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As a kid in elementary school, I was taught that there
were three states of matter: solid, liquid, and gas. The
ancients thought that there were four: earth, water, air,
and fire, which was considered sheer superstition. In ju-
nior high, I remember reading a book called The Seven
States of Matter. At least one was “plasma”, which made
up stars and thus most of the universe,[4] and which
sounded rather like fire to me.

FIG. 1: Quasicrystals. Much of these two lectures will dis-
cuss the properties of crystals. Crystals are surely the oldest
known of the broken–symmetry phases of matter, and remain
the most beautiful illustrations. It’s amazing that in the past
few years, we’ve uncovered an entirely new class of crystals.
Shown here is a photograph of a quasicrystalline metallic al-
loy, with icosahedral symmetry. Notice that the facets are
pentagonal: our old notions of crystals had to be completely
revised to include this type of symmetry.

The original three, by now, have become multitudes.

In important and precise ways, magnets are a distinct
form of matter. Metals are different from insulators. Su-
perconductors and superfluids are striking new states of
matter. The liquid crystal in your wristwatch is one
of a huge family of different liquid crystalline states of
matter[2] (nematic, cholesteric, blue phase I, II, and blue
fog, smectic A, B, C, C∗, D, I, ...). There are over 200
qualitatively different types of crystals, not to mention
the quasicrystals (figure 1). There are disordered states
of matter like spin glasses, and states like the fractional
quantum hall effect with excitations of charge e/3 like
quarks. Particle physicists tell us that the vacuum we
live within has in the past been in quite different states:
in the last vacuum but one, there were four different kinds
of light[3] (mediated by what is now the photon, the W+,
the W−, and the Z particle). We’ll discuss this more in
lecture two.

When there were only three states of matter, we could
learn about each one and then turn back to learning long
division. Now that there are multitudes, though, we’ve
had to develop a system. Our system is constantly be-
ing extended and modified, because we keep finding new
phases which don’t fit into the old frameworks. It’s amaz-
ing how the 500th new state of matter somehow screws
up a system which worked fine for the first 499. Qua-
sicrystals, the fractional quantum hall effect, and spin
glasses all really stretched our minds until (1) we under-
stood why they behaved the way they did, and (2) we
understood how they fit into the general framework.

In this lecture, I’m going to tell you the system. In the
next three lectures, I’ll discuss some gaps in the system:
materials and types of behavior which don’t fit into the
neat framework presented here. I’ll try to maximize the
number of pictures and minimize the number of formu-
las, but (particularly in lecture III) there are problems
and ideas that I don’t understand well enough to explain
simply. Most of what I tell you in this lecture is both true
and important. Much of what is contained in the next
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Topological defects 
are discontinuities in  

order-parameter fields

• optical effects 

• work hardening, etc

"umbilic defects" in a nematic liquid crystal
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order  =  symmetry = invariance 
!

(under certain group actions )

symmetry groups can be discrete,  
continuous, Lie-groups, ….
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three lectures represents my own pet ideas and theories,
and you should be warned not to take my messages there
as gospel.

The system consists of four basic steps.[1] First, you
must identify the broken symmetry. Second, you must
define an order parameter. Third, you are told to ex-
amine the elementary excitations. Fourth, you classify
the topological defects. Most of what I say I take from
Mermin[1], Coleman[3], and deGennes[2], and I heartily
recommend these excellent articles to my audience. We
take each step in turn.

I. IDENTIFY THE BROKEN SYMMETRY

What is it which distinguishes the hundreds of differ-
ent states of matter? Why do we say that water and
olive oil are in the same state (the liquid phase), while
we say aluminum and (magnetized) iron are in different
states? Through long experience, we’ve discovered that
most phases differ in their symmetry.[5]

FIG. 2: Which is more symmetric? The cube has many
symmetries. It can be rotated by 90◦, 180◦, or 270◦ about any
of the three axes passing through the faces. It can be rotated
by 120◦ or 240◦ about the corners, and by 180◦ about an axis
passing from the center through any of the 12 edges. The
sphere, though, can be rotated by any angle. The sphere
respects rotational invariance: all directions are equal. The
cube is an object which breaks rotational symmetry: once the
cube is there, some directions are more equal than others.

Consider figure 2, showing a cube and a sphere. Which
is more symmetric? Clearly, the sphere has many more
symmetries than the cube. One can rotate the cube by
90◦ in various directions and not change its appearance,
but one can rotate the sphere by any angle and keep it
unchanged.

In figure 3, we see a 2-D schematic representation of ice
and water. Which state is more symmetric here? Naively,
the ice looks much more symmetric: regular arrange-
ments of atoms forming a lattice structure. The water
looks irregular and disorganized. On the other hand, if
one rotated figure 3B by an arbitrary angle, it would still
look like water! Ice has broken rotational symmetry: one

FIG. 3: Which is more symmetric? At first glance, wa-
ter seems to have much less symmetry than ice. The picture
of “two–dimensional” ice clearly breaks the rotational invari-
ance: it can be rotated only by 120◦ or 240◦. It also breaks
the translational invariance: the crystal can only be shifted
by certain special distances (whole number of lattice units).
The picture of water has no symmetry at all: the atoms are
jumbled together with no long–range pattern at all. Water,
though, isn’t a snapshot: it would be better to think of it as a
combination of all possible snapshots! Water has a complete
rotational and translational symmetry: the pictures will look
the same if the container is tipped or shoved.

can rotate figure 3A only by multiples of 60◦. It also has
a broken translational symmetry: it’s easy to tell if the
picture is shifted sideways, unless one shifts by a whole
number of lattice units. While the snapshot of the water
shown in the figure has no symmetries, water as a phase
has complete rotational and translational symmetry.

One of the standard tricks to see if two materials dif-
fer by a symmetry is to try to change one into the other
smoothly. Oil and water won’t mix, but I think oil and
alcohol do, and alcohol and water certainly do. By slowly
adding more alcohol to oil, and then more water to the
alcohol, one can smoothly interpolate between the two
phases. If they had different symmetries, there must
be a first point when mixing them when the symmetry
changes, and it is usually easy to tell when that phase
transition happens.

II. DEFINE THE ORDER PARAMETER

Particle physics and condensed–matter physics have
quite different philosophies. Particle physicists are con-
stantly looking for the building blocks. Once pions and
protons were discovered to be made of quarks, they be-
came demoted into engineering problems. Now that
quarks and electrons and photons are made of strings,
and strings are hard to study (at least experimentally),
there is great anguish in the high–energy community.
Condensed–matter physicists, on the other hand, try to
understand why messy combinations of zillions of elec-
trons and nuclei do such interesting simple things. To
them, the fundamental question is not discovering the

More or less symmetric ?
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three lectures represents my own pet ideas and theories,
and you should be warned not to take my messages there
as gospel.

The system consists of four basic steps.[1] First, you
must identify the broken symmetry. Second, you must
define an order parameter. Third, you are told to ex-
amine the elementary excitations. Fourth, you classify
the topological defects. Most of what I say I take from
Mermin[1], Coleman[3], and deGennes[2], and I heartily
recommend these excellent articles to my audience. We
take each step in turn.

I. IDENTIFY THE BROKEN SYMMETRY

What is it which distinguishes the hundreds of differ-
ent states of matter? Why do we say that water and
olive oil are in the same state (the liquid phase), while
we say aluminum and (magnetized) iron are in different
states? Through long experience, we’ve discovered that
most phases differ in their symmetry.[5]

FIG. 2: Which is more symmetric? The cube has many
symmetries. It can be rotated by 90◦, 180◦, or 270◦ about any
of the three axes passing through the faces. It can be rotated
by 120◦ or 240◦ about the corners, and by 180◦ about an axis
passing from the center through any of the 12 edges. The
sphere, though, can be rotated by any angle. The sphere
respects rotational invariance: all directions are equal. The
cube is an object which breaks rotational symmetry: once the
cube is there, some directions are more equal than others.

