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When large asexual populations adapt, competition between si-
multaneously segregating mutations slows the rate of adaptation
and restricts the set of mutations that eventually fix. This phenom-
enon of interference arises from competition between mutations
of different strengths as well as competition between mutations
that arise on different fitness backgrounds. Previous work has ex-
plored each of these effects in isolation, but the way they combine
to influence the dynamics of adaptation remains largely unknown.
Here, we describe a theoretical model to treat both aspects of in-
terference in large populations. We calculate the rate of adaptation
and the distribution of fixedmutational effects accumulated by the
population. We focus particular attention on the case when the ef-
fects of beneficial mutations are exponentially distributed, as well
as on a more general class of exponential-like distributions. In both
cases, we show that the rate of adaptation and the influence of
genetic background on the fixation of new mutants is equivalent
to an effective model with a single selection coefficient and re-
scaled mutation rate, and we explicitly calculate these effective
parameters. We find that the effective selection coefficient exactly
coincides with the most common fixed mutational effect. This
equivalence leads to an intuitive picture of the relative importance
of different types of interference effects, which can shift dramati-
cally as a function of the population size, mutation rate, and the
underlying distribution of fitness effects.

Evolutionary adaptation is driven by the accumulation of ben-
eficial mutations, and yet many aspects of this process are still

poorly understood. In asexual populations, this subject can be
distilled into two main lines of inquiry: (i) what are the possible
mutations available to the population? and (ii) which of these mu-
tations are actually incorporated into the population, and what
are the dynamics by which they fix?

The first question is essentially an empirical matter. At any given
instant in time, the set of accessible beneficial mutations is likely to
depend on the history of the population as well as its environment
and any epistatic interactions between mutations. Nonetheless, if
history and epistatic effects do not significantly affect the statistics
of the available mutations, we can define a constant distribution of
fitness effects ρðsÞ that gives the relative probability of obtaining a
mutation that increases the fitness of an individual by s.

Gillespie (1) and Orr (2) have argued that there are general
theoretical reasons to expect that ρðsÞ should follow an exponen-
tial distribution, although more recent theoretical work has chal-
lenged the ubiquity of this claim (3). Many experimental studies
are roughly consistent with this exponential prediction (4–6),
although here, too, we find significant exceptions (6–10). In the
present work, we maintain a relatively agnostic view toward the
precise form of ρðsÞ, although we devote special attention to the
exponential case because of its popularity in the literature.

Instead, we focus our efforts on the second of the two ques-
tions listed above. Given a particular form for ρðsÞ, what are
the typical dynamics of fixation, and of all possible mutational
effects, what is the distribution ρf ðsÞ of those that fix? Speculation
about the nature of ρf ðsÞ dates back to the early days of popula-

tion genetics, when Fisher (11) and Wright (12) fiercely debated
the size of the adaptive step favored by evolution. Not only are
mutations favored by ρf ðsÞ likely to play a prominent role in adap-
tation, but they are often more natural to measure experimentally
than the distribution of possible mutations ρðsÞ (13, 14).

In small populations, or those with extremely small mutation
rates, the process of adaptation is quite simple. Beneficial muta-
tions are sufficiently rare that no more than one mutant exists in
the population at any given time, and all new mutations arise on
an essentially clonal background. Adaptation is therefore charac-
terized by a series of distinct selective sweeps that occur when a
new mutant rises to fixation. The probability that a new mutation
fixes is simply the probability that it survives genetic drift, which is
given by Haldane’s formula (15) ,

πðsÞ ∼ s: [1]

The distribution of fitness effects of fixed mutations immediately
follows from ρf ðsÞ ∝ πðsÞρðsÞ, which reduces the contribution
from smaller mutations and leads to a slight increase in the mean
effect of fixed mutations.

In larger populations the situation becomesmore complicated, as
many distinct mutations segregate simultaneously, but only one line-
age can fix in the absence of recombination. Many of the mutations
are therefore wasted, and a complicated process of interference
arises between the mutations competing for fixation. This process
is also found to a degree in sexual populations (the Hill–Robertson
effect) if recombination cannot act quickly enough to place all of
the competing mutations on the same genetic background (16).

Interference between competing mutations comes in two basic
flavors. The first arises from competition between mutations with
different fitness effects. A mutation A that has survived drift and
would otherwise rise to fixation can be outcompeted by a second,
stronger mutation B that arises before A has fixed. The second
effect stems from competition between mutations with different
genetic backgrounds. For instance, the outcompeted mutation A
could be saved by a third mutation C that arises on the back-
ground of the first, such that the fitness of the double mutant AC
exceeds that of B alone, allowing A to rise to fixation.

The first of these effects is analyzed in the theory of clonal
interference (17, 18), which incorporates a distribution of fitness
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effects under the assumption that multiple mutants* are negligi-
ble. In this theory, new mutations are eventually fixed in the
population only if they are not outcompeted by a larger mutation
in the time required for them to fix, which leads to a relation
between the shape of ρðsÞ and the rate of adaptation.

