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Bacterial run & tumble motion

source: wiki

Berg (1999) Physics Today Chen et al (2011) EMBO Journal



Bacterial run & tumble motion

movie: V. Kantsler
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Figure 15. Bundling of bacterial flagella. During swimming, the bacterial flagella are gathered in a tight bundle behind the cell as it moves
through the fluid ((a) and (d)). During a tumbling event, the flagella come out the bundle (b), resulting in a random reorientation of the cell
before the next swimming event. At the conclusion of the tumbling event, hydrodynamic interactions lead to the relative attraction of the
flagella (c), and their synchronization to form a perfect bundle (d).




for more movies, see also
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w Bacterial motility and behavior

http://www.rowland.harvard.edu/labs/bacteria/movies/index.php
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Goals

® minimal SDE model for microbial swimming

® wall accumulation & density profile
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1.3 Dilute microbial suspensions

A minimalist model for the locomotion of an isolated microorganism (e.g., alga or bac-
terium) with position X (¢) and orientation unit vector IN (¢) is given by the coupled system

of Ito SDEs

dX = VNdt++\/2Dr*dB(t), (1.45a)
dN = (1—=d)DrN dt+ /2D (I — NN)*dW (t). (1.45Db)

To confirm that Eq. (1.45b) conserves the unit length of the orientation vector, |[IN|? = 1
for all ¢, it is convenient to rewrite Eqgs. (1.45) in component form:

dN; = (1—d)DgrN;dt +/2Dg (8 — N;Ni) * dWi(t). (1.46b)

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.0020044


http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.0020044

BM on the unit sphere

AN, = (1—d)DgN;dt +/2Dg (8,5 — N;Ni) % dWy(t).

For the constraint |IN|? = 1 to be satisfied, we must have d|N|* = 0. Applying the d-
dimensional version of Ito’s formula, see Eq. (A.12), to F(IN) = |IN|?, one finds indeed
that

dN|> = 2N, *dN; + (On,0x NoNy) Dr(0i; — NiN;) dt
= 2N % (1= d)Dp Ny dt + /2D (85 = N;Ny) % dWi(t)| +
= 2(1 —d)Dgrdt +
(0;10ik + 0ik0,1) Dr(6;; — N;N;) dt
= 0. (1.47)



Orientation correlations

To understand the dynamics (1.46), it is useful to compute the orientation correlation,
(N(t) - N(0)) = E[N(t) - N(0)] = E[N.(¢)], (1.48)
where we have assumed (w.l.o.g.) that N(0) = e,. Averaging Eq. (1.46b), we find that

%E[Nz(t)] = (1 - d)DrE[N,(t)], (1.49)

implying that, in this model, the memory loss about the orientation is exponential

(N(t)- N(0)) = elt=DDrt. (1.50)



Mean square displacement

dX|* = 2X;%dX;+ (9x,0x, X1 Xy) Drdy;dt
= QXJ * dX] + ((Lk&k + 5zk:53k:> DTéij dt
= 2X,[VN;dt +/2Dr x dB;(t)| + 2d Dr dt, (1.51)

averaging and dividing by dt, gives

%E[XQ] = 2V E[X(t)N(t)] + 2d Dr. (1.52)

The expectation value on the rhs. can be evaluated by making use of Eq. (1.50):

E[X (1) N(t) = ]Ei[ / aX(s) N(t)]

0

_ VIE[/tds N(s)-N(t)]

0

- v/O ds (N(t) - N(s))

t
_ V / dS e(l—d)DR(t—S)
0
V

— (d 1)D |:1 . 6(1—d)DRt] .
- R




Mean square displacement

By inserting this expression into Eq. (1.52) and integrating over ¢, we find

2V _
E[X?] = 1) [(d—1)Dgt + ' =DPr! — 1] 4+ 2d Dyt (1.53)

If D7 is small, then at short times ¢t < Dgl the motion is ballistic
E[X?] ~ V?t* + 2dDrt, (1.54)
At large times, the motion becomes diffusive, with asymptotic diffusion constant

E[X?] 212
li — 2dDr. 1.55
St (d-1)Dp T (-85

Inserting typical values for bacteria, V' ~ 10um/s and Dr ~ 0.1/s, and comparing with
Dz ~ 0.2pum? /s for a micron-sized colloids at room temperature, we see that active swim-
ming and orientational diffusion dominate the diffusive dynamics of microorganisms at
long times.
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‘Hydrodynamic’ fields

Concentration profile between two walls An interesting question that is relevant
from a medical perspective concerns the spatial distribution of bacteria and other swimming
microbes in the presence of confinement. Restricting ourselves to dilute suspensions!?, we
may obtain a simple prediction from the model (1.45) by considering the FPE for the
associated PDF p(t,x,n). Given p and the total number of bacteria IV, in the solutions,
we obtain the spatial concentration profile by integrating over all possible orientations

c(t,x) = Nb/ dnp(t,n,x). (1.56a)

Sq

The associated mean orientation field reads
u(t,x) = Nb/ dnp(t,n,x)n. (1.56b)

Sq

The FPE for the Ito-SDE (1.45) can be written as a conservation law
Op = —(0u;Ji + 0n,82), (1.57a)
where