Consider figure 2, showing a cube and a sphere. Which
is more symmetric? Clearly, the sphere has many more
symmetries than the cube. One can rotate the cube by
90◦ in various directions and not change its appearance,
but one can rotate the sphere by any angle and keep it
unchanged.

In figure 3, we see a 2-D schematic representation of ice
and water. Which state is more symmetric here? Naively,
the ice looks much more symmetric: regular arrange-
ments of atoms forming a lattice structure. The water
looks irregular and disorganized. On the other hand, if
one rotated figure 3B by an arbitrary angle, it would still
look like water! Ice has broken rotational symmetry: one

FIG. 3: Which is more symmetric? At first glance, wa-
ter seems to have much less symmetry than ice. The picture
of “two–dimensional” ice clearly breaks the rotational invari-
ance: it can be rotated only by 120◦ or 240◦. It also breaks
the translational invariance: the crystal can only be shifted
by certain special distances (whole number of lattice units).
The picture of water has no symmetry at all: the atoms are
jumbled together with no long–range pattern at all. Water,
though, isn’t a snapshot: it would be better to think of it as a
combination of all possible snapshots! Water has a complete
rotational and translational symmetry: the pictures will look
the same if the container is tipped or shoved.

can rotate figure 3A only by multiples of 60◦. It also has
a broken translational symmetry: it’s easy to tell if the
picture is shifted sideways, unless one shifts by a whole
number of lattice units. While the snapshot of the water
shown in the figure has no symmetries, water as a phase
has complete rotational and translational symmetry.

One of the standard tricks to see if two materials dif-
fer by a symmetry is to try to change one into the other
smoothly. Oil and water won’t mix, but I think oil and
alcohol do, and alcohol and water certainly do. By slowly
adding more alcohol to oil, and then more water to the
alcohol, one can smoothly interpolate between the two
phases. If they had different symmetries, there must
be a first point when mixing them when the symmetry
changes, and it is usually easy to tell when that phase
transition happens.

II. DEFINE THE ORDER PARAMETER

Particle physics and condensed–matter physics have
quite different philosophies. Particle physicists are con-
stantly looking for the building blocks. Once pions and
protons were discovered to be made of quarks, they be-
came demoted into engineering problems. Now that
quarks and electrons and photons are made of strings,
and strings are hard to study (at least experimentally),
there is great anguish in the high–energy community.
Condensed–matter physicists, on the other hand, try to
understand why messy combinations of zillions of elec-
trons and nuclei do such interesting simple things. To
them, the fundamental question is not discovering the

broken continuous  
translation/rotation  

symmetry (invariance)
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a headless vector n⃗ ≡ −n⃗. The order parameter space
is a hemisphere, with opposing points along the equator
identified (figure 5). This space is called RP2 by the
mathematicians (the projective plane), for obscure rea-
sons.

FIG. 6: Two dimensional crystal. A crystal consists atoms
arranged in regular, repeating rows and columns. At high
temperatures, or when the crystal is deformed or defective,
the atoms will be displaced from their lattice positions. The
displacements u⃗ are shown. Even better, one can think of
u(x) as the local translation needed to bring the ideal lattice
into registry with atoms in the local neighborhood of x.
Also shown is the ambiguity in the definition of u. Which
“ideal” atom should we identify with a given “real” one? This
ambiguity makes the order parameter u equivalent to u +
max̂ + naŷ. Instead of a vector in two dimensional space,
the order parameter space is a square with periodic boundary
conditions.

For a crystal, the important degrees of freedom are as-
sociated with the broken translational order. Consider
a two-dimensional crystal which has lowest energy when
in a square lattice, but which is deformed away from
that configuration (figure 6). This deformation is de-
scribed by an arrow connecting the undeformed ideal lat-
tice points with the actual positions of the atoms. If we
are a bit more careful, we say that u⃗(x) is that displace-
ment needed to align the ideal lattice in the local region
onto the real one. By saying it this way, u⃗ is also de-
fined between the lattice positions: there still is a best
displacement which locally lines up the two lattices.

The order parameter u⃗ isn’t really a vector: there is a
subtlety. In general, which ideal atom you associate with
a given real one is ambiguous. As shown in figure 6, the
displacement vector u⃗ changes by a multiple of the lattice
constant a when we choose a different reference atom:

u⃗ ≡ u⃗ + ax̂ = u⃗ + max̂ + naŷ. (1)

The set of distinct order parameters forms a square
with periodic boundary conditions. As figure 7 shows, a

FIG. 7: Order parameter space for a two-dimensional
crystal. Here we see that a square with periodic boundary
conditions is a torus. (A torus is a surface of a doughnut,
inner tube, or bagel, depending on your background.)

square with periodic boundary conditions has the same
topology as a torus, T2. (The torus is the surface of a
doughnut, bagel, or inner tube.)

Finally, let’s mention that guessing the order param-
eter (or the broken symmetry) isn’t always so straight-
forward. For example, it took many years before anyone
figured out that the order parameter for superconduc-
tors and superfluid Helium 4 is a complex number ψ.
The order parameter field ψ(x) represents the “conden-
sate wave function”, which (extremely loosely) is a single
quantum state occupied by a large fraction of the Cooper
pairs or helium atoms in the material. The correspond-
ing broken symmetry is closely related to the number of
particles. In “symmetric”, normal liquid helium, the lo-
cal number of atoms is conserved: in superfluid helium,
the local number of atoms becomes indeterminate! (This
is because many of the atoms are condensed into that de-
localized wave function.) Anyhow, the magnitude of the
complex number ψ is a fixed function of temperature, so
the order parameter space is the set of complex numbers
of magnitude |ψ|. Thus the order parameter space for
superconductors and superfluids is a circle S1.

Now we examine small deformations away from a uni-
form order parameter field.

III. EXAMINE THE ELEMENTARY
EXCITATIONS

Its amazing how slow human beings are. The atoms
inside your eyelash collide with one another a million
million times during each time you blink your eye. It’s
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not surprising, then, that we spend most of our time in
condensed–matter physics studying those things in mate-
rials that happen slowly. Typically only vast conspiracies
of immense numbers of atoms can produce the slow be-
havior that humans can perceive.

FIG. 8: One dimensional crystal: phonons. The order
parameter field for a one–dimensional crystal is the local dis-
placement u(x). Long–wavelength waves in u(x) have low
frequencies, and cause sound.
Crystals are rigid because of the broken translational symme-
try. Because they are rigid, they fight displacements. Because
there is an underlying translational symmetry, a uniform dis-
placement costs no energy. A nearly uniform displacement,
thus, will cost little energy, and thus will have a low fre-
quency. These low–frequency elementary excitations are the
sound waves in crystals.

A good example is given by sound waves. We won’t
talk about sound waves in air: air doesn’t have any bro-
ken symmetries, so it doesn’t belong in this lecture.[9]
Consider instead sound in the one-dimensional crystal
shown in figure 8. We describe the material with an or-
der parameter field u(x), where here x is the position
within the material and x − u(x) is the position of the
reference atom within the ideal crystal.

Now, there must be an energy cost for deforming the
ideal crystal. There won’t be any cost, though, for a
uniform translation: u(x) ≡ u0 has the same energy as
the ideal crystal. (Shoving all the atoms to the right
doesn’t cost any energy.) So, the energy will depend only
on derivatives of the function u(x). The simplest energy
that one can write looks like

E =
∫

dx (κ/2)(du/dx)2. (2)

(Higher derivatives won’t be important for the low fre-
quencies that humans can hear.) Now, you may remem-
ber Newton’s law F = ma. The force here is given by the
derivative of the energy F = −(dE/du). The mass is rep-
resented by the density of the material ρ. Working out
the math (a variational derivative and an integration by
parts, for those who are interested) gives us the equation

ρü = κ(d2u/dx2). (3)

The solutions to this equation

u(x, t) = u0 cos(2π(x/λ − νλt)) (4)

represent phonons or sound waves. The wavelength of
the sound waves is λ, and the frequency is νλ. Plugging
4 into 3 gives us the relation

νλ =
√
κ/ρ/λ. (5)

The frequency gets small only when the wavelength
gets large. This is the vast conspiracy: only huge slosh-
ings of many atoms can happen slowly. Why does the
frequency get small? Well, there is no cost to a uni-
form translation, which is what 4 looks like for infinite
wavelength. Why is there no energy cost for a uniform
displacement? Well, there is a translational symmetry:
moving all the atoms the same amount doesn’t change
their interactions. But haven’t we broken that symme-
try? That is precisely the point.

