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If the Hamiltonian has the standard form

H = b +U(x1,...,TN), (1.133)

corresponding to momentum coordinates p; = mx;, then the overdamped SDE is formally
recovered by assuming dp; ~ 0 in Eq. (1.132b) and dividing by m~, yielding

1 oU 2D
my 0x; m2~?

dB;(t). (1.134)

We see that the spatial diffusion constant D and the momentum diffusion constant D are
related by

D

D=5

(1.135)



1.7 Fluctuation-dissipation relation

OH

! Op;
H
dp; = —g dt — vyp;dt + V2D dB;(t).
€L

The Fokker-Planck equation (FPE) governing the phase space PDF f(t,x1,...,2n,D1,-..,PN)
of the stochastic process (1.132) reads
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The lhs. wvanishes if f is a function of the Hamiltonian H. The rhs. vanishes for the
particular ansatz

1 H
f= — eXp (_kB—T> : (1.137)
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where T' is the temperature of the surrounding heat bath. To see this, note that

of 1 OH < H) L p
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so that the components of the dissipative momentum current,
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vanishes if

D = ymkgT & D=—. (1.140)




1.8 Fluctuation theorems
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Single-molecule force measuring experiments by using AFM (a) and laser tweezers (b).
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DNA overwinds when stretched

Jeff Gore't, Zev Bryant®*+, Marcelo Néllmann?, Mai U. Le?, Nicholas R. Cozzarelli*t & Carlos Bustamante
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Figure 2 | DNA extends when overwound under constant tension. and 18 pN (blue circles). Each data point shows the mean * s.e.m. for a
a, b, Rotating magnets* were used to introduce torque into a single 14.8-kb ~ minimum of three molecules. The red line is the predicted behaviour based
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1.8 Fluctuation theorems

The total Hamiltonian comprising the system of interest, e.g. a DNA molecule described
by coordinates x(t)), its environment y and mutual interactions reads

H(z,y; A1) = H(z; A1) + Henv(y) + Hine(x, y) (1.141)
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1.8 Fluctuation theorems

Repeat process and measure

W = /5W = /OT dt A(t) %—il(a:(t);)\(t))

we will observe different values of work {Wy, Ws, ..., }

(GOV)) = / AW (W) G(W), (1.145)

FTs = exact (in)equalities for certain G(W)



Reminder: Canonical free energy

H(z,y; A(t)) = H(z; A(t)) + Hony(y) + Hing(x, y) ~ 0

(weak coupling)

To simplify the subsequent discussion, let us assume that we are able to decouple the
system from the environment?! at time ¢ = 0, and assume that at time ¢ = 0 the PDF of
the system state is given by a canonical distribution

1
Z (Ao, T)

f(mO;)\OaT) = H(wo;AO)],

1.14
T ( 6a)

=

where T' is the nitial equilibrium temperature of system and environment at ¢ = 0, and

Z(,T) = / da exp [— H (IZ”TAO)]

the classical partition function. In this case, the initial free energy of the system is given
by

(1.146D)

Fy=—ksTIn Z(Xo, T). (1.147)
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Moreover, since the dynamics for £ > 0 is completely Hamiltonian, we have

dH Z OH .  oH 8[—] 0[—]
dt Op; 8,22 (975

)

B Z OH ( OH\  OH (9H\] 0H;
8H

B (’9)\>\

and, therefore,

W = / dt >\ — — | dH = H(zs; \) — H(zo; Xo)
0

where x(7) = o,

(1.148)

(1.149)
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1
_W/(kBT) — d —H(xr;Mr)/(kBT)
<€ > Z()\O, T) / Lo €

Changing the integration variable from @y — @,, we can write this as

—1

1 ox
—W/(ksT)\ _ d T —H(xr;A7)/(kBT)
(e ) Z (o, T) / Crlom,| €
1
_ dx. ¢ @)/ (knT)
700, T) / tr €
Z(A, T)
— 1.151
Z()\()?T) ( )

Here, we have used Liouville’s theorem, which states that the phase volume is conserved
under a purely Hamiltonian evolution g — x(7),

ox.,

0330

=1 (1.152)




Rewriting further

(W8T = oxp kT n [Z<)\7‘7T)]}

| kT Z (Ao, T)
( 1
= exp ——— [—kgT'InZ(\,,T) — (=kgT)In Z()\O,T)]}
| kT
one thus finds the FT
(e WIEsT)y = = AF/(keT) (1.153a)

where

AF = F(\,,T) — F(Xo, T) (1.153b)




Jensen’s inequality

22 Jensens’s inequality states that, if ¢(z) is convex then

Elp(X)] = ¢(E[X])

Proof: Let L(x) = a + bx be a line, tangent to ¢(x) at the point z, = E[X]. Since ¢ is convex, we have
¢(x) > L(x). Hence
Elp(X)] 2 E[L(X)] = a + DE[X]| = L(E[X]) = ¢(E[X])

Y = @(X)

source: Wiki E{X}



one thus finds the F'T
(e WIksT)y = o= AF/(kpT) (1.153a)
where

AF = F(\,T) — F(2o,T) (1.153D)

Furthermore, using Jensen’s inequality
(") > e (1.154)

we find

o~ AF/(kpT)

<€_W/(kBT)> > o(=W/(kBT))

which is equivalent to the Clausius inequality
AF < (W), (1.155)

i.e., the average work provides an upper bound for the free energy difference.




Finally, we still note that

PW < AF — ¢ = /AF_6 dW p(W)

—0o0

IA

AF—e
/ AW p(W) e(AF—=W)/(5T)

0. @)

IA

o(AF—0)/(kpT) / T AW p(W) W/ EsT)

oo

—  (AF=€)/(kpT) <€—W/(kBT)>

= ¢ ¢/ ksT) (1.156)

That is, the probability that a certain realization W violates the Clausius relation by an
amount ¢ is exponentially small.



