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Basic idea

Split dynamics into	



• deterministic part (drift)	



• random part (diffusion)

1.1.2 Biased random walk (BRW)

Consider a one-dimensional hopping process on a discrete lattice (spacing `), defined such
that during a time-step ⌧ a particle at position X(t) = `j 2 `Z can either

(i) jump a fixed distance ` to the left with probability �, or

(ii) jump a fixed distance ` to the right with probability ⇢, or

(iii) remain at its position x with probability (1� �� ⇢).

Assuming that the process is Markovian (does not depend on the past), the evolution of
the associated probability vector P (t) = (P (t, x)) = (P

j

(t)), where x = `j, is governed by
the master equation

P (t+ ⌧, x) = (1� �� ⇢)P (t, x) + ⇢ P (t, x� `) + �P (t, x+ `). (1.15)

Technically, ⇢, � and (1� �� ⇢) are the non-zero-elements of the corresponding transition
matrix W = (W

ij

) with W
ij

> 0 that governs the evolution of the column probability
vector P (t) = (P

j

(t)) = (P (t, y)) by

P
i

(t+ ⌧) = W
ij

P
j

(t) (1.16a)

or, more generally, for n steps

P (t+ n⌧) = W nP (t). (1.16b)

The stationary solutions are the eigenvectors of W with eigenvalue 1. To preserve normal-
ization, one requires

P
i

W
ij

= 1.

Continuum limit Define the density p(t, x) = P (t, x)/`. Assume ⌧, ` are small, so that
we can Taylor-expand

p(t+ ⌧, x) ' p(t, x) + ⌧@
t

p(t, x) (1.17a)

p(t, x± `) ' p(t, x)± `@
x

p(t, x) +
`2

2
@
xx

p(t, x) (1.17b)

Neglecting the higher-order terms, it follows from Eq. (1.15) that

p(t, x) + ⌧@
t

p(t, x) ' (1� �� ⇢) p(t, x) +

⇢ [p(t, x)� `@
x

p(t, x) +
`2

2
@
xx

p(t, x)] +

� [p(t, x) + `@
x

p(t, x) +
`2

2
@
xx

p(t, x)]. (1.18)

Dividing by ⌧ , one obtains the advection-di↵usion equation

@
t

p = �u @
x

p+D @
xx

p (1.19a)
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@
t

p = �u @
x

p+D @
xx

p (1.19a)
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xx
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with drift velocity u and di↵usion constant D given by2

u := (⇢� �)
`

⌧
, D := (⇢+ �)

`2

2⌧
. (1.19b)

We recover the classical di↵usion equation (1.12) from Eq. (1.19a) for ⇢ = � = 0.5. The
time-dependent fundamental solution of Eq. (1.19a) reads

p(t, x) =

r
1

4⇡Dt
exp

✓
�(x� ut)2

4Dt

◆
(1.20)

Remarks Note that Eqs. (1.12) and Eq. (1.19a) can both be written in the current-form

@
t

p+ @
x

j
x

= 0 (1.21)

with

j
x

= up�D@
x

p, (1.22)

reflecting conservation of probability. Another commonly-used representation is

@
t

p = Lp, (1.23)

where L is a linear di↵erential operator; in the above example (1.19b)

L := �u @
x

+D @
xx

. (1.24)

Stationary solutions, if they exist, are eigenfunctions of L with eigenvalue 0.

2Strictly speaking, when taking the limits ⌧, ` ! 0, one requires that ⇢ and � change such that u and
D remain constant. Assuming that ⇢+ � = const, this means that (⇢� �) ⇠ `.
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1.2 Brownian motion

1.2.1 SDEs and discretization rules

The continuous stochastic processX(t) described by Eq. (1.19a) or, equivalently, Eq. (1.20)
can also be represented by the stochastic di↵erential equation

dX(t) = u dt+
p
2DdB(t). (1.25)

Here, dX(t) = X(t + dt) � X(t) is increment of the stochastic particle trajectory X(t),
whilst dB(t) = B(t + dt) � B(t) denotes an increment of the standard Brownian motion
(or Wiener) process B(t), uniquely defined by the following properties3:

(i) B(0) = 0 with probability 1.

(ii) B(t) is stationary, i.e., for t > s � 0 the increment B(t) � B(s) has the same
distribution as B(t� s).