FIG. 9: (a) Magnets: spin waves. Magnets break the
rotational invariance of space. Because they resist twisting
the magnetization locally, but don’t resist a uniform twist,
they have low energy spin wave excitations.
(b) Nematic liquid crystals: rotational waves. Nematic
liquid crystals also have low–frequency rotational waves.

Long after phonons were understood, Jeremy Gold-
stone started to think about broken symmetries and
order parameters in the abstract. He found a rather
general argument that, whenever a continuous sym-
metry (rotations, translations, SU(3), ...) is broken,
long–wavelength modulations in the symmetry direction
should have low frequencies. The fact that the lowest en-
ergy state has a broken symmetry means that the system
is stiff: modulating the order parameter will cost an en-
ergy rather like that in equation 2. In crystals, the broken
translational order introduces a rigidity to shear deforma-
tions, and low frequency phonons (figure 8). In magnets,
the broken rotational symmetry leads to a magnetic stiff-
ness and spin waves (figure 9a). In nematic liquid crys-
tals, the broken rotational symmetry introduces an ori-
entational elastic stiffness (it pours, but resists bending!)
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underlying quantum mechanical laws, but in understand-
ing and explaining the new laws that emerge when many
particles interact.

As one might guess, we don’t keep track of all the elec-
trons and protons.[6] We’re always looking for the im-
portant variables, the important degrees of freedom. In
a crystal, the important variables are the motions of the
atoms away from their lattice positions. In a magnet,
the important variable is the local direction of the mag-
netization (an arrow pointing to the “north” end of the
local magnet). The local magnetization comes from com-
plicated interactions between the electrons, and is partly
due to the little magnets attached to each electron and
partly due to the way the electrons dance around in the
material: these details are for many purposes unimpor-
tant.

FIG. 4: Magnet. We take the magnetization M⃗ as the or-
der parameter for a magnet. For a given material at a given
temperature, the amount of magnetization |M⃗ | = M0 will be
pretty well fixed, but the energy is often pretty much indepen-
dent of the direction M̂ = M⃗/M0 of the magnetization. (You
can think of this as a arrow pointing to the north end of each
atomic magnet.) Often, the magnetization changes directions
smoothly in different parts of the material. (That’s why not
all pieces of iron are magnetic!) We describe the current state

of the material by an order parameter field M⃗(x).
The order parameter field is usually thought of as an arrow
at each point in space. It can also be thought of as a function
taking points in space x into points on the sphere |M⃗ | = M0.
This sphere S2 is the order parameter space for the magnet.

The important variables are combined into an “order
parameter field”.[7] In figure 4, we see the order parame-
ter field for a magnet.[8] At each position x = (x, y, z) we
have a direction for the local magnetization M⃗(x). The
length of M⃗ is pretty much fixed by the material, but
the direction of the magnetization is undetermined. By
becoming a magnet, this material has broken the rota-
tional symmetry. The order parameter M⃗ labels which
of the various broken symmetry directions the material
has chosen.

The order parameter is a field: at each point in our
magnet, M⃗(x) tells the local direction of the field near

x. Why do we do this? Why would the magnetization
point in different directions in different parts of the mag-
net? Usually, the material has lowest energy when the
order parameter field is uniform, when the symmetry is
broken in the same way throughout space. In practise,
though, the material often doesn’t break symmetry uni-
formly. Most pieces of iron don’t appear magnetic, sim-
ply because the local magnetization points in different
directions at different places. The magnetization is al-
ready there at the atomic level: to make a magnet, you
pound the different domains until they line up. We’ll see
in this lecture that most of the interesting behavior we
can study involves the way the order parameter varies in
space.

The order parameter field M⃗(x) can be usefully visu-
alized in two different ways. On the one hand, one can
think of a little vector attached to each point in space.
On the other hand, we can think of it as a mapping from
real space into order parameter space. That is, M⃗ is a
function which takes different points in the magnet onto
the surface of a sphere (figure 4). Mathematicians call the
sphere S2, because it locally has two dimensions. (They
don’t care what dimension the sphere is embedded in.)

FIG. 5: Nematic liquid crystal. Nematic liquid crystals are
made up of long, thin molecules that prefer to align with one
another. (Liquid crystal watches are made of nematics.) Since
they don’t care much which end is up, their order parameter
isn’t precisely the vector n̂ along the axis of the molecules.
Rather, it is a unit vector up to the equivalence n̂ ≡ −n̂.
The order parameter space is a half-sphere, with antipodal
points on the equator identified. Thus, for example, the path
shown over the top of the hemisphere is a closed loop: the
two intersections with the equator correspond to the same
orientations of the nematic molecules in space.

Before varying our order parameter in space, let’s de-
velop a few more examples. The liquid crystal in LCD
displays (like those in digital watches) are nematics. Ne-
matics are made of long, thin molecules which tend to
line up so that their long axes are parallel. Nematic liq-
uid crystals, like magnets, break the rotational symme-
try. Unlike magnets, though, the main interaction isn’t
to line up the north poles, but to line up the axes. (Think
of the molecules as American footballs: the same up and
down.) Thus the order parameter isn’t a vector M⃗ but
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and rotational waves (figure 9b).

In superfluids, the broken gauge symmetry leads to a
stiffness which results in the superfluidity. Superfluidity
and superconductivity really aren’t any more amazing
than the rigidity of solids. Isn’t it amazing that chairs
are rigid? Push on a few atoms on one side, and 109

atoms away atoms will move in lock–step. In the same
way, decreasing the flow in a superfluid must involve a
cooperative change in a macroscopic number of atoms,
and thus never happens spontaneously any more than
two parts of the chair ever drift apart.

The low–frequency Goldstone modes in superfluids are
heat waves! (Don’t be jealous: liquid helium has rather
cold heat waves.) This is often called second sound, but
is really a periodic modulation of the temperature which
passes through the material like sound does through a
metal.

O.K., now we’re getting the idea. Just to round things
out, what about superconductors? They’ve got a broken
gauge symmetry, and have a stiffness to decays in the
superconducting current. What is the low energy excita-
tion? It doesn’t have one. But what about Goldstone’s
theorem? Well, you know about physicists and theorems
. . .

That’s actually quite unfair: Goldstone surely had con-
ditions on his theorem which excluded superconductors.
Actually, I believe Goldstone was studying superconduc-
tors when he came up with his theorem. It’s just that
everybody forgot the extra conditions, and just remem-
bered that you always got a low frequency mode when
you broke a continuous symmetry. We of course under-
stood all along why there isn’t a Goldstone mode for
superconductors: it’s related to the Meissner effect. The
high energy physicists forgot, though, and had to redis-
cover it for themselves. Now we all call the loophole in
Goldstone’s theorem the Higgs mechanism, because (to
be truthful) Higgs and his high–energy friends found a
much simpler and more elegant explanation than we had.
We’ll discuss Meissner effects and the Higgs mechanism
in the next lecture.

I’d like to end this section, though, by bringing up
another exception to Goldstone’s theorem: one we’ve
known about even longer, but which we don’t have a
nice explanation for. What about the orientational order
in crystals? Crystals break both the continuous transla-
tional order and the continuous orientational order. The
phonons are the Goldstone modes for the translations,
but there are no orientational Goldstone modes.[10] We’ll
discuss this further in the next lecture, but I think this
is one of the most interesting unsolved basic questions in
the subject.

