in ⌃ are given by t(s) = RN · R
x

(✓
✏

) · t̂(s) with t̂(s) from Eq. (20).
Assuming that the head position R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e

x

+

Y (t)e
y

, we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the

change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
✏

= U + ṘN · Ĉ
✏

. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as

f(s) = ⇣||

nh

u(C(s))� Ċ(s)
i

· t(s)
o

t(s) +

⇣?

nh

u(C(s))� Ċ(s)
i

· [I � t(s)t(s)]
o

(31)

where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
⇣?
⇣||

, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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dĈ(s)

ds

�

�

�

�

�

�

�

�

�

�

f

i

(s), (33)

0 = ⌧

i

=

Z

S

0
ds

�

�

�

�

�

�

�

�

�

�
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For quasi-2D motions along the surface, the contact angle ✓

✏

remains constant and, hence,

˙R
x

= 0.

FIG. 1: Sperm swim on upstream spirals against shear flow. (A) Background-subtracted micro-

graph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPa·s shear rate

�̇ =2.1 s�1), channel boundary false-colored with black, see Movie 1 for raw data. (B) Schematic

representation not drawn to scale. The conical envelope of the flagellar beat holds the sperm close

to the surface [11]. The vertical flow gradient exerts a torque that turns the sperm against the

flow, but is counteracted by a torque from the chirality of the flagellar wave, resulting in a mean

diagonal upstream motion. (C) Tracks of bull sperm near a flat channel surface. (D) Upstream and

transverse mean velocities hv
y,x

i versus shear flow speed u20 at 20µm from the surface for di↵erent

viscosities. All velocities are normalised by the sample mean speed v0µ at �̇ = 0. For human

sperm, in order of increasing viscosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1,

and for bull sperm v0µ = 70.4± 11.8, 45.6± 4.7, 32.4± 4.8, 29.6± 4.1µms�1, where uncertainties

are standard deviations of mean values from di↵erent experiments. Each data point is an average

over > 1000 sperms. (E) Histograms for selected points in (D).
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with the wall, which is assumed to lie in the (z = 0)-plane of ⌃̂
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, the orientation of the sperm in the lab frame ⌃ (not shown)
is obtained by an additional rotation of ⌃̂
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about the vertical axis .

Assume that the spiral is in contact with the surface along its envelope. By rotating through �✓ about the ê
x

-axis,
we obtain the tilted body-centered frame ⌃̂

✏

(Fig. 3) which is defined such that the channel surface is located at z = 0

in both ⌃̂
✏

and the lab frame. In ⌃̂
✏

, the helix is given by
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Using �

2 = 1, the tangent vectors in the body-fixed frame ⌃̂ are found as

t̂(s) :=
dĈ(s)/ds
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and, accordingly, after alignment with the wall in ⌃̂
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Due to our chosen parameterisation (16), the tangent vectors point away from the head. The length ⇤ of the curve
C(s) is obtained as
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Thus, to leading order, one can identify ⇤ ' S� with the length of a flagellum, and A = ⇤✏ with the beat amplitude.
After averaging over all initial conditions �, the mean geometric center of the helix in the body-fixed frame ⌃̂
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dĈ(s)

ds

�

�

�

�

�

�

�

�

�

�

Ĉ
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which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
✏

and lab-frame ⌃ coincide, the negative
z-component means that the swimming direction points into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame ⌃ is along the e
y

-direction,

u = ��̇ze
y

, (25)

where �̇ > 0 is the shear rate and � = ±1 determines the flow direction. Measuring the orientation angle  of the
swimmer wrt. e

y

in counterclockwise direction, we obtain the coordinates C(t, s) of the helix with head position
R(t) = (X(t), Y (t), 0) in the lab frame ⌃ by
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represents a rotation about the e
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, we
find that, to leading order in ✏, the 3D orientation vector n in the lab frame ⌃ is given by
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where N is the normalised (projected) 2D orientation vector in the (x, y)-plane. This allows us to rewrite the rotation
matrix as
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The tangent vectors of C in ⌃ are given by t(s) = RN · R
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) · t̂(s) with t̂(s) from Eq. (20).
Assuming that the head position R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e

x

+

Y (t)e
y

, we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the

change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
✏

= U + ṘN · Ĉ
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. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as
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where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
⇣?
⇣||

, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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FIG. 1: Sperm swim on upstream spirals against shear flow. (A) Background-subtracted micro-

graph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPa·s shear rate

�̇ =2.1 s�1), channel boundary false-colored with black, see Movie 1 for raw data. (B) Schematic

representation not drawn to scale. The conical envelope of the flagellar beat holds the sperm close

to the surface [11]. The vertical flow gradient exerts a torque that turns the sperm against the

flow, but is counteracted by a torque from the chirality of the flagellar wave, resulting in a mean

diagonal upstream motion. (C) Tracks of bull sperm near a flat channel surface. (D) Upstream and

transverse mean velocities hv
y,x

i versus shear flow speed u20 at 20µm from the surface for di↵erent

viscosities. All velocities are normalised by the sample mean speed v0µ at �̇ = 0. For human

sperm, in order of increasing viscosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1,

and for bull sperm v0µ = 70.4± 11.8, 45.6± 4.7, 32.4± 4.8, 29.6± 4.1µms�1, where uncertainties

are standard deviations of mean values from di↵erent experiments. Each data point is an average

over > 1000 sperms. (E) Histograms for selected points in (D).
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withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated

regime U � ṘN · Ĉ, the zero-force conditions (34) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for
U = (U

x

, U

y

). After averaging over � with a uniform angular distribution, we find for ✏ ⌧ 1 and  ' 1 to leading
order2

U ' 1

2
✏ ��̇�S

✓

0
1

◆

� �

3
✏

2 (� 1)��̇�S2

✓

0
N

x

N

y

◆

, (35)

where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2

�̇�.
Guided by Eq. (35), we simulate the position dynamics of sperm cells that swim at self-swimming speed V in the

direction of their 2D orientation N by implementing a minimal dynamics of the form

Ṙ = VN +U = VN + ��̇✏⌘

✓

0
1

◆

, (36)

where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).
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Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ

y

. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the head
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result
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The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.
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which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
✏

and lab-frame ⌃ coincide, the negative
z-component means that the swimming direction points into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame ⌃ is along the e
y

-direction,

u = ��̇ze
y

, (25)

where �̇ > 0 is the shear rate and � = ±1 determines the flow direction. Measuring the orientation angle  of the
swimmer wrt. e

y

in counterclockwise direction, we obtain the coordinates C(t, s) of the helix with head position
R(t) = (X(t), Y (t), 0) in the lab frame ⌃ by

C(t, s) = R(t) + R( (t)) · Ĉ
✏

(s), (26)

where
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represents a rotation about the e
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-axis. By applying the rotation matrix R( ) to the orientation vector n̂
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in ⌃̂
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, we
find that, to leading order in ✏, the 3D orientation vector n in the lab frame ⌃ is given by
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where N is the normalised (projected) 2D orientation vector in the (x, y)-plane. This allows us to rewrite the rotation
matrix as
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The tangent vectors of C in ⌃ are given by t(s) = RN · R
x

(✓
✏

) · t̂(s) with t̂(s) from Eq. (20).
Assuming that the head position R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e

x

+

Y (t)e
y

, we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the

change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
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. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as
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where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
⇣?
⇣||

, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
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and lab-frame ⌃ coincide, the negative
z-component means that the swimming direction points into the wall.
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change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).
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✏

. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as

f(s) = ⇣||

nh

u(C(s))� Ċ(s)
i

· t(s)
o

t(s) +

⇣?

nh

u(C(s))� Ċ(s)
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which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
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which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
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z-component means that the swimming direction points into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame ⌃ is along the e
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-direction,
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where �̇ > 0 is the shear rate and � = ±1 determines the flow direction. Measuring the orientation angle  of the
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✏

(s), (26)

where

R( ) =

0

@

cos � sin 0
sin cos 0
0 0 1

1

A (27)

represents a rotation about the e
z

-axis. By applying the rotation matrix R( ) to the orientation vector n̂
✏

in ⌃̂
✏

, we
find that, to leading order in ✏, the 3D orientation vector n in the lab frame ⌃ is given by

n =

✓

N
�✏

◆

+ O(✏2), N =

✓

N

x

N

y

◆

=

✓

� sin 
cos 

◆

, (28)
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The tangent vectors of C in ⌃ are given by t(s) = RN · R
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Assuming that the head position R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e
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+
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, we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the

change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1
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where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio
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which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated

regime U � ṘN · Ĉ, the zero-force conditions (34) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for
U = (U

x
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y

). After averaging over � with a uniform angular distribution, we find for ✏ ⌧ 1 and  ' 1 to leading
order2
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where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2