The triumph of clonal interference theory was the prediction
(and subsequent experimental verification; refs. 19–21) that in
large populations, the rate of adaptation increases sublinearly
with the size of the population. However, it was later shown that
the quantitative predictions for the rate of adaptation and the
distribution of fixed mutational effects disagree with the results
of simulations (22). Crucially, clonal interference theory under-
estimates the contribution from smaller-effect mutations, which
is likely due to the neglect of multiple mutants.

Models that explicitly treat these multiple-mutation dynamics
have also been analyzed in recent years (23–28) (see ref. 29 for a
review), although these typically operate under the simplifying
assumption that all mutations have the same effect. The primary
finding of these studies is that the population forms a traveling
fitness wave that moves toward higher fitness with a constant
average rate v and shape f ðxÞ. New mutations are eventually fixed
in the population only if they occur in the best genetic back-
grounds at the high-fitness nose of f ðxÞ, which leads to a relation
between the shape of the profile and the rate of adaptation.

By neglecting the distribution of fitness effects ρðsÞ, multiple
mutation models are able to predict the distribution of back-
grounds f ðxÞ. Conversely, clonal interference treats a distribution
of fitness effects at the cost of neglecting the distribution of back-
grounds. Of course, by explicitly ignoring the distribution of fit-
ness effects, multiple mutation models lose any ability to make
predictions about ρf ðsÞ.

Experimental evidence suggests that both clonal interference
and multiple mutations play a role in laboratory populations
(30–33) (see ref. 34 for a review), their relative strengths deter-
mined by the shape of ρðsÞ and other population parameters.
These and other results suggest that interference effects are likely
to be highly relevant for many microbial and viral populations
occurring in nature. Although previous theoretical work has shed
light on this question through simulation studies (22, 35), infinite
population models (36), and driver-mutation approximations
(37), no comprehensive theory has yet emerged that accounts
for both clonal interference and multiple mutation effects.

In this article, we present an analytical treatment of a distribu-
tion of fitness effects (clonal interference) as well as a distribution
of backgrounds (multiple mutations) in an adapting asexual po-
pulation. We leverage an approximate mathematical framework
originally devised for the study of adaptation in sexual popula-
tions (38), which allows us to obtain predictions for the rate of
adaptation as well as the distribution of fixed mutations in large
asexual populations where mutation is weak compared to the
strength of selection. We give explicit analytical solutions in
the case of an exponential distribution of fitness effects, as well
as a more general class of fitness distributions considered in ear-
lier studies (22, 25, 37). We validate our results with computer
simulations for a range of parameter values thought to be rele-
vant for laboratory populations of yeast and many bacteria (30),
and we show that virtually identical predictions can be obtained
from exact tunable constraint models (28).

Our results confirm the intuition that the distribution of fixed
mutations is strongly peaked around a single characteristic size,
which depends on the underlying distribution of fitness effects as
well as the population size and the mutation rate (22, 25, 39). We
show that adaptation under a full distribution of fitness effects is
equivalent to a second, effective theory with a single selection
coefficient and rescaled mutation rate. We calculate these effec-
tive parameters, finding that the effective selection coefficient
must be identified with the peak of ρf ðsÞ. In this way, the complex
interplay between clonal interference and multiple mutations

works to simplify the distribution of relevant mutations. However,
these relevant mutations change with ρðsÞ, N, and Ub. This im-
plicit dependence alters the overall scaling of the adaptation rate
with population size and mutation rate, and leads to dramatic dif-
ferences in the dominant mode of interference in different si-
tuations.

Analysis
We consider a population of N haploid individuals that acquire
new beneficial mutations at total rate Ub. We assume that these
mutations occur over a large number of loci, each with relatively
small contributions to the total fitness, so that a mutation of effect
s arising in an individual with (log) fitness X increases its fitness
to X þ s. Furthermore, we assume that the number of loci is suf-
ficiently large, and epistasis sufficiently weak, that the set of avail-
able mutations can be approximated by a continuous distribution
of fitness effects ρðsÞ that remains constant throughout the rele-
vant time interval. We explicitly ignore transient behavior early in
the adaptive process (25, 40, 41) as well as long-term changes in
selection pressure as the population adapts (37, 42, 43). These
remain important topics for future work. In addition, we follow
previous studies (22, 24, 25) and ignore the effect of deleterious
mutations, because we focus on a regime where beneficial muta-
tions are common and deleterious mutations are expected to have
a negligible effect on the dynamics of adaptation.

Our general framework is valid for a wide range of ρðsÞ, but for
the sake of concreteness we obtain explicit formulae for two spe-
cific distributions. The first of these is the exponential distribution
discussed in the introduction,

ρðsÞ ¼ 1

σ
e−s∕σ; [2]

which has assumed the role of a null model because of its broad
theoretical and experimental support. However, the ubiquity of
the exponential model is by no means certain, and notable excep-
tions to this hypothesis have arisen in both theoretical and experi-
mental contexts. We therefore also consider more general ρðsÞ; as
a concrete example, we describe results for a class of exponential-
like distributions (22, 25, 37)

ρðsÞ ¼ 1

σ
e−ðs∕σÞβ

Γð1þ β−1Þ ; [3]

parameterized by a steepness parameter β. For large β, the sharp
cutoff at s ¼ σ is particularly interesting because we will see that it
leads to qualitatively different interference effects compared to
an exponential ρðsÞ for similar N, Ub, and σ.