FIG. 10: Dislocation in a crystal. Here is a topological
defect in a crystal. We can see that one of the rows of atoms on
the right disappears halfway through our sample. The place
where it disappears is a defect, because it doesn’t locally look
like a piece of the perfect crystal. It is a topological defect
because it can’t be fixed by any local rearrangement. No
reshuffling of atoms in the middle of the sample can change
the fact that five rows enter from the right, and only four
leave from the left!
The Burger’s vector of a dislocation is the net number of extra
rows and columns, combined into a vector (columns, rows).

IV. CLASSIFY THE TOPOLOGICAL DEFECTS

When I was in graduate school, the big fashion was
topological defects. Everybody was studying homotopy
groups, and finding exotic systems to write papers about.
It was, in the end, a reasonable thing to do.[11] It is true
that in a typical application you’ll be able to figure out
what the defects are without homotopy theory. You’ll
spend forever drawing pictures to convince anyone else,
though. Most important, homotopy theory helps you to
think about defects.

A defect is a tear in the order parameter field. A topo-
logical defect is a tear that can’t be patched. Consider
the piece of 2-D crystal shown in figure 10. Starting in
the middle of the region shown, there is an extra row of
atoms. (This is called a dislocation.) Away from the mid-
dle, the crystal locally looks fine: it’s a little distorted,
but there is no problem seeing the square grid and defin-
ing an order parameter. Can we rearrange the atoms in a
small region around the start of the extra row, and patch
the defect?

No. The problem is that we can tell there is an ex-
tra row without ever coming near to the center. The
traditional way of doing this is to traverse a large loop
surrounding the defect, and count the net number of rows
crossed on the path. In the path shown, there are two
rows going up and three going down: no matter how far
we stay from the center, there will naturally always be
an extra row on the right.

How can we generalize this basic idea to a general prob-
lem with a broken symmetry? Remember that the order
parameter space for the 2-D square crystal is a torus (see
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and rotational waves (figure 9b).
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cooperative change in a macroscopic number of atoms,
and thus never happens spontaneously any more than
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The low–frequency Goldstone modes in superfluids are
heat waves! (Don’t be jealous: liquid helium has rather
cold heat waves.) This is often called second sound, but
is really a periodic modulation of the temperature which
passes through the material like sound does through a
metal.

O.K., now we’re getting the idea. Just to round things
out, what about superconductors? They’ve got a broken
gauge symmetry, and have a stiffness to decays in the
superconducting current. What is the low energy excita-
tion? It doesn’t have one. But what about Goldstone’s
theorem? Well, you know about physicists and theorems
. . .

That’s actually quite unfair: Goldstone surely had con-
ditions on his theorem which excluded superconductors.
Actually, I believe Goldstone was studying superconduc-
tors when he came up with his theorem. It’s just that
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bered that you always got a low frequency mode when
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stood all along why there isn’t a Goldstone mode for
superconductors: it’s related to the Meissner effect. The
high energy physicists forgot, though, and had to redis-
cover it for themselves. Now we all call the loophole in
Goldstone’s theorem the Higgs mechanism, because (to
be truthful) Higgs and his high–energy friends found a
much simpler and more elegant explanation than we had.
We’ll discuss Meissner effects and the Higgs mechanism
in the next lecture.

I’d like to end this section, though, by bringing up
another exception to Goldstone’s theorem: one we’ve
known about even longer, but which we don’t have a
nice explanation for. What about the orientational order
in crystals? Crystals break both the continuous transla-
tional order and the continuous orientational order. The
phonons are the Goldstone modes for the translations,
but there are no orientational Goldstone modes.[10] We’ll
discuss this further in the next lecture, but I think this
is one of the most interesting unsolved basic questions in
the subject.

FIG. 10: Dislocation in a crystal. Here is a topological
defect in a crystal. We can see that one of the rows of atoms on
the right disappears halfway through our sample. The place
where it disappears is a defect, because it doesn’t locally look
like a piece of the perfect crystal. It is a topological defect
because it can’t be fixed by any local rearrangement. No
reshuffling of atoms in the middle of the sample can change
the fact that five rows enter from the right, and only four
leave from the left!
The Burger’s vector of a dislocation is the net number of extra
rows and columns, combined into a vector (columns, rows).

IV. CLASSIFY THE TOPOLOGICAL DEFECTS

When I was in graduate school, the big fashion was
topological defects. Everybody was studying homotopy
groups, and finding exotic systems to write papers about.
It was, in the end, a reasonable thing to do.[11] It is true
that in a typical application you’ll be able to figure out
what the defects are without homotopy theory. You’ll
spend forever drawing pictures to convince anyone else,
though. Most important, homotopy theory helps you to
think about defects.

A defect is a tear in the order parameter field. A topo-
logical defect is a tear that can’t be patched. Consider
the piece of 2-D crystal shown in figure 10. Starting in
the middle of the region shown, there is an extra row of
atoms. (This is called a dislocation.) Away from the mid-
dle, the crystal locally looks fine: it’s a little distorted,
but there is no problem seeing the square grid and defin-
ing an order parameter. Can we rearrange the atoms in a
small region around the start of the extra row, and patch
the defect?

No. The problem is that we can tell there is an ex-
tra row without ever coming near to the center. The
traditional way of doing this is to traverse a large loop
surrounding the defect, and count the net number of rows
crossed on the path. In the path shown, there are two
rows going up and three going down: no matter how far
we stay from the center, there will naturally always be
an extra row on the right.

How can we generalize this basic idea to a general prob-
lem with a broken symmetry? Remember that the order
parameter space for the 2-D square crystal is a torus (see
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and rotational waves (figure 9b).

In superfluids, the broken gauge symmetry leads to a
stiffness which results in the superfluidity. Superfluidity
and superconductivity really aren’t any more amazing
than the rigidity of solids. Isn’t it amazing that chairs
are rigid? Push on a few atoms on one side, and 109

atoms away atoms will move in lock–step. In the same
way, decreasing the flow in a superfluid must involve a
cooperative change in a macroscopic number of atoms,
and thus never happens spontaneously any more than
two parts of the chair ever drift apart.

The low–frequency Goldstone modes in superfluids are
heat waves! (Don’t be jealous: liquid helium has rather
cold heat waves.) This is often called second sound, but
is really a periodic modulation of the temperature which
passes through the material like sound does through a
metal.

O.K., now we’re getting the idea. Just to round things
out, what about superconductors? They’ve got a broken
gauge symmetry, and have a stiffness to decays in the
superconducting current. What is the low energy excita-
tion? It doesn’t have one. But what about Goldstone’s
theorem? Well, you know about physicists and theorems
. . .

That’s actually quite unfair: Goldstone surely had con-
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much simpler and more elegant explanation than we had.
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crossed on the path. In the path shown, there are two
rows going up and three going down: no matter how far
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lem with a broken symmetry? Remember that the order
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small region around the start of the extra row, and patch
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No. The problem is that we can tell there is an ex-
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traditional way of doing this is to traverse a large loop
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crossed on the path. In the path shown, there are two
rows going up and three going down: no matter how far
we stay from the center, there will naturally always be
an extra row on the right.

