Brownian motion
(cont.)
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Basic idea

Split dynamics into
® deterministic part (drift)

® random part (diffusion)
© = f(t,x(t)) 4+ noise

Op = —u0,p+ D 0,.p

SDE

PDE



1.1.2 Biased random walk (BRW)

Pit+71,2)=(1—AX—p)P(t,x)+p Plt,x =€) + AP(t,x + {). (1.15)

Technically, p, A and (1 — A — p) are the non-zero-elements of the corresponding transition
matrix W = (W;;) with W;; > 0 that governs the evolution of the column probability
vector P(t) = (P(t)) = (P(t.y)) by

or, more generally, for n steps
P(t+nt)=W"P(t). (1.16b)

The stationary solutions are the eigenvectors of W with eigenvalue 1. To preserve normal-
ization, one requires ) .. W,;; = 1.



Continuum limit Define the density p(t,x) = P(t,x)/¢. Assume 7, { are small, so that

we can Taylor-expand

p(t+71,2) ~ pt,z)+ 70p(t, x) (1.17a)
p(t,z +0) ~ p(t,x)+L00,.p(t,x)+ gﬁmp(t, ) (1.17b)
Neglecting the higher-order terms, it follows from Eq. (1.15) that
plt,2) +7Op(tr) ~ (1= A= p)plt,z) +
p It 2) — 0.p(t,2) + & Drup(t, )] +
Alp(t,x) + 00.p(t, x) + gamp(t, ). (1.18)
Dividing by 7, one obtains the advection-diffusion equation
Orp = —u0pp + D Oz (1.19a)
with drift velocity u and diffusion constant D given by?
u = (p— )\)f , D = (p+ )\)ﬁ (1.19b)
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Time-dependent solution

Dividing by 7, one obtains the advection-diffusion equation
Op = —u0yp+ D Oy (1.19a)

with drift velocity u and diffusion constant D given by?

u = (p — )\)E , D :=(p+ )\)ﬁ (1.19b)

T 2T

We recover the classical diffusion equation (1.12) from Eq. (1.19a) for p = A = 0.5. The
time-dependent fundamental solution of Eq. (1.19a) reads

p(t,z) = 4731)75 exp (Jin) ) (1.20)




Remarks Note that Egs. (1.12) and Eq. (1.19a) can both be written in the current-form
Op+ 0pJz =0 (1.21)
with
Jz = up — DO,p, (1.22)
reflecting conservation of probability. Another commonly-used representation is
Op = Lp, (1.23)
where £ is a linear differential operator; in the above example (1.19b)

L= —ud, + D O0y,. (1.24)

Stationary solutions, if they exist, are eigenfunctions of £ with eigenvalue O.

(useful later when discussing Brownian motors)



1.2 Brownian motion

Diffusion equation with constant drift

Op = —u0yp+ D Oyip (1.19a)

Path-wise representation of typical trajectories !

Brownian motion




1.2 Brownian motion

Diffusion equation with constant drift

Op = —u0yp+ D Oyip (1.19a)

Path-wise representation of typical trajectories !

1.2.1 SDEs and discretization rules

The continuous stochastic process X (t) described by Eq. (1.19a) or, equivalently, Eq. (1.20)
can also be represented by the stochastic differential equation

dX(t) = udt + V2D dB(t). (1.25)



1.2 Brownian motion

1.2.1 SDEs and discretization rules

The continuous stochastic process X (t) described by Eq. (1.19a) or, equivalently, Eq. (1.20)
can also be represented by the stochastic differential equation

dX (t) = udt + V2D dB(t). (1.25)

Here, dX(t) = X(t + dt) — X (¢) is increment of the stochastic particle trajectory X (%),
whilst dB(t) = B(t + dt) — B(t) denotes an increment of the standard Brownian motion
(or Wiener) process B(t), uniquely defined by the following properties®:

(i) B(0) = 0 with probability 1.

(ii) B(t) is stationary, i.e., for t > s > 0 the increment B(t) — B(s) has the same
distribution as B(t — s).

(iii) B(t) has independent increments. That is, for all t, > t,.1 > ... > ty > t,
the random variables B(t,) — B(t,_1),..., B(t2) — B(t1), B(t1) are independently
distributed (i.e., their joint distribution factorizes).

(iv) B(t) has Gaussian distribution with variance t for all ¢ € (0, c0).
(v) B(t) is continuous with probability 1.

The probability distribution P governing the driving process B(t) is commonly known as
the Wiener measure.