�̇�.
Guided by Eq. (35), we simulate the position dynamics of sperm cells that swim at self-swimming speed V in the

direction of their 2D orientation N by implementing a minimal dynamics of the form

Ṙ = VN +U = VN + ��̇✏⌘
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, (36)

where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of |N |2 = 1, the dynamics of the

components Ṅ
x

and Ṅ

y

are coupled by
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Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ

y

. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the head
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result
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The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.

2
The first term in Eq. (35) could also have been obtained by simply computing the mean drag velocity
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withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated

regime U � ṘN · Ĉ, the zero-force conditions (34) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for
U = (U

x

, U

y

). After averaging over � with a uniform angular distribution, we find for ✏ ⌧ 1 and  ' 1 to leading
order2

U ' 1

2
✏ ��̇�S

✓

0
1

◆

� �

3
✏

2 (� 1)��̇�S2

✓

0
N

x

N

y

◆

, (35)

where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2
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where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of |N |2 = 1, the dynamics of the
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Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ
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. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the head
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result
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The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.
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withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated
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where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2

�̇�.
Guided by Eq. (35), we simulate the position dynamics of sperm cells that swim at self-swimming speed V in the

direction of their 2D orientation N by implementing a minimal dynamics of the form

Ṙ = VN +U = VN + ��̇✏⌘
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where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of |N |2 = 1, the dynamics of the

components Ṅ
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and Ṅ
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are coupled by
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Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ

y

. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the head
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result

 ̇ = ✏ �̇� sin +
�

4
✏

2 � 1



�̇� S cos . (38)

Recalling that N = (N
x

, N

y

) = (� sin , cos ), this can be rewritten as
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The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.
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withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated

regime U � ṘN · Ĉ, the zero-force conditions (34) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for
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where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2

�̇�.
Guided by Eq. (35), we simulate the position dynamics of sperm cells that swim at self-swimming speed V in the

direction of their 2D orientation N by implementing a minimal dynamics of the form

Ṙ = VN +U = VN + ��̇✏⌘
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where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of |N |2 = 1, the dynamics of the

components Ṅ
x

and Ṅ
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are coupled by
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Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ

y

. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the head
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result
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The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.
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which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
✏

and lab-frame ⌃ coincide, the negative
z-component means that the swimming direction points into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame ⌃ is along the e
y

-direction,

u = ��̇ze
y

, (25)

where �̇ > 0 is the shear rate and � = ±1 determines the flow direction. Measuring the orientation angle  of the
swimmer wrt. e

y

in counterclockwise direction, we obtain the coordinates C(t, s) of the helix with head position
R(t) = (X(t), Y (t), 0) in the lab frame ⌃ by

C(t, s) = R(t) + R( (t)) · Ĉ
✏

(s), (26)
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represents a rotation about the e
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-axis. By applying the rotation matrix R( ) to the orientation vector n̂
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✏

, we
find that, to leading order in ✏, the 3D orientation vector n in the lab frame ⌃ is given by
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where N is the normalised (projected) 2D orientation vector in the (x, y)-plane. This allows us to rewrite the rotation
matrix as
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The tangent vectors of C in ⌃ are given by t(s) = RN · R
x

(✓
✏

) · t̂(s) with t̂(s) from Eq. (20).
Assuming that the head position R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e

x

+

Y (t)e
y

, we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the

change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
✏

= U + ṘN · Ĉ
✏

. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as
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where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
⇣?
⇣||

, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
✏

and lab-frame ⌃ coincide, the negative
z-component means that the swimming direction points into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame ⌃ is along the e
y

-direction,

u = ��̇ze
y

, (25)

where �̇ > 0 is the shear rate and � = ±1 determines the flow direction. Measuring the orientation angle  of the
swimmer wrt. e

y

in counterclockwise direction, we obtain the coordinates C(t, s) of the helix with head position
R(t) = (X(t), Y (t), 0) in the lab frame ⌃ by