How can we generalize this basic idea to a general prob-
lem with a broken symmetry? Remember that the order
parameter space for the 2-D square crystal is a torus (see
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FIG. 11: Loop around the dislocation mapped onto or-
der parameter space. How do we think about our defect in
terms of order parameters and order parameter spaces? Con-
sider a closed loop around the defect. The order parameter
field u changes as we move around the loop. The positions of
the atoms around the loop with respect to their local “ideal”
lattice drifts upward continuously as we traverse the loop.
This precisely corresponds to a loop around the order pa-
rameter space: the loop passes once through the hole in the
torus. A loop around the hole corresponds to an extra column
of atoms.
Moving the atoms slightly will deform the loop, but won’t
change the number of times the loop winds through or around
the hole. Two loops which traverse the torus the same number
of times through and around are equivalent. The equivalence
classes are labelled precisely by pairs of integers (just like the
Burger’s vectors), and the first homotopy group of the torus
is Z ×Z.

figure 7). Remember that the order parameter at a point
is that translation which aligns a perfect square grid to
the deformed grid at that point. Now, what is the or-
der parameter far to the left of the defect (a), compared
to the value far to the right (d)? Clearly, the lattice to
the right is shifted vertically by half a lattice constant:
the order parameter has been shifted halfway around the
torus. As shown in figure 11, along the top half of a
clockwise loop the order parameter (position of the atom
within the unit cell) moves upward, and along the bottom
half, again moves upward. All in all, the order parame-
ter circles once around the torus. The winding number
around the torus is the net number of times the torus is
circumnavigated when the defect is orbited once.

This is why they are called topological defects. Topol-
ogy is the study of curves and surfaces where bending
and twisting is ignored. An order parameter field, no
matter how contorted, which doesn’t wind around the
torus can always be smoothly bent and twisted back into
a uniform state. If along any loop, though, the order pa-

rameter winds either around the hole or through it a net
number of times, then enclosed in that loop is a defect
which cannot be bent or twisted flat: the winding number
can’t change by an integer in a smooth and continuous
fashion.

How do we categorize the defects for 2-D square crys-
tals? Well, there are two integers: the number of times we
go around the central hole, and the number of times we
pass through it. In the traditional description, this corre-
sponds precisely to the number of extra rows and columns
of atoms we pass by. This was called the Burger’s vector
in the old days, and nobody needed to learn about tori to
understand it. We now call it the first Homotopy group
of the torus:

Π1(T 2) = Z × Z (6)

where Z represents the integers. That is, a defect is
labeled by two integers (m, n), where m represents the
number of extra rows of atoms on the right-hand part of
the loop, and n represents the number of extra columns
of atoms on the bottom.

Here’s where in the lecture I show the practical im-
portance of topological defects. Unfortunately for you,
I can’t enclose a soft copper tube for you to play with,
the way I do in the lecture. They’re a few cents each,
and machinists on two continents have been quite happy
to cut them up for my demonstrations, but they don’t
pack well into books. Anyhow, most metals and copper
in particular exhibits what is called work hardening. It’s
easy to bend the tube, but it’s amazingly tough to bend
it back. The soft original copper is relatively defect–free.
To bend, the crystal has to create lots of line dislocations,
which move around to produce the bending.[12] The line
defects get tangled up, and get in the way of any new
defects. So, when you try to bend the tube back, the
metal becomes much stiffer. Work hardening has had a
noticable impact on the popular culture. The magician
effortlessly bends the metal bar, and the strongman can’t
straighten it . . . Superman bends the rod into a pair of
handcuffs for the criminals . . .

Before we explain why these curves form a group, let’s
give some more examples of topological defects and how
they can be classified. Figure 12a shows a “hedgehog”
defect for a magnet. The magnetization simply points
straight out from the center in all directions. How can
we tell that there is a defect, always staying far away?
Since this is a point defect in three dimensions, we have
to surround it with a sphere. As we move around on
this sphere in ordinary space, the order parameter moves
around the order parameter space (which also happens to
be a sphere, of radius |M⃗ |). In fact, the order parameter
space is covered exactly once as we surround the defect.
This is called the wrapping number, and doesn’t change
as we wiggle the magnetization in smooth ways. The
point defects of magnets are classified by the wrapping
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Recent experiments have illuminated a remarkable growth me-
chanism of rod-shaped bacteria: proteins associated with cell wall
extension move at constant velocity in circles oriented approxi-
mately along the cell circumference [Garner EC, et al., (2011)
Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science
333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–
15827]. We view these as dislocations in the partially ordered
peptidoglycan structure, activated by glycan strand extension ma-
chinery, and study theoretically the dynamics of these interacting
defects on the surface of a cylinder. Generation and motion of
these interacting defects lead to surprising effects arising from the
cylindrical geometry, with important implications for growth. We
also discuss how long range elastic interactions and turgor pres-
sure affect the dynamics of the fraction of actively moving disloca-
tions in the bacterial cell wall.

biophysics ∣ cell wall growth ∣ microbiology

Bacterial cell walls are composed of peptidoglycan (also called
murein), which endows them with shape and rigidity. The

architecture and growth of cell walls have been the subject of
active research for many decades, in particular for gram-negative
bacteria whose cell walls consist of single or few layers of glycan
strands crosslinked by peptides (1–4). While some models assume
a very ordered structure, recent experimental work (5) suggests
the structure is more disordered. We view the peptidoglycan
mesh as a partially ordered two-dimensional crystal with a large
number of defects to account for the disorder in the structure.
The rod shape of many bacteria (e.g., Escherichia coli), together
with mutant variants that grow but fail to complete cell division,
make a cylindrical geometry a natural one to study. To easily add
material to this ordered structure, one must clearly break the
periodicity and create a defect in the structure. An especially
important class of defects are termed dislocations, known to be
important in determining the mechanical properties of metals
and other crystalline or polycrystalline materials, such as their
strength and plasticity (6). Dislocations are known to have long-
ranged elastic interactions, which are logarithmic in the distance
(but not isotropic, as is the case for vortices in superfluids). The
“elementary charge” of these topological defects is the Burgers
vector ~b, which is often at right angles to the direction of insertion
of the new strand of material, and is a lattice vector of the
structure. Here, we apply dislocation theory to the problem of
bacterial growth, proposing a simplified model inspired by the
elongation of bacterial cell walls, which we are able to solve both
analytically and via computer simulations. Fig. 1 illustrates an ide-
alized picture of defects in a cylindrical geometry. For simplicity,
we show a square lattice with lattice vectors parallel and perpen-
dicular to the cylinder’s long axis, although the actual peptidogly-
can mesh is rectangular [and in fact the lattice vectors might have
a nontrivial angle with respect to the cylinder’s axis (7)].

The model treated below will in fact consist of a large number
of dislocations, and so the structure we treat is far from a perfect
crystal. Working with defects of a crystal provides a convenient
and numerically efficient method to take the disorder into ac-
count. We expect that the unit cell of Fig. 1 typically contains two
glycan strands, as it is only this larger unit cell that respects the
local crystalline symmetry; see for example refs. 8, 9. Recent ex-
periments on both gram-negative (10) and gram-positive bacteria

(11, 12) track fluorescently labeled proteins such as MreB known
to correlate strongly with the addition of peptidoglycan subunits,
and have shown that these proteins move at roughly constant
velocity, approximately along the cylinder’s circumference. We
view these strand extension centers as edge dislocations in the
ordered structure, with a Burgers vector oriented along the cylin-
der’s long axis (the direction of the Burgers vector depends on
the direction of insertion of the new strand, see Fig. 1). Extending
the end of an inserted strand (i.e., the core of an edge dislocation)
involves breaking peptide bonds to allow extra sugar units into
the lattice, together with additional short peptide cross-links (1).
In dislocation theory, this type of motion is referred to as disloca-
tion climb. In the following, we treat the protein motion and the
dislocation motion synonymously, assuming that the motion of
the MreB and its associated enzymes is fully correlated with the
insertion of new material into the cell wall. This idea was intro-
duced in ref. 9, and here we develop it further and deduce various
biological insights and predictions. As pointed out by Burman
and Park (13), glycan strand extension is somewhat analogous
to the action of a DNA polymerase. Our dislocation perspective
allows us to take into account long-range elastic interactions be-
tween the “murein extension centers” of ref. 13.