(iii) B(t) has independent increments. That is, for all t
n

> t
n�1 > . . . > t2 > t1,

the random variables B(t
n

) � B(t
n�1), . . . , B(t2) � B(t1), B(t1) are independently

distributed (i.e., their joint distribution factorizes).

(iv) B(t) has Gaussian distribution with variance t for all t 2 (0,1).

(v) B(t) is continuous with probability 1.

The probability distribution P governing the driving process B(t) is commonly known as
the Wiener measure.

Although the derivative ⇠(t) = dB/dt is not well-defined mathematically, Eq. (1.25) is
in the physics literature often written in the form

Ẋ(t) = u+
p
2D ⇠(t). (1.26)

The random driving function ⇠(t) is then referred to as Gaussian white noise, characterized
by

h⇠(t)i = 0 , h⇠(t)⇠(s)i = �(t� s), (1.27)

with h · i denoting an average with respect to the Wiener measure.

3Note that, since X has dimensions of length and D has dimensions length2/time, the Wiener process
B in Eq. (1.25) has units time1/2.

7

Diffusion equation with constant drift

Path-wise representation of typical trajectories ?
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Ẋ(t) = u+
p
2D ⇠(t). (1.26)

The random driving function ⇠(t) is then referred to as Gaussian white noise, characterized
by

h⇠(t)i = 0 , h⇠(t)⇠(s)i = �(t� s), (1.27)

with h · i denoting an average with respect to the Wiener measure.

3Note that, since X has dimensions of length and D has dimensions length2/time, the Wiener process
B in Eq. (1.25) has units time1/2.

7

1.2 Brownian motion

1.2.1 SDEs and discretization rules

The continuous stochastic processX(t) described by Eq. (1.19a) or, equivalently, Eq. (1.20)
can also be represented by the stochastic di↵erential equation

dX(t) = u dt+
p
2DdB(t). (1.25)

Here, dX(t) = X(t + dt) � X(t) is increment of the stochastic particle trajectory X(t),
whilst dB(t) = B(t + dt) � B(t) denotes an increment of the standard Brownian motion
(or Wiener) process B(t), uniquely defined by the following properties3:

(i) B(0) = 0 with probability 1.

(ii) B(t) is stationary, i.e., for t > s � 0 the increment B(t) � B(s) has the same
distribution as B(t� s).

(iii) B(t) has independent increments. That is, for all t
n

> t
n�1 > . . . > t2 > t1,

the random variables B(t
n

) � B(t
n�1), . . . , B(t2) � B(t1), B(t1) are independently

distributed (i.e., their joint distribution factorizes).

(iv) B(t) has Gaussian distribution with variance t for all t 2 (0,1).

(v) B(t) is continuous with probability 1.

The probability distribution P governing the driving process B(t) is commonly known as
the Wiener measure.

Although the derivative ⇠(t) = dB/dt is not well-defined mathematically, Eq. (1.25) is
in the physics literature often written in the form
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SDEs in physicist’s notation



Ito’s formula Note that property (iv) implies that E[dB2] = dt. This justifies the
following heuristic derivation of Ito’s formula for the di↵erential change of some real-valued
function F (x)

dF (X(t)) := F (X(t+ dt))� F (X(t))

= F 0(X(t)) dX +
1

2
F 00(X(t)) dX2 + . . .

= F 0(X(t)) dX +
1

2
F 00(X(t))

h
u dt+

p
2DdB

i2
+ . . .

= F 0(X(t)) dX +DF 00(X(t)) dB2 + O(dt3/2); (1.28)

hence, in a probabilistic sense, one has to leading order in dt

dF (X(t)) = F 0(X(t)) dX +DF 00(X(t)) dt

= [uF 0(X(t)) +DF 00(X(t))] dt+ F 0(X(t))
p
2DdB(t).

(1.29)

It is crucial to note that, due to the choice of the expansion point, the coe�cient F 0(X) in
front of dB(t) is to be evaluated at X(t). This convention is the so-called Ito integration
rule. In particular, it is important to keep in mind that nonlinear transformations of Ito
SDEs must feature second-order derivatives.