SDEs in physicist’s notation

dX(t) = wdt + V2D dB(t). (1.25)

Although the derivative £(t) = dB/dt is not well-defined mathematically, Eq. (1.25) is
in the physics literature often written in the form

X(t) =u+ V2DE(R). (1.26)

The random driving function &(t) is then referred to as Gaussian white noise, characterized

by

&) =0,  {&)é(s)) = ot — s), (1.27)

with (-) denoting an average with respect to the Wiener measure.



Stochastic differential calculus

dX(t) = udt + V2D dB(t). (1.25)

Ito’s formula Note that property (iv) implies that E[dB?] = dt. This justifies the
following heuristic derivation of Ito’s formula for the differential change of some real-valued
function F(x)

dF(X() = F(X(t+dt)— F(X(t))

~ P(X(1)dX + %F”(X(t)) aX* + ...

= F(X(t)dX + %F”(X(t)) wdt +v2DdB| +...
= F'(X(t)dX 4+ DF"(X(t))dB? + O(dt*?); (1.28)



Stochastic differential calculus

dX(t) = udt + V2D dB(t). (1.25)

Ito’s formula Note that property (iv) implies that E[dB?] = dt. This justifies the
following heuristic derivation of Ito’s formula for the differential change of some real-valued
function F(x)

dF(X() = F(X(t+dt)— F(X(t))

~ P(X(1)dX + %F”(X(t)) aX* + ...

= F(X(t)dX + %F”(X(t)) wdt +v2DdB| +...
= F'(X(t)dX 4+ DF"(X(t))dB? + O(dt*?); (1.28)

hence, in a probabilistic sense, one has to leading order in dt

dF (X (t)) = F/(X(t))dX + DF"(X(t))dt
= [uF'(X(t)+ DF"(X()]dt+ F'(X(t)v2D dB(t).
(1.29)

[t is crucial to note that, due to the choice of the expansion point, the coefficient F’(X) in
front of dB(t) is to be evaluated at X (¢). This convention is the so-called Ito integration
rule. In particular, it is important to keep in mind that nonlinear transformations of Ito
SDEs must feature second-order derivatives.



Numerical integration

Discretization dilemma To clarify the importance of discretization rules when dealing
with SDEs, let us consider a simple generalization of Eq. (1.25), where drift 4 and diffusion
coefficient D are position dependent. Adopting the Ito convention, the corresponding SDE
reads

dX(t) = w(X)dt + /2D(X) % dB(t), (1.30a)

where from now on the *-symbol signals that D(X) is to be evaluated at X (¢). The simplest
numerical integration procedure for Eq. (1.30a) is the stochastic Euler scheme

X(t+dt) = X(t)+u(X(@)dt +/2D(X () Vdt Z(¢t), (1.30b)

Z(t) ~N(0,1)

When you see an equation like (1.30a), then always ask
which discretization rule has been adopted!



Ito vs. backward-lto

Compare
dX (t) = w(X)dt + /2D(X) x dB(t), (1.30a)
X(t4dt) = X(t) +u(X(t))dt +/2D(X (t)) Vdt Z(t), (1.30D)
Wlth the so-called backward Ito SDE with coefficients ug and Dp, denoted by
dX (t) = ug(X)dt +/2Dg(X) e dB(t), (1.31a)

is defined as the upper Riemann sum®

X(t+dt) = X(t) +up(X(t+dt))dt + /2Dg(X(t + dt)) Vdt Z(2). (1.31D)

do NOT give same results when dt = 0



Ito vs. backward-lto

Compare
dX(t) = u(X)dt + \/2D(X) * dB(t), (1.30a)
X(t4dt) = X(t) +u(X(t))dt +/2D(X (t)) Vdt Z(t), (1.30D)
with

For instance, the so-called backward Ito SDE with coefficients up and Dpg, denoted by

dX(t) = up(X)dt +/2Dp(X) e dB(t), (1.31a)

is defined as the upper Riemann sum®

X(t+dt) = X(t) +up(X(t+dt))dt + /2Dg(X(t + dt)) Vdt Z(2). (1.31D)

In particular

dF(X) = F'(X)edX — DgF"(X)dt
— [UBF/(X)—DBF”(X dt—|—F/ \/2DB.dB
(1.32)