Although extensive work has been done on dislocation theory
over the last century (6), this biophysics problem is quite different
from materials science and condensed matter physics in several
respects: the climb of dislocations necessarily involves the ex-
change of material, which in 3D crystals involves diffusion of
interstitials or vacancies. Hence, except at high temperatures,
dislocation glide dominates the dynamics. [Because the bacterial
cell walls are characterized by strong (peptide and glycan) bonds
(1), neither glide nor climb would be possible in this case without
the aid of the strand extension proteins at physiological tempera-
tures.] Here, dislocation climb is the central process mediating
cell wall growth, with sugars and amino acids essential for the
climb process synthesized and arriving from the interior of the
bacterium. A second, obvious, difference, regards the unusual
cylindrical geometry which we study here. This feature leads to
a number of interesting properties, such as the exponential decay
of dislocation interactions along the cylinder’s long axis, as dis-
cussed below. Dislocations in a cylindrical geometry were consid-
ered in a very different biophysics problem in ref. 14, studying
tail-sheath contraction in a bacteriophage. A final difference
from conventional materials science is that here the dislocation
climb itself alters the geometry, as it is this very motion that grows
the cell wall along the axis of the cylinder. This idea can be used to
estimate the number of actively climbing dislocations per bacter-
ium, using experimental data: The typical time of division of the
bacteria is of the order of tens of minutes, in which the bacteria
elongate by approximately 1 μm. The lattice spacing of the pep-
tidoglycan along the long axis, b, is believed to be of the order of
several nanometers (1). If we assume the area of the hemisphe-
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chanism of rod-shaped bacteria: proteins associated with cell wall
extension move at constant velocity in circles oriented approxi-
mately along the cell circumference [Garner EC, et al., (2011)
Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science
333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–
15827]. We view these as dislocations in the partially ordered
peptidoglycan structure, activated by glycan strand extension ma-
chinery, and study theoretically the dynamics of these interacting
defects on the surface of a cylinder. Generation and motion of
these interacting defects lead to surprising effects arising from the
cylindrical geometry, with important implications for growth. We
also discuss how long range elastic interactions and turgor pres-
sure affect the dynamics of the fraction of actively moving disloca-
tions in the bacterial cell wall.
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Bacterial cell walls are composed of peptidoglycan (also called
murein), which endows them with shape and rigidity. The

architecture and growth of cell walls have been the subject of
active research for many decades, in particular for gram-negative
bacteria whose cell walls consist of single or few layers of glycan
strands crosslinked by peptides (1–4). While some models assume
a very ordered structure, recent experimental work (5) suggests
the structure is more disordered. We view the peptidoglycan
mesh as a partially ordered two-dimensional crystal with a large
number of defects to account for the disorder in the structure.
The rod shape of many bacteria (e.g., Escherichia coli), together
with mutant variants that grow but fail to complete cell division,
make a cylindrical geometry a natural one to study. To easily add
material to this ordered structure, one must clearly break the
periodicity and create a defect in the structure. An especially
important class of defects are termed dislocations, known to be
important in determining the mechanical properties of metals
and other crystalline or polycrystalline materials, such as their
strength and plasticity (6). Dislocations are known to have long-
ranged elastic interactions, which are logarithmic in the distance
(but not isotropic, as is the case for vortices in superfluids). The
“elementary charge” of these topological defects is the Burgers
vector ~b, which is often at right angles to the direction of insertion
of the new strand of material, and is a lattice vector of the
structure. Here, we apply dislocation theory to the problem of
bacterial growth, proposing a simplified model inspired by the
elongation of bacterial cell walls, which we are able to solve both
analytically and via computer simulations. Fig. 1 illustrates an ide-
alized picture of defects in a cylindrical geometry. For simplicity,
we show a square lattice with lattice vectors parallel and perpen-
dicular to the cylinder’s long axis, although the actual peptidogly-
can mesh is rectangular [and in fact the lattice vectors might have
a nontrivial angle with respect to the cylinder’s axis (7)].
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respects: the climb of dislocations necessarily involves the ex-
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cell walls are characterized by strong (peptide and glycan) bonds
(1), neither glide nor climb would be possible in this case without
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tures.] Here, dislocation climb is the central process mediating
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cylindrical geometry which we study here. This feature leads to
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of dislocation interactions along the cylinder’s long axis, as dis-
cussed below. Dislocations in a cylindrical geometry were consid-
ered in a very different biophysics problem in ref. 14, studying
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elongate by approximately 1 μm. The lattice spacing of the pep-
tidoglycan along the long axis, b, is believed to be of the order of
several nanometers (1). If we assume the area of the hemisphe-

Author contributions: A.A. and D.R.N. designed research; A.A. and D.R.N. performed
research; and A.A. and D.R.N. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: nelson@physics.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1207105109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1207105109 PNAS ∣ June 19, 2012 ∣ vol. 109 ∣ no. 25 ∣ 9833–9838

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PH
YS

IC
S



        Dunkel et al PRL 2013

Bacterial  vortices
PIV +1 -1 -1 +1



Microtubule asters
+1 -1

Blower et al (2005) Cell

mitotic spindle organization



Active nematics

Dogic lab (Brandeis) Nature 2012



Ramaswamy, and Menon in a systems of vibrated granular
rods [7]. Such active curvature currents control dynamics
in systems with no momentum conservation but are very
small here, where the concentration variations remain
small, as seen from Figs. 1(c) and 1(d), and flow controls
the dynamics.

In contractile systems active backflow yields a net
speedup of the þ1=2 defects towards its antidefect for
the annihilation shown in Fig. 1(b). In extensile systems,
with !< 0, backflow drives the þ1=2 defect to move
towards its head, away from its "1=2 partner in the con-
figuration of Fig. 1(b), acting like an effectively repulsive
interaction. This somewhat counterintuitive effect has been
observed in experiments with extensile microtubules and
kinesin assemblies [16] and can be understood on the basis
of the hydrodynamic approach embodied in Eqs. (1). In
Fig. 2, we have reproduced from Ref. [16] a sequence of
snapshots showing a pair of #1=2 disclinations moving

apart from each other together with the same behavior
observed in our simulations.
To quantify the dynamics we have reconstructed the

trajectories of the defects by tracking the drop in the
magnitude of the order parameter. The trajectories are
shown in Figs. 3(a) and 3(b), where red lines in the upper
portion of the plots represent the trajectory of the þ1=2
disclination, while the blue lines in the lower portion of the
plot are the trajectories of the"1=2 defect. The tracks end
when the cores of the two defects merge. For small activity
and small values of the rotational friction ", the trajectories

FIG. 1 (color online). Snapshots of a disclination pair shortly
after the beginning of relaxation. (Top) Director field (black
lines) superimposed on a heat map of the nematic order parame-
ter and (bottom) flow field (arrows) superimposed on a heat map
of the concentration for an extensile system with ! ¼ "0:2 (a),
(c) and a contractile system with ! ¼ 0:2 (b), (d). In the top
images, the color denotes the magnitude of the nematic order

parameter S relative to its equilibrium value S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" c?=c0

p
.

In the bottom images, the color denotes the magnitude of the
concentration c relative to the average value c0. Depending on
the sign of !, the backflow tends to speed up (!> 0) or slow
down (!< 0) the annihilation process by increasing or decreas-
ing the velocity of the þ1=2 disclination. For ! negative and
sufficiently large in magnitude, the þ1=2 defect reverses its
direction of motion (c) and escapes annihilation.

FIG. 2 (color online). Defect pair production in an active
suspension of microtubules and kinesin (top) and the same
phenomenon observed in our numerical simulation of an exten-
sile nematic fluid with " ¼ 100 and ! ¼ "0:5. The experimen-
tal picture is reprinted with permission from T. Sanchez et al.,
Nature (London) 491, 431 (2012). Copyright 2012, Macmillan.