Discretization dilemma To clarify the importance of discretization rules when dealing
with SDEs, let us consider a simple generalization of Eq. (1.25), where drift u and di↵usion
coe�cient D are position dependent. Adopting the Ito convention, the corresponding SDE
reads

dX(t) = u(X) dt+
p
2D(X) ⇤ dB(t), (1.30a)

where from now on the ⇤-symbol signals thatD(X) is to be evaluated atX(t). The simplest
numerical integration procedure for Eq. (1.30a) is the stochastic Euler scheme

X(t+ dt) = X(t) + u(X(t)) dt+
p
2D(X(t))

p
dt Z(t), (1.30b)

where, for each time step dt, a new random number Z(t) is drawn from a standard normal
distribution4. If the driving process B(t) is Eq. (1.30a) were a regular deterministic func-
tion, such as for example B(t) =

p
⌧ sin(⌦t), then Eq. (1.30a) would reduce to a standard

inhomogeneous ordinary di↵erential equation (ODE). For ODEs, it typically does not mat-
ter whether one computes the coe�cients5 u(x) and D(x) at the start point X(t) or the end
point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
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Numerical integration
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When you see an equation like (1.30a), then always ask 	


which discretization rule has been adopted!



Ito vs. backward-Ito
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point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting
dt ! 0. If, however, B(t) is a rapidly varying stochastic process, such as the Brownian
motion, then the corresponding lower and upper Riemann sums in general do not converge
to the same value anymore. Therefore, when dealing with SDEs of the type (1.30a), it is
important to explicitly specify the integration convention.

For instance, the so-called backward Ito SDE with coe�cients u
B

and D
B

, denoted by

dX(t) = u
B

(X) dt+
p
2D

B

(X) • dB(t), (1.31a)

is defined as the upper Riemann sum6

X(t+ dt) = X(t) + u
B

(X(t+ dt)) dt+
p
2D

B

(X(t+ dt))
p
dt Z(t). (1.31b)

Unlike Eq. (1.30b), the backward Ito scheme (1.31b) is implicit. To reemphasize, for same
functions u ⌘ u

B

and D ⌘ D
B

, Eqs. (1.30) and (1.31) produce trajectories that follow
di↵erent statistics7. The analog of the Ito formula (1.29) for a nonlinear transformation of
the backward-Ito SDE reads simply

dF (X) = F 0(X) • dX �D
B

F 00(X) dt

= [u
B

F 0(X)�D
B

F 00(X)] dt+ F 0(X)
p
2D

B

• dB(t).

(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

7Except, of course, when D = D

B

= const.

8

Discretization dilemma To clarify the importance of discretization rules when dealing
with SDEs, let us consider a simple generalization of Eq. (1.25), where drift u and di↵usion
coe�cient D are position dependent. Adopting the Ito convention, the corresponding SDE
reads

dX(t) = u(X) dt+
p
2D(X) ⇤ dB(t), (1.30a)

where from now on the ⇤-symbol signals thatD(X) is to be evaluated atX(t). The simplest
numerical integration procedure for Eq. (1.30a) is the stochastic Euler scheme

X(t+ dt) = X(t) + u(X(t)) dt+
p
2D(X(t))

p
dt Z(t), (1.30b)

where, for each time step dt, a new random number Z(t) is drawn from a standard normal
distribution4. If the driving process B(t) is Eq. (1.30a) were a regular deterministic func-
tion, such as for example B(t) =

p
⌧ sin(⌦t), then Eq. (1.30a) would reduce to a standard

inhomogeneous ordinary di↵erential equation (ODE). For ODEs, it typically does not mat-
ter whether one computes the coe�cients5 u(x) and D(x) at the start point X(t) or the end
point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting
dt ! 0. If, however, B(t) is a rapidly varying stochastic process, such as the Brownian
motion, then the corresponding lower and upper Riemann sums in general do not converge
to the same value anymore. Therefore, when dealing with SDEs of the type (1.30a), it is
important to explicitly specify the integration convention.

For instance, the so-called backward Ito SDE with coe�cients u
B

and D
B

, denoted by

dX(t) = u
B

(X) dt+
p
2D

B

(X) • dB(t), (1.31a)

is defined as the upper Riemann sum6

X(t+ dt) = X(t) + u
B

(X(t+ dt)) dt+
p
2D

B

(X(t+ dt))
p
dt Z(t). (1.31b)

Unlike Eq. (1.30b), the backward Ito scheme (1.31b) is implicit. To reemphasize, for same
functions u ⌘ u

B

and D ⌘ D
B

, Eqs. (1.30) and (1.31) produce trajectories that follow
di↵erent statistics7. The analog of the Ito formula (1.29) for a nonlinear transformation of
the backward-Ito SDE reads simply

dF (X) = F 0(X) • dX �D
B

F 00(X) dt

= [u
B

F 0(X)�D
B

F 00(X)] dt+ F 0(X)
p
2D

B

• dB(t).