Stratonovich SDE

Another discretization convention, that is popular in the physics literature is the
Stratonovich-Fisk discretization, denoted by

dX(t) = ug(X)dt + /2Ds(X) o dB(t), (1.34a)

and defined as the mean value of lower and upper Riemann sum®

US<X<t)) —+ ’LLS(X(t —+ dt))
2

V2Ds(X(#)) + v/2Ds(X(t + dt)) Vit Z(1). (1.34b)
2

X(t+dt) = X(t)+ dt +

From a numerical perspective, the non-anticipatory Ito scheme (1.30b) is advantageous
for it allows to compute the new position directly from the previous one. For analytical
calculations, the Stratonovich-Fisk scheme is somewhat preferable as it preserves the rules
of ordinary differential calculus,”

dF(X) = F'(X) o dX(t) (1.36)

each SDE formulation has advantages & disadvantages



Summary

Ito
dX(t) = u(X)dt + \/2D(X) * dB(t), (1.30a)
X(t4dt) = X(t) +u(X(t))dt +/2D(X (t)) Vdt Z(t), (1.30D)

backward-lto

dX (t) = ug(X)dt + /2Dp(X) e dB(t)

X(t+dt)=X(t)+up(X{t+dt))dt+/2Dp(X(t+dt)) Vdt Z(t),

Stratonovich dX (t) = ug(X) dt + \/2Dg(X) o dB(t)

US(X(t)) —+ ’LLS(X<t -+ dt))
2

\/2Ds(X (1)) + +/2Dg(X (t + dt)) Vi 2
2

dt +

X(t+dt) = X(t)+

t)



1.2.2 Fokker-Planck equations

Since other types of SDEs can be transformed into an equivalent Ito SDE, we shall focus
in this part on discussing how one can derive a Fokker-Planck equation (FPE) for the

probability density function (PDF) p(t, x) for a process X (t) described by the Ito SDE
dX(t) = w(X)dt +/2D(X) * dB(t). (1.37)
The PDF can be formally defined by
p(t,x) =E[0(X(t) — x))]. (1.38)
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To obtain an evolution equation for p, we consider

Oyp = E[%d(X(t) —2)]. (1.39)
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To obtain an evolution equation for p, we consider
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To evaluate the rhs., we apply Ito’s formula to the differential d[d(X (¢) — z)]] and find

E[d[6(X —2)]] = E[(Ox0(X — z))dX + D(X)0%5(X(t) — z) dt]
= E[(0x0(X — 2))u(X) + D(X) 0%86(X (t) — z)] dt.

Here, we have used that E[g(X (%)) * dB] = 0.
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Op = E[(0x6(X — 2))u(X) + D(X) 9%8(X(t) — z)]

Furthermore, by recalling that
Ox0(X —x) = —0,0(X — ), (1.40)
we may write

E[d[6(X — 2)]] E|(—0,0(X — ) u(X) + D(X)020(X (¢t) — x)| dt

O, E[6(X — 2)u(X)] dt + 2E[D(X) §(X(t) — x)] dt.
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O, E[6(X — 2)u(X)] dt + 2E[D(X) §(X(t) — x)] dt.

Using another property of the o-function

fy)oly —x) = f(z)o(y — z) (1.41)
we obtain

Eld[6(X —2)]] = —0,E[5(X — x)u(x)]dt + O*E[D(x)5(X (t) — 2)] dt
—Op{u(x) E[6(X — )]} dt + O2{D(2) E[§(X (t) — x)]} dt

—0; {u(z) p — 0:|D(x)pl} di.



Op = E[(0x6(X — 2))u(X) + D(X) 9%8(X(t) — z)]

Furthermore, by recalling that
Ox0(X —x) = —0,0(X — ), (1.40)
we may write

E[d[6(X — 2)]] E|(—0,0(X — ) u(X) + D(X)020(X (¢t) — x)| dt

O, E[6(X — 2)u(X)] dt + 2E[D(X) §(X(t) — x)] dt.

Using another property of the o-function

fy)oly —x) = f(z)o(y — z) (1.41)
we obtain

Eld[6(X —2)]] = —0,E[5(X — x)u(x)]dt + O*E[D(x)5(X (t) — 2)] dt

— 0 {u(x)E[6(X — )]} dt + 02{D(2)E[6(X (t) — )]} dt
—0; {u(z) p — 0:|D(x)pl} di.

Combining this with Eq. (1.39) yields the Fokker-Planck (or Smoluchowski) equation

Op = —0, {u(z)p — 0,|D(x)pl|}. (1.42)




Ito-FPE

6tp — _aw {u(x)p _ ax[D(CC)p]}

Backward-lto FPE

For comparison, an analogous calculation for the backward-Ito SDE

dX(t) = up(X)dt + /2Dp(X) e dB(t), (1.43)
gives
Oyp = —0, lug(x)p — Dp(x) 0.p] . (1.44)

Compared with the Ito FPE (1.42), the diffusion coefficient Dg now enters in front of the

gradient d,p. Note, however, that the two different FPEs coincide if one identifies the
coefficients as in Eq. (1.33):

u:uBJerDB, D:DB