C(t, s) = R(t) + R( (t)) · Ĉ
✏

(s), (26)

where
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represents a rotation about the e
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where N is the normalised (projected) 2D orientation vector in the (x, y)-plane. This allows us to rewrite the rotation
matrix as
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The tangent vectors of C in ⌃ are given by t(s) = RN · R
x
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) · t̂(s) with t̂(s) from Eq. (20).
Assuming that the head position R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e

x

+

Y (t)e
y

, we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the

change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
✏

= U + ṘN · Ĉ
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. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as
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where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
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, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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dĈ(s)

ds

�

�

�

�

�

�

�

�

�

�

✏

ijk

[C
j

(s)�X

⇤
j

]f
k

(s), (34)

1
For quasi-2D motions along the surface, the contact angle ✓

✏

remains constant and, hence,

˙R
x

= 0.

6

withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated

regime U � ṘN · Ĉ, the zero-force conditions (34) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for
U = (U

x
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y

). After averaging over � with a uniform angular distribution, we find for ✏ ⌧ 1 and  ' 1 to leading
order2
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where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2

�̇�.
Guided by Eq. (35), we simulate the position dynamics of sperm cells that swim at self-swimming speed V in the

direction of their 2D orientation N by implementing a minimal dynamics of the form

Ṙ = VN +U = VN + ��̇✏⌘

✓

0
1

◆

, (36)

where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of |N |2 = 1, the dynamics of the

components Ṅ
x

and Ṅ

y

are coupled by

0 = ˙|N |2 = 2(N
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). (37)

Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ

y

. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the head
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result
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The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.

2
The first term in Eq. (35) could also have been obtained by simply computing the mean drag velocity

u =

1

2⇡

Z 2⇡

0
d�

"
1

⇤

Z
S

0
ds

�����

�����
d ˆC(s)

ds

�����

����� u(C(s))

#
.

5

which is normalised up to terms of order O(✏2). Recalling that the z-axes of ⌃̂
✏

and lab-frame ⌃ coincide, the negative
z-component means that the swimming direction points into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame ⌃ is along the e
y

-direction,

u = ��̇ze
y

, (25)

where �̇ > 0 is the shear rate and � = ±1 determines the flow direction. Measuring the orientation angle  of the
swimmer wrt. e

y

in counterclockwise direction, we obtain the coordinates C(t, s) of the helix with head position
R(t) = (X(t), Y (t), 0) in the lab frame ⌃ by

C(t, s) = R(t) + R( (t)) · Ĉ
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where N is the normalised (projected) 2D orientation vector in the (x, y)-plane. This allows us to rewrite the rotation
matrix as
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The tangent vectors of C in ⌃ are given by t(s) = RN · R
x
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) · t̂(s) with t̂(s) from Eq. (20).
Assuming that the head position R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e

x

+

Y (t)e
y

, we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the

change in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
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Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as
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where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
⇣?
⇣||

, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of |N |2 = 1, the dynamics of the

components Ṅ
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Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ

y

. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the tip
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result
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The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.

Clearly, the model of a rigid conical helix, as discussed here, is a relatively crude approximation to the full swimming
dynamics of a sperm cell, for it neglects dynamical aspects of the flagellar beat (exact wave form, etc.) as well as
hydrodynamic e↵ects due to translation and rotation of the cell’s head. Notwithstanding, it is plausible to expect
that, on time scales larger than the typical beat period, Eqs. (36) and (39) provide a useful coarse-grained description
of sperm swimming near a surface, as the model captures the main symmetries of the problem.

Minimal model

We now summarise the minimal quasi-2D model implemented in our simulations. Assuming as before that the
shear flow is along the y-axis (Fig. 1B, Main Text), Eqs. (36) and (39) imply the following minimal 2D model for the
quasi-2D motion of a sperm with position R(t) = (X(t), Y (t)) and orientation N(t) = (N

x

(t), N
y

(t)) in the vicinity
of the surface

Ṙ = VN + �Ue
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, (40)
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+ (2D)1/2(I �NN) · ⇠(t). (41)

Here, V > 0 is the self-swimming speed, � = ±1 defines the flow direction, �̇ > 0 is the shear rate, U > 0 the
mean flow speed experienced by the cell, and � 2 {0,±1} the beat chirality. The dimensionless geometry parameters
↵ > 0,� > 0 encode details of the shape of the flagellar beat, and the coe�cient D determines the strength of
the two-dimensional Gaussian white noise ⇠, interpreted here in the Stratonovich-sense and included to account for
variability in sperm swimming.