0

(a) (b)

(c) (d)

FIG. 3 (color online). Defect trajectories and annihilation
times obtained from a numerical integration of Eqs. (1) for
various " and ! values. (a) Defect trajectories for " ¼ 5 and
various ! values (indicated in the plot). The upper (red online)
and lower (blue online) curves correspond to the positive
and negative disclination, respectively. The defects annihilate
where the two curves merge. (b) The same plot for " ¼ 10.
Slowing down the relaxational dynamics of the nematic phase
increases the annihilation time and for ! ¼ "0:2 reverses the
direction of motion of the þ1=2 disclination. (c) Defect separa-
tion as a function of time for ! ¼ 0:2 and various " values.
(d) Annihilation time normalized by the corresponding annihi-
lation time obtained at ! ¼ 0 (i.e., t0a). The line is a fit to the
model described in the text.
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Two-Dimensional Nematic
Colloidal Crystals Self-Assembled
by Topological Defects
Igor Muševič,1,2* Miha Škarabot,1 Uroš Tkalec,1 Miha Ravnik,2 Slobodan Žumer2,1

The ability to generate regular spatial arrangements of particles is an important technological and
fundamental aspect of colloidal science. We showed that colloidal particles confined to a few-
micrometer-thick layer of a nematic liquid crystal form two-dimensional crystal structures that are
bound by topological defects. Two basic crystalline structures were observed, depending on the
ordering of the liquid crystal around the particle. Colloids inducing quadrupolar order crystallize
into weakly bound two-dimensional ordered structure, where the particle interaction is mediated by
the sharing of localized topological defects. Colloids inducing dipolar order are strongly bound into
antiferroelectric-like two-dimensional crystallites of dipolar colloidal chains. Self-assembly by
topological defects could be applied to other systems with similar symmetry.

D
ispersions of colloids or liquid droplets
in a nematic liquid crystal show a diver-
sity of self-assembled structures, such as

linear chains (1, 2), anisotropic clusters (3), two-
dimensional (2D) hexagonal lattices at interfaces
(4, 5), arrays of defects (6), particle-stabilized
gels (7), and cellular soft-solid structures (8).
The ability of liquid crystals to spontaneously
arrange foreign particles into regular geometric
patterns is therefore highly interesting for devel-
oping new approaches to building artificial col-
loidal structures, such as 3D photonic band-gap
devices (9). Current approaches to fabrication
rely on the controlled sedimentation of colloids
from solutions (10), growth on patterned and pre-
fabricated templates on surfaces (11), external-
field–assisted manipulation (12), and precision
lithography combined with mechanical micro-
manipulation (13).

In isotropic solvents, the spatial aggrega-
tion of colloids is controlled by a fine balance
between the attractive dispersion forces and
the Coulomb, steric, and other repulsive forces.
The nature of colloidal interactions in nematic
liquid crystals is quite different. Nematic liquid
crystals are orientationally ordered complex

fluids, in which rodlike molecules are sponta-
neously and collectively aligned into a certain
direction, called the director. Because of their

anisotropy, the orientation of nematic liquid
crystals can be manipulated by external electric
or magnetic fields, or even by anisotropic
surfaces, which is an important issue in liquid
crystal display technology. When foreign par-
ticles are introduced into the nematic liquid
crystal, the orientation of nematic molecules is
locally disturbed because of their interaction
with the surfaces of the inclusions. The dis-
turbance spreads on a long (micrometer) scale
and can be considered as an elastic deforma-
tion of the nematic liquid crystal. Because the
elastic energy of deformation depends on the
separation between inclusions, structural forces
between inclusions are generated. The struc-
tural forces in liquid crystals are long-range (on
the order of micrometers) and spatially highly
anisotropic, thus reflecting the nature of the
order in liquid crystals (14–17).

In our experiments, a dispersion ofmicrometer-
sized silica spheres in the nematic liquid crys-
tal pentylcyanobiphenyl (5CB) was introduced
into a rubbed thin glass cell with thickness
varying along the direction of rubbing from

1J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
2Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska 19, 1000 Ljubljana, Slovenia.

*To whom correspondence should be addressed. E-mail:
igor.musevic@ijs.si

Fig. 1. Dipolar and quadrupolar colloids in a thin layer of a nematic liquid crystal. (A) Micrograph of a
d 0 2.32 mm silica sphere in an h 0 5 mm layer of 5CB with a hyperbolic hedgehog defect (black spot
on top). (B) The nematic order around the colloid has the symmetry of an electric dipole. (C) Dipoles
spontaneously form dipolar (ferroelectric) chains along the rubbing direction. (D) The same type of colloid
in a thin (h 0 2.5 mm) 5CB layer. The two black spots on the right and left side of the colloid represent the
Saturn ring. (E) The nematic order has in this case the symmetry of an electric quadrupole. (F) Quad-
rupoles spontaneously form kinked chains perpendicular to the direction of rubbing.
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one to several colloidal diameters Esupporting
online material (SOM), section 1^. The colloi-
dal surfaces were treated chemically to induce
perpendicular surface orientation of the 5CB,
whereas the surfaces of the confining cell were
treated to induce parallel orientation. The
resulting elastic distortion of the 5CB around
the colloids generated repulsive forces be-
tween the colloids and the walls of the cell,
thus elastically stabilizing the colloids in the
middle of the nematic layer. In thinner parts of
the cell, the colloids were surrounded by a
distorted nematic liquid crystal that had a
director field with a symmetry reminiscent of
that of an electric quadrupole (18–21). In thicker
parts, the nematic liquid crystal around the
colloids had a symmetry like that of an electric
dipole (1, 2, 18, 19).

Figure 1A shows a micrograph of a silica
sphere with diameter d 0 2.32 T 0.02 mm in a
nematic layer with a thickness (h) of 5 mm. The
structure of the director field around the colloid
is shown in Fig. 1B. It is distorted dipolarly,

with a hyperbolic hedgehog defect (18, 19) that
appears as a dark spot on the top of the colloid
in Fig. 1A. The colloid and the hedgehog are
oriented along the rubbing direction (the y axis
in Fig. 1), thus forming an analog of an electric
dipole (22, 23). Dipoles spontaneously assem-
ble into dipolar (ferroelectric-like) chains ori-
ented along the rubbing direction (Fig. 1C). For
thickness smaller than the critical one hc 0 3.5 T
0.1 mm, the dipolar field around the colloid is
strongly influenced by the confining surfaces.
The symmetry of the director field around the
colloid is now quadrupolar (Fig. 1E), with a
closed disclination line (Saturn ring) surround-
ing the colloid (24). The two black spots on the
right and left side of the colloid in Fig. 1D
represent the top view of the Saturn ring, en-
circling the colloid. Quadrupolar colloids spon-
taneously self-assemble into kinked chains
oriented perpendicular to the rubbing direction
(Fig. 1F).

In the experiments, laser tweezers were used
to position colloids (25) and assist their assem-

bly into stable 2D structures. The temporal po-
sition of the colloids was video-monitored by
means of an optical microscope and image cap-
ture. Analysis of the colloidal trajectories (25)
allowed us to determine the separation depen-
dence of the structural forces between colloids
and the binding energy of colloids in colloidal
assemblies.

Figure 2 shows time sequences of the self-
assembly of quadrupolar colloids in a thin cell.
A single pair of quadrupolar colloids is at-
tracted at an angle of È73-, measured from the
rubbing direction (Fig. 2A), which promotes the
growth of kinked quadrupolar chains in a di-
rection perpendicular to rubbing (Fig. 2, B and
C). Comparison of Fig. 2, B and C, shows that
an additional colloid can either be added to a
position that creates an additional kink or pro-
mote the growth of straight chains that are tilted
with respect to the rubbing direction. Figure 2D
shows that the additional colloid is also at-
tracted laterally to an already-formed chain and
promotes the growth of truly 2D quadrupolar
colloidal crystals. The colloids are in all cases
attracted to a specific position, already at a sep-
aration of several micrometers, which demon-
strates the long-range and anisotropic nature of
structural nematic forces. The measured binding
energy of an additional quadrupole, attracted
along the kinked quadrupolar chain, is È3.4 !
10–18 J (È800 kBT ). The measured lateral at-
traction of an isolated quadrupole toward the
side of a quadrupolar chain is much weaker
(È120 kBT) than the binding energy of a colloid
in a quadrupolar chain. A stack of quadrupolar
chains can rearrange in an almost hexagonal
structure with a more symmetric distribution of
Saturn ring defects.