(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

7Except, of course, when D = D

B

= const.

8

Discretization dilemma To clarify the importance of discretization rules when dealing
with SDEs, let us consider a simple generalization of Eq. (1.25), where drift u and di↵usion
coe�cient D are position dependent. Adopting the Ito convention, the corresponding SDE
reads

dX(t) = u(X) dt+
p
2D(X) ⇤ dB(t), (1.30a)

where from now on the ⇤-symbol signals thatD(X) is to be evaluated atX(t). The simplest
numerical integration procedure for Eq. (1.30a) is the stochastic Euler scheme

X(t+ dt) = X(t) + u(X(t)) dt+
p
2D(X(t))

p
dt Z(t), (1.30b)

where, for each time step dt, a new random number Z(t) is drawn from a standard normal
distribution4. If the driving process B(t) is Eq. (1.30a) were a regular deterministic func-
tion, such as for example B(t) =

p
⌧ sin(⌦t), then Eq. (1.30a) would reduce to a standard

inhomogeneous ordinary di↵erential equation (ODE). For ODEs, it typically does not mat-
ter whether one computes the coe�cients5 u(x) and D(x) at the start point X(t) or the end
point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting
dt ! 0. If, however, B(t) is a rapidly varying stochastic process, such as the Brownian
motion, then the corresponding lower and upper Riemann sums in general do not converge
to the same value anymore. Therefore, when dealing with SDEs of the type (1.30a), it is
important to explicitly specify the integration convention.

For instance, the so-called backward Ito SDE with coe�cients u
B

and D
B

, denoted by

dX(t) = u
B

(X) dt+
p
2D

B

(X) • dB(t), (1.31a)

is defined as the upper Riemann sum6

X(t+ dt) = X(t) + u
B

(X(t+ dt)) dt+
p
2D

B

(X(t+ dt))
p
dt Z(t). (1.31b)

Unlike Eq. (1.30b), the backward Ito scheme (1.31b) is implicit. To reemphasize, for same
functions u ⌘ u

B

and D ⌘ D
B

, Eqs. (1.30) and (1.31) produce trajectories that follow
di↵erent statistics7. The analog of the Ito formula (1.29) for a nonlinear transformation of
the backward-Ito SDE reads simply

dF (X) = F 0(X) • dX �D
B

F 00(X) dt

= [u
B

F 0(X)�D
B

F 00(X)] dt+ F 0(X)
p
2D

B

• dB(t).

(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

7Except, of course, when D = D

B

= const.
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Ito vs. backward-Ito

Discretization dilemma To clarify the importance of discretization rules when dealing
with SDEs, let us consider a simple generalization of Eq. (1.25), where drift u and di↵usion
coe�cient D are position dependent. Adopting the Ito convention, the corresponding SDE
reads

dX(t) = u(X) dt+
p
2D(X) ⇤ dB(t), (1.30a)

where from now on the ⇤-symbol signals thatD(X) is to be evaluated atX(t). The simplest
numerical integration procedure for Eq. (1.30a) is the stochastic Euler scheme

X(t+ dt) = X(t) + u(X(t)) dt+
p
2D(X(t))

p
dt Z(t), (1.30b)

where, for each time step dt, a new random number Z(t) is drawn from a standard normal
distribution4. If the driving process B(t) is Eq. (1.30a) were a regular deterministic func-
tion, such as for example B(t) =

p
⌧ sin(⌦t), then Eq. (1.30a) would reduce to a standard

inhomogeneous ordinary di↵erential equation (ODE). For ODEs, it typically does not mat-
ter whether one computes the coe�cients5 u(x) and D(x) at the start point X(t) or the end
point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting
dt ! 0. If, however, B(t) is a rapidly varying stochastic process, such as the Brownian
motion, then the corresponding lower and upper Riemann sums in general do not converge
to the same value anymore. Therefore, when dealing with SDEs of the type (1.30a), it is
important to explicitly specify the integration convention.