For D = 0, the fixed points of Eq. (41) read
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The Jacobian
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Resistive force theory

6

Assuming that the tip R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e
x

+ Y (t)e
y

,

we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the change

in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss next,
such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
✏

= U + ṘN · Ĉ
✏

. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as
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where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
⇣?
⇣||

, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated

regime U � ṘN · Ĉ, the zero-force conditions (34) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for
U = (U

x
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y

). After averaging over � with a uniform angular distribution, we find for ✏ ⌧ 1 and  ' 1 to leading
order2
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where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2

�̇�.
Guided by Eq. (35), we simulate the position dynamics of sperm cells that swim at self-swimming speed V in the

direction of their 2D orientation N by implementing a minimal dynamics of the form

Ṙ = VN +U = VN + ��̇✏⌘
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Ċ(s) = Ṙ+ ṘN · Ĉ
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dĈ(s)

ds

�

�

�

�

�

�

�

�

�

�

f

i

(s), (33)

0 = ⌧

i

=

Z

S

0
ds

�

�

�

�

�

�

�

�

�

�
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Figure 1: Sperm swim on upstream spirals against shear flow. (A) Background-subtracted
micrograph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPas
shear rate �̇ =2.1 s�1), channel boundary false-colored with black, see Movie XX for raw data.
(B) Schematic representation not drawn to scale. The conical envelope of the flagellar beat
holds the sperm close to the surface (11). The vertical flow gradient exerts a torque that turns the
sperm against the flow, but is counteracted by a torque from the chirality of the flagellar wave,
resulting in a mean diagonal upstream motion. (C) Tracks of bull sperm near a flat channel
surface. (D) Upstream and transverse mean velocities hv

y,x

i versus shear flow speed u20 at
20µm from the surface for different viscosities. All velocities are normalized by the sample
mean speed v0µ at �̇ = 0. For human sperm, in order of increasing viscosity v0µ = 53.5 ±
3.0, 46.8± 3.7, 36.8± 3.3, 29.7± 3.9µms�1, and for bull sperm v0µ = 70.4± 11.8, 45.6±
4.7, 32.4± 4.8, 29.6± 4.1µms�1, where uncertainties are standard deviations of mean values
from different experiments. Each data point is an average over > 1000 sperms (Supporting
Material). (E) Histograms for selected points in (D).
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Figure 3: Model simulations reproduce main experimental observations. (A) Upstream and
transverse velocity for different values of the variability (effective noise) parameter D in units
rad2/s and dimensionless shape factors (↵, �). (B) Time response of a chiral swimmer with
� = +1 (“Human”) and a non-chiral swimmer with � = 0 (“Bull”) to a reversal of the flow
direction at time t = 0. Blue dashed line shows fluid flow u

y

at 5µm from the boundary.
Simulation parameters (N = 1000 trajectories, A = 10µm, ` = 60µm, V = 50µm/s) were
chosen to match approximately those for viscosity 1 mPas in Fig. 2C.
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experiment    vs   theory

Figure 2: Temporal response of sperm cells to a reversal of the flow direction depends sensi-
tively on viscosity. (A) At low viscosity, sperm perform sharp U-turns. (B) At high viscosity,
the typical radius of the U-turns increases substantially. White/black arrows show orientations
of several cells before/after turning. (C) Flow velocity at distance 5 µm from the channel sur-
face (blue, ‘Flow’), mean upstream velocity hv

y

i (red, ‘Up’) and mean transverse velocity hv
x

i
(green, ‘Trans’) as function of time. The typical response time of sperm cells after flow reversal
increases with viscosity. Peaks reflect a short period when mean swimming direction and flow
direction are aligned. The time series for human sperm also signal a change in beat chirality at
high viscosity, consistent with Fig. 1D.
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