An example of directed 2D assembly of
quadrupolar colloidal crystal is shown in Fig.
2E. A single colloid was positioned with laser
tweezers close to a crystallite and released from
the optical trap. The sequence of images demon-
strates the attraction of an isolated colloid into
the unoccupied corner of a small crystallite. The
structural force between an isolated colloid and
an already formed quadrupolar 2D nematic
crystallite was attractive when the colloid ap-
proached the chain at its ends. When the colloid
approached the chain or an already-formed crys-
tallite in a lateral direction, the force was at first
repulsive, but when the colloid was forced closer
to the chain, it formed nematic bonds with the
chain. The measured elastic attractive potential
for the sequence in Fig. 2E is presented in Fig.
2F, demonstrating strong attraction over large
separations of more than 5 mm. As a result, sta-
ble 2D crystals with oblique 2D lattices were
assembled (Fig. 2G), which were stable over a
time period of several days. The shape of the
unit cell was that of a general parallelogram
with a 0 2.69 T 0.04 mm, b 0 3.01 T 0.05 mm,
and g 0 56- T 1-. We also observed that such
2D quadrupolar nematic colloidal crystals were
quite susceptible to external perturbations, such

Fig. 2. Growth of 2D quadrupolar nematic colloidal crystals. (A) Time sequence showing the spon-
taneous assembly of a quadrupolar pair of colloids. An additional colloid is attracted to the chain: (B)
into a position that creates a kink, (C) in a straight and tilted line, or (D) laterally. The time between
individual frames in (A) to (C) was 0.8 s and 2.2 s in (D). The cell thickness was h 0 2.7 mm. (E) Directed
assembly of quadrupolar colloids in a 2D crystal. The colloid was positioned close to the corner of an
already formed crystallite and released. Directed attraction into a unoccupied corner due to the
structural force is clearly shown. The time difference between individual frames was 5 s. (F) Measured
elastic energy of the colloid as a function of its separation from the unoccupied corner position (25).
The arrow indicates the direction of movement of the colloid. (G) Large quadrupolar crystal formed by
directed assembly by means of laser tweezers.
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leading to the formation of longer loops that en-
tangle two or more particles (fig. S1 and movies
S1 to S3). In small colloidal clusters, presented in
Fig. 1, B to E, all the loop conformations are
likewise topologically equivalent to the unknot.

The simplest nontrivial topological config-
uration that is created by a sequence of local,
isotropic-to-nematic, temperature, and optically
inducedmicro-quenches is theHopf link (Fig. 1F).

Two interlinked loops, entangled around four
neighboring particles, are visible in both the po-
larizing optical micrograph and the numerically
calculated structure.

However, the true richness of the knots and
links is revealed when the colloidal clusters are
extended to arrays of p × q particles (Fig. 1G).
The laser-assisted knitting technique was applied
at multiple knitting sites so as to connect the

neighboring defect rings. A series of nematic
braids, realized on 3 × q particle arrays is shown
in Fig. 1, G to J (left). To identify the topology of
the entangled loops, we performed a sequence
of topology-preserving Reidemeister moves (1),
which virtually transform the real physical con-
formation of the loops into its planar projection
with the minimum number of crossings. Nega-
tive or left-handed crossings (1) are favored in a
left-twisted nematic profile because of the geo-
metric constraint of the cell. The relaxation map-
pings, illustrated in Fig. 1, G to J (right), reveal a
surprising result. There is a series of alternating
torus knots and links (1): the trefoil knot, the
Solomon link, the pentafoil knot, and the Star of
David. This generically knotted series of knots
and links shows that the confining lattice of col-
loidal particles allows for the production of torus
links and knots of arbitrary complexity, simply
by adding and interweaving additional rows of
particles—that is, by increasing q.

The knots and links can also be reversibly retied.
Topologically, this corresponds to locally changing
the mutual contact—the unit tangle (1)—between
the two segments of the knotted line, which can
either cross or bypass one another in two per-
pendicular directions. We were able to reknot the
disclination lines in the region of the selected
tangle by applying the laser-induced micro-
quench, as shown in Fig. 2, thus transforming
the unit tangles one into another and consequently
changing the topology of the presented confor-
mations. Starting from a tangle inside the encircled
region in Fig. 2A, the laser beam initially cut the
tangle, and then by using precise positioning and
intensity tuning of the beam, the line segments
were reknotted into a distinct tangle (Fig. 2C).
Further, we reknotted a tangle (Fig. 2C) into
another distinct tangle (Fig. 2E). We can make
exactly three tangles by reversibly transforming
them one into another. These local transforma-
tions change the topology and the handedness
(right, +; left, –) of the chiral knots and links,
which in a given example corresponds to con-
versions between the right-handed trefoil knot 31

+

(Fig. 2A), the left-handed composite knot 31
–#31

–

(Fig. 2C), and the two-component link 63
2 (Fig.

2E). Eventually, the reknotting of knots and links
can be performed for any desired knotting se-
quence of unit tangles at any specific position
in a colloidal array. More specifically, the p × q
array of particles generates a template of (p – 1) ×
(q – 1) unit tangles—for example, six tangles on
a four-by-three particle array, which can all be
individually switched, thus inducing site-specific
transformations between various knots and links.

The optical retying of knots and links is di-
rectly related to the changes in the orientational
field of the nematic host. Each tangle has four
free ends of two-defect line segments (Fig. 2, A,
C, and E, insets), which in our system form the
corners of an approximate tetrahedron (Fig. 2B).
The director field inside the tetrahedron has an
intrinsic dihedral symmetry, with two perpendic-
ular mirror symmetry planes and a full tetrahedral

Fig. 2. Rewiring of
knots and links by use
of laser tweezers. (A) A
right-handed trefoil knot
is realized on a four-by-
three colloidal array. The
dashed circles indicate a
unit tangle that can be
rewired with the laser
beam. The tangle con-
sists of two perpendicu-
lar line segments and the
surrounding molecular
field. (B) By rewiring the
unit tangle that corre-
sponds to a 2p/3 rotation
of the encircled tetrahe-
dron, a new composite knot, shown in (C), is knitted. The sequence of tangle rewirings in (B), (D), and (F)
results in switching between knots and links, demonstrated in (A), (C), and (E). Scale bars, 5 mm.

Fig. 1. Topological defect
lines tie links and knots
in chiral nematic colloids.
(A) A twisted defect ring
is topologically equivalent
to the unknot and appears
spontaneously around a
single microsphere. The
molecular orientation on
the top and bottom of the
cell coincides with the ori-
entation of the crossed po-
larizers. (B to E) Defect
loops of colloidal dimer,
trimer, and tetramers are
equivalent to the unknot.
(F) The Hopf link is the
first nontrivial topologi-
cal object, knitted from two
interlinked defect loops.
In (A) to (F), the correspond-
ing loop conformations
were calculated numerical-
ly by using the Landau-de
Gennes free-energy model
(13). (G to J) A series of al-
ternating torus knots and
links on 3 × q particle ar-
rays are knitted by the
laser-induced defect fu-
sion. The defect lines are
schematically redrawn by using a program for representing knots (33) to show the relaxation
mapping from the initial planar projection to the final knot diagram, which was performed by the
sequence of Reidemeister moves. The designations of knots follow the standard notation CiN, where C
indicates the minimal number of crossings, i distinguishes between different knot types, and N counts
the number of loops in multicomponent links. Scale bars, 5 mm.
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