For instance, the so-called backward Ito SDE with coe�cients u
B

and D
B

, denoted by

dX(t) = u
B

(X) dt+
p
2D

B

(X) • dB(t), (1.31a)

is defined as the upper Riemann sum6
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functions u ⌘ u
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(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

7Except, of course, when D = D

B

= const.
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4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.
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4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
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6Note that instead of u
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(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.
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Stratonovich SDE

For su�ciently smooth coe�cient functions, it is straightforward to transform back and
forth between di↵erent types of SDEs (see Appendix A). That is, a given backward Ito
SDE with coe�cients (u

B

, D
B

) can be transformed into a stochastically equivalent Ito SDE
by adapting the coe↵ficients (u,D) accordingly. More precisely, by fixing

u = u
B

+ @
x

D
B

, D = D
B

(1.33)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
Another discretization convention, that is popular in the physics literature is the

Stratonovich-Fisk discretization, denoted by

dX(t) = u
S

(X) dt+
p
2D

S

(X) � dB(t), (1.34a)

and defined as the mean value of lower and upper Riemann sum8

X(t+ dt) = X(t) +
u
S

(X(t)) + u
S

(X(t+ dt))

2
dt+

p
2D

S

(X(t)) +
p
2D

S

(X(t+ dt))

2

p
dt Z(t). (1.34b)

Similarly to Eq. (1.34), by fixing

u = u
S

+
1

2
@
x

D
S

, D = D
S

(1.35)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
From a numerical perspective, the non-anticipatory Ito scheme (1.30b) is advantageous

for it allows to compute the new position directly from the previous one. For analytical
calculations, the Stratonovich-Fisk scheme is somewhat preferable as it preserves the rules
of ordinary di↵erential calculus,9

dF (X) = F 0(X) � dX(t) (1.36)

whilst the backward Ito rule bears certain conceptual advantageous from a physical point of
view [DH09]. However, as mentioned before, in principle one can transform back and forth
between the di↵erent types of SDEs, i.e., neither of the di↵erent discretization schemes is
intrinsically superior.

Various transformation formulas and their generalizations to higher space dimensions
can be found in Appendix A.

8Note that instead of u
B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

9Intuitively, this follows from Eq. (1.32) and (1.32).
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From a numerical perspective, the non-anticipatory Ito scheme (1.30b) is advantageous

for it allows to compute the new position directly from the previous one. For analytical
calculations, the Stratonovich-Fisk scheme is somewhat preferable as it preserves the rules
of ordinary di↵erential calculus,9

dF (X) = F 0(X) � dX(t) (1.36)

whilst the backward Ito rule bears certain conceptual advantageous from a physical point of
view [DH09]. However, as mentioned before, in principle one can transform back and forth
between the di↵erent types of SDEs, i.e., neither of the di↵erent discretization schemes is
intrinsically superior.

Various transformation formulas and their generalizations to higher space dimensions
can be found in Appendix A.

8Note that instead of u
B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

9Intuitively, this follows from Eq. (1.32) and (1.32).
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Summary
Discretization dilemma To clarify the importance of discretization rules when dealing
with SDEs, let us consider a simple generalization of Eq. (1.25), where drift u and di↵usion
coe�cient D are position dependent. Adopting the Ito convention, the corresponding SDE
reads

dX(t) = u(X) dt+
p
2D(X) ⇤ dB(t), (1.30a)

where from now on the ⇤-symbol signals thatD(X) is to be evaluated atX(t). The simplest
numerical integration procedure for Eq. (1.30a) is the stochastic Euler scheme

X(t+ dt) = X(t) + u(X(t)) dt+
p
2D(X(t))

p
dt Z(t), (1.30b)

where, for each time step dt, a new random number Z(t) is drawn from a standard normal
distribution4. If the driving process B(t) is Eq. (1.30a) were a regular deterministic func-
tion, such as for example B(t) =

p
⌧ sin(⌦t), then Eq. (1.30a) would reduce to a standard

inhomogeneous ordinary di↵erential equation (ODE). For ODEs, it typically does not mat-
ter whether one computes the coe�cients5 u(x) and D(x) at the start point X(t) or the end
point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting
dt ! 0. If, however, B(t) is a rapidly varying stochastic process, such as the Brownian
motion, then the corresponding lower and upper Riemann sums in general do not converge
to the same value anymore. Therefore, when dealing with SDEs of the type (1.30a), it is
important to explicitly specify the integration convention.