Q; = Dr{(l—d)np—0y,[(6;; — ninj)pl} . (1.57¢c)



Concentration field

The FPE for the Ito-SDE (1.45) can be written as a conservation law

Op = —(0p,J; + 0,,8%), (1.57a)
where

Focusing on the three-dimensional case, d = 3, we are interested in deriving from Eq. (1.57)
the stationary concentration profile ¢ of a suspension that is confined by two quasi-infinite
parallel walls, which are located z = &=H. That is, we assume that the distance between
the walls is much smaller then their spatial extent in the (z,y)-directions, 2H < L, L,,.
To obtain an evolution equation for ¢, we multiply Eq. (1.57a) by NNV, and integrate over n
with

/ dn anZQZ = 0. (1.58)
Sq

This yields the mass conservation law

0ic = —V-(Vu— DrVe). (1.59)



Orientation (velocity) field

The FPE for the Ito-SDE (1.45) can be written as a conservation law

Op = — (8, Ji+ 0, 0), (1.57a)
where

To obtain also an evolution equation for w, we multiply Eq. (1.57a) by ng,
Oi(ngp) = =04 (ngJ;) — N0y, <. (1.60)
and note that



Orientation (velocity) field

To obtain also an evolution equation for w, we multiply Eq. (1.57a) by ng,
Or(ngp) = —O0, (nkJ;) — 10y, . (1.60)
and note that

This allows us to rewrite (1.60) as

Oi(nkgp) = =0, (ngd;) + Qi — O, (ngSY;)
= —0,|[Vngn;p — D10y, (ngp)] +
Dp {—anp— On, |(Ok; — ngny)p } On. (n€Y;)
= —0, [Vngn;p — D10, (ngp)] — 2Dgngp —
On, (M€ 4+ (0k; — nikn;)p). (1.62)

J



Orientation (velocity) field

To obtain also an evolution equation for w, we multiply Eq. (1.57a) by ng,
Oy(nkp) = —0u, (nkJ;) — g0y, ;. (1.60)
and note that

This allows us to rewrite (1.60) as

Oi(nkgp) = =0, (ngd;) + Qi — O, (ngSY;)
= =0y |Vngnip — D10y, (nip)] +
Dp {—anp— On, |(Ok; — ngny)p } On. (n€Y;)
= =0y, \Vnip — Dp0Oy, (nip)] — 2Drnyp —
On, (M€ 4+ (0k; — nikn;)p). (1.62)

J

Multiplying by N, and integrating over n with appropriate boundary conditions gives
Opur, = —0., [V Ny(ngn;)p — Dr0y,ug] — 2D guy,

where we have abbreviated

(g - ) = / dn p(t 1, @) ming -+ - (1.63)
Sd

To obtain a closed linear system of equations for the fields (¢, u), we neglect!! the higher-
order moments Ny(ngn;) in (1.63) and find

du ~ —2Dpu+ DrViu. (1.64)



Stationary profiles

ou ~ —2Dpu+ DrVZu. (1.64)

To find the stationary density and orientation profiles, we look for solutions of the form
c = p(z) and u, = u, = 0,u, = u(z). According to Egs. (1.59) to (1.63), the functions p
and u, must satisfy

0 = Vu— Drc, (1.65)
0 = —2Dgu+ Dpu”, (1.66)
and it is physically plausible that they also fulfill the symmetry'? requirements p(z) =
p(—z) and u(z) = —u(—=z). Hence, solution takes the form
u(z) = Asinh(z/A), (1.67a)
VA
p(z) = AD— [cosh(z/A) — 1] + po, (1.67b)
T

where A = \/DJ_/(ZDR)
The cosh-profile (1.67b) agrees qualitatively with experimental measurements for dilute
bacterial suspensions |BTBL08, LT09].



Density profiles seem
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ok ... what about fluxes!?

int work with Peter Lu, Rik Wensink & Jeff Guasto
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Need to include run & tumbling
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TABLE I: Main bacterial parameters used for the fit.

(SF-SDE)

culture C(um)| a (aeg) |vo (pm/s)| O |Atiumble (S)|Atrun ()
E. coly ~ 3 | ~2(5.6) ~ 20 68° ~ 0.1 ~ 1
E. coli (smooth)| ~3 | ~ 2(5.6) ~ 20 0° 0 00
B. subtilis ~5 |~6(11.5)] ~50 |~ 40° ~ 0.1 ~ 0.5
P. aeruginosa | ~2 | ~ 4(9.8) ~ 40 |~ 110° ~ 0.1 ~ 0.5
RT BD
rotation Pp ' [translation Pr ' [rotation Py ' [translation Pr :
E. coli 0.04 £ 0.005 0.1 = 0.01 0.11 = 0.005| 0.31 = 0.005
E. coli (smooth)|0.02 £+ 0.005| 0.07 + 0.005 |0.07 & 0.001| 0.34 + 0.001
B. subtilis 0.14 = 0.05 | 0.02 &= 0.005 |0.10 &= 0.001| 0.09 = 0.001
P. aeruginosa |0.02 £ 0.005| 0.08 £ 0.005 [0.04 & 0.001| 0.49 4 0.005




Need to include run & tumbling
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