For instance, the so-called backward Ito SDE with coe�cients u
B

and D
B

, denoted by

dX(t) = u
B

(X) dt+
p
2D

B

(X) • dB(t), (1.31a)

is defined as the upper Riemann sum6

X(t+ dt) = X(t) + u
B

(X(t+ dt)) dt+
p
2D

B

(X(t+ dt))
p
dt Z(t). (1.31b)

Unlike Eq. (1.30b), the backward Ito scheme (1.31b) is implicit. To reemphasize, for same
functions u ⌘ u

B

and D ⌘ D
B

, Eqs. (1.30) and (1.31) produce trajectories that follow
di↵erent statistics7. The analog of the Ito formula (1.29) for a nonlinear transformation of
the backward-Ito SDE reads simply

dF (X) = F 0(X) • dX �D
B

F 00(X) dt

= [u
B

F 0(X)�D
B

F 00(X)] dt+ F 0(X)
p
2D

B

• dB(t).

(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

7Except, of course, when D = D

B

= const.
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B

F 0(X)�D
B

F 00(X)] dt+ F 0(X)
p
2D

B

• dB(t).

(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

7Except, of course, when D = D
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= const.
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Ito

backward-Ito

Stratonovich

For su�ciently smooth coe�cient functions, it is straightforward to transform back and
forth between di↵erent types of SDEs (see Appendix A). That is, a given backward Ito
SDE with coe�cients (u

B

, D
B

) can be transformed into a stochastically equivalent Ito SDE
by adapting the coe↵ficients (u,D) accordingly. More precisely, by fixing

u = u
B

+ @
x

D
B

, D = D
B

(1.33)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
Another discretization convention, that is popular in the physics literature is the

Stratonovich-Fisk discretization, denoted by

dX(t) = u
S

(X) dt+
p
2D

S

(X) � dB(t), (1.34a)

and defined as the mean value of lower and upper Riemann sum8

X(t+ dt) = X(t) +
u
S

(X(t)) + u
S

(X(t+ dt))

2
dt+

p
2D

S

(X(t)) +
p
2D

S

(X(t+ dt))

2

p
dt Z(t). (1.34b)

Similarly to Eq. (1.34), by fixing

u = u
S

+
1

2
@
x

D
S

, D = D
S

(1.35)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
From a numerical perspective, the non-anticipatory Ito scheme (1.30b) is advantageous

for it allows to compute the new position directly from the previous one. For analytical
calculations, the Stratonovich-Fisk scheme is somewhat preferable as it preserves the rules
of ordinary di↵erential calculus,9

dF (X) = F 0(X) � dX(t) (1.36)

whilst the backward Ito rule bears certain conceptual advantageous from a physical point of
view [DH09]. However, as mentioned before, in principle one can transform back and forth
between the di↵erent types of SDEs, i.e., neither of the di↵erent discretization schemes is
intrinsically superior.

Various transformation formulas and their generalizations to higher space dimensions
can be found in Appendix A.

8Note that instead of u
B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

9Intuitively, this follows from Eq. (1.32) and (1.32).
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p
2D(X(t))

p
dt Z(t), (1.30b)

where, for each time step dt, a new random number Z(t) is drawn from a standard normal
distribution4. If the driving process B(t) is Eq. (1.30a) were a regular deterministic func-
tion, such as for example B(t) =

p
⌧ sin(⌦t), then Eq. (1.30a) would reduce to a standard

inhomogeneous ordinary di↵erential equation (ODE). For ODEs, it typically does not mat-
ter whether one computes the coe�cients5 u(x) and D(x) at the start point X(t) or the end
point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting
dt ! 0. If, however, B(t) is a rapidly varying stochastic process, such as the Brownian
motion, then the corresponding lower and upper Riemann sums in general do not converge
to the same value anymore. Therefore, when dealing with SDEs of the type (1.30a), it is
important to explicitly specify the integration convention.

For instance, the so-called backward Ito SDE with coe�cients u
B

and D
B

, denoted by

dX(t) = u
B

(X) dt+
p
2D

B

(X) • dB(t), (1.31a)

is defined as the upper Riemann sum6

X(t+ dt) = X(t) + u
B

(X(t+ dt)) dt+
p
2D

B

(X(t+ dt))
p
dt Z(t). (1.31b)

Unlike Eq. (1.30b), the backward Ito scheme (1.31b) is implicit. To reemphasize, for same
functions u ⌘ u

B

and D ⌘ D
B

, Eqs. (1.30) and (1.31) produce trajectories that follow
di↵erent statistics7. The analog of the Ito formula (1.29) for a nonlinear transformation of
the backward-Ito SDE reads simply

dF (X) = F 0(X) • dX �D
B

F 00(X) dt

= [u
B

F 0(X)�D
B

F 00(X)] dt+ F 0(X)
p
2D

B

• dB(t).

(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance �

2 = 1.
5Assuming the functions u and D are su�ciently smooth.
6Note that instead of u

B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

7Except, of course, when D = D

B

= const.
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1.2.2 Fokker-Planck equations

Since other types of SDEs can be transformed into an equivalent Ito SDE, we shall focus
in this part on discussing how one can derive a Fokker-Planck equation (FPE) for the
probability density function (PDF) p(t, x) for a process X(t) described by the Ito SDE

dX(t) = u(X) dt+
p
2D(X) ⇤ dB(t). (1.37)

The PDF can be formally defined by

p(t, x) = E[�(X(t)� x)]. (1.38)

To obtain an evolution equation for p, we consider

@
t

p = E[ d
dt
�(X(t)� x)]. (1.39)

To evaluate the rhs., we apply Ito’s formula to the di↵erential d[�(X(t)� x)]] and find

E[d[�(X � x)]] = E
⇥
(@

X

�(X � x)) dX +D(X) @2
X

�(X(t)� x) dt
⇤

= E
⇥
(@

X

�(X � x)) u(X) +D(X) @2
X

�(X(t)� x)
⇤
dt.

Here, we have used that E[g(X(t)) ⇤ dB] = 0, which follows from the non-anticipatory
definition of the Ito integral. Furthermore, by recalling that

@
X

�(X � x) = �@
x

�(X � x), (1.40)

we may write

E[d[�(X � x)]] = E
⇥
(�@

x

�(X � x)) u(X) +D(X) @2
x

�(X(t)� x)
⇤
dt

= �@
x

E[�(X � x) u(X)] dt+ @2
x

E[D(X) �(X(t)� x)] dt.

Using another property of the �-function

f(y)�(y � x) = f(x)�(y � x) (1.41)

we obtain

E[d[�(X � x)]] = �@
x

E[�(X � x) u(x)] dt+ @2
x

E[D(x) �(X(t)� x)] dt

= �@
x

{u(x)E[�(X � x)]} dt+ @2
x

{D(x)E[�(X(t)� x)]} dt
= �@

x

{u(x) p� @
x

[D(x)p]} dt.

Combining this with Eq. (1.39) yields the Fokker-Planck (or Smoluchowski) equation

@
t

p = �@
x

{u(x) p� @
x

[D(x)p]} . (1.42)
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Here, we have used that E[g(X(t)) ⇤ dB] = 0, which follows from the non-anticipatory
definition of the Ito integral. Furthermore, by recalling that

@
X

�(X � x) = �@
x

�(X � x), (1.40)

we may write

E[d[�(X � x)]] = E
⇥
(�@

x

�(X � x)) u(X) +D(X) @2
x

�(X(t)� x)
⇤
dt

= �@
x

E[�(X � x) u(X)] dt+ @2
x

E[D(X) �(X(t)� x)] dt.

Using another property of the �-function

f(y)�(y � x) = f(x)�(y � x) (1.41)

we obtain

E[d[�(X � x)]] = �@
x

E[�(X � x) u(x)] dt+ @2
x

E[D(x) �(X(t)� x)] dt

= �@
x

{u(x)E[�(X � x)]} dt+ @2
x

{D(x)E[�(X(t)� x)]} dt
= �@

x

{u(x) p� @
x

[D(x)p]} dt.

Combining this with Eq. (1.39) yields the Fokker-Planck (or Smoluchowski) equation

@
t

p = �@
x

{u(x) p� @
x

[D(x)p]} . (1.42)
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1.2.2 Fokker-Planck equations

Since other types of SDEs can be transformed into an equivalent Ito SDE, we shall focus
in this part on discussing how one can derive a Fokker-Planck equation (FPE) for the
probability density function (PDF) p(t, x) for a process X(t) described by the Ito SDE

dX(t) = u(X) dt+
p
2D(X) ⇤ dB(t). (1.37)

The PDF can be formally defined by

p(t, x) = E[�(X(t)� x)]. (1.38)

To obtain an evolution equation for p, we consider

@
t

p = E[ d
dt
�(X(t)� x)]. (1.39)

To evaluate the rhs., we apply Ito’s formula to the di↵erential d[�(X(t)� x)]] and find

E[d[�(X � x)]] = E
⇥
(@

X

�(X � x)) dX +D(X) @2
X

�(X(t)� x) dt
⇤

= E
⇥
(@

X

�(X � x)) u(X) +D(X) @2
X

�(X(t)� x)
⇤
dt.

Here, we have used that E[g(X(t)) ⇤ dB] = 0, which follows from the non-anticipatory
definition of the Ito integral. Furthermore, by recalling that

@
X

�(X � x) = �@
x

�(X � x), (1.40)

we may write

E[d[�(X � x)]] = E
⇥
(�@

x

�(X � x)) u(X) +D(X) @2
x

�(X(t)� x)
⇤
dt

= �@
x

E[�(X � x) u(X)] dt+ @2
x

E[D(X) �(X(t)� x)] dt.

Using another property of the �-function

f(y)�(y � x) = f(x)�(y � x) (1.41)

we obtain

E[d[�(X � x)]] = �@
x

E[�(X � x) u(x)] dt+ @2
x

E[D(x) �(X(t)� x)] dt

= �@
x

{u(x)E[�(X � x)]} dt+ @2
x

{D(x)E[�(X(t)� x)]} dt
= �@

x

{u(x) p� @
x

[D(x)p]} dt.

Combining this with Eq. (1.39) yields the Fokker-Planck (or Smoluchowski) equation

@
t

p = �@
x

{u(x) p� @
x

[D(x)p]} . (1.42)
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Ito-FPE

Backward-Ito FPE

For su�ciently smooth coe�cient functions, it is straightforward to transform back and
forth between di↵erent types of SDEs (see Appendix A). That is, a given backward Ito
SDE with coe�cients (u

B

, D
B

) can be transformed into a stochastically equivalent Ito SDE
by adapting the coe↵ficients (u,D) accordingly. More precisely, by fixing

u = u
B

+ @
x

D
B

, D = D
B

(1.33)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
Another discretization convention, that is popular in the physics literature is the

Stratonovich-Fisk discretization, denoted by

dX(t) = u
S

(X) dt+
p
2D

S

(X) � dB(t), (1.34a)

and defined as the mean value of lower and upper Riemann sum8

X(t+ dt) = X(t) +
u
S

(X(t)) + u
S

(X(t+ dt))

2
dt+

p
2D

S

(X(t)) +
p
2D

S

(X(t+ dt))

2

p
dt Z(t). (1.34b)

Similarly to Eq. (1.34), by fixing

u = u
S

+
1

2
@
x

D
S

, D = D
S

(1.35)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
From a numerical perspective, the non-anticipatory Ito scheme (1.30b) is advantageous

for it allows to compute the new position directly from the previous one. For analytical
calculations, the Stratonovich-Fisk scheme is somewhat preferable as it preserves the rules
of ordinary di↵erential calculus,9

dF (X) = F 0(X) � dX(t) (1.36)

whilst the backward Ito rule bears certain conceptual advantageous from a physical point of
view [DH09]. However, as mentioned before, in principle one can transform back and forth
between the di↵erent types of SDEs, i.e., neither of the di↵erent discretization schemes is
intrinsically superior.

Various transformation formulas and their generalizations to higher space dimensions
can be found in Appendix A.

8Note that instead of u
B

(X(t + dt)) in (1.31b) we could in fact also have written u

B

(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt ! 0.

9Intuitively, this follows from Eq. (1.32) and (1.32).

9

For comparison, an analogous calculation for the backward-Ito SDE

dX(t) = u
B

(X) dt+
p

2D
B

(X) • dB(t), (1.43)

gives

@
t

p = �@
x

[u
B

(x) p�D
B

(x) @
x

p] . (1.44)

Compared with the Ito FPE (1.42), the di↵usion coe�cient D
B

now enters in front of the
gradient @

x

p. Note, however, that the two di↵erent FPEs coincide if one identifies the
coe�cients as in Eq. (1.33).

A summary of Fokker-Planck equations for the three di↵erent stochastic integral con-
ventions (Ito, Strantonovich-Fisk and backward-Ito) in arbitrary space dimensions can be
found in Appendix A.
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