Bulk Behavior. In sufficiently large populations, it is often possible
to separate the population-wide dynamics from the fate of any
particular mutant (29). In this way, the distribution of fitnesses
in the population can be highly predictable even though its exact
genealogy is not. Previous studies have shown that large adapting
populations develop into a traveling fitness wave that moves with
a constant average rate v and shape f ðxÞ, where x ¼ X −XðtÞ
measures the relative fitness of a given individual (refs. 23–28,
38, 40, 41) (Fig. 1). In principle, the shape of the wave can be
rigorously determined using various methods of traveling-wave
theory, such as the stochastic threshold approximation (24, 26,
40, 41), tunable constraint models (28), or stochastic fitness-class
calculations (25, 27), but these methods are often difficult to ap-
ply for all but the simplest models of adaptation.

For our purposes, it will be sufficient to employ a rough ap-
proximation to the true shape of the fitness profile. Previous work
has shown that in sufficiently large populations with weak muta-
tion (Ub ≪ σ, SI Appendix), f ðxÞ approaches a Gaussian form
whose variance is equal to the rate of adaptation v (25, 40). In
accordance with the earlier models (38), we therefore make the
approximation that
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f ðxÞ ≈ 1ffiffiffiffiffiffiffiffi
2πv

p e−
x 2
2v : [4]

Additional deviations from Eq. 4 can arise from fluctuations in
the high-fitness nose of the distribution, correlated fluctuations
in the mean fitness, higher mutation rates, deleterious mutations,
etc., but we expect these features to play a limited role in the
regimes considered here. Ultimately, this intuition can only be
justified a posteriori by the generally good agreement between
our analytical results and computer simulations discussed below.
A more thorough discussion of the shape of the fitness profile is
given in SI Appendix.

The Fate of Individual Lineages. From the perspective of a single
lineage, competition with the rest of the population occurs only
through the dynamics of the mean fitnessXðtÞ, which increases at
a constant rate v in the steady state. As long as the size of the
lineage remains small compared to the size of the population,
we can model its behavior with a continuous-time branching pro-
cess with birth rate BðX; tÞ ¼ 1þX −XðtÞ, death rate D ¼ 1,
and mutation rate UbρðsÞ to fitness X þ s.

The central quantity of interest in such models is the nonex-
tinction probability wðX; tÞ of a lineage founded by a single in-
dividual with fitness X at time t. Of course, any lineage that rises
to fixation will eventually constitute a large fraction of the popu-
lation, and our branching-process assumption starts to break
down because of nonlinear effects. We assume that all lineages
that avoid extinction and attain such a size are guaranteed to
fix, so that we can equate wðX; tÞ with the fixation probability
of a lineage. We note that to escape the constant increase in mean
fitness as the population adapts, the descendants of this indivi-
dual will have to repeatedly mutate to higher fitnesses. This pro-
cess is very similar to the recombinant background switching
discussed by Neher et al. (38), and to the mutational surfing
of genes in spatially expanding populations (44, 45).

From standard applications of branching process theory
(SI Appendix), we can show that the fixation probability is gov-
erned by the equation

v∂xwðxÞ ¼ xwðxÞ − wðxÞ2 þUb

Z
∞

0

ds ρðsÞ½wðxþ sÞ − wðxÞ�;
[5]

where we have used the fact that the fixation probability depends
on X and t only through the relative fitness x ¼ X −XðtÞ, which
satisfies x ≪ 1 in the region of interest. For a given value of v,
which is calculated self-consistently below, this equation uniquely
determines the fixation probability of a new mutation for a given
choice of Ub and ρðsÞ.

Self-Consistency Condition. The individual and bulk descriptions
are connected by the fact that the population ultimately adapts

by producing new successful mutations. If a single mutation of
effect s occurs somewhere in the population, the probability that
it fixes can be obtained from wðxÞ by averaging over the distribu-
tion of backgrounds in which it could have occurred. This average
yields a generalized version of Haldane’s πðsÞ in the presence of
interference,

πðsÞ ¼
Z

∞

−∞
dxwðxÞf ðx − sÞ: [6]

Consistency then requires that

v ¼
Z

∞

0

ds sπðsÞNUbρðsÞ: [7]

In other words, the rate of adaptation is equal to the total rate
at which new mutations fix multiplied by the size of their effect.
The distribution of fixed mutations is once again obtained from
the relation

ρf ðsÞ ∝ πðsÞρðsÞ: [8]

When taken together, Eqs. 4, 5, and 7 fully determine the
dynamics of adaptation and the distribution of fixed mutations
for any combination ofN,Ub, and ρðsÞ. We examine the solutions
to these equations in the following section. In SI Appendix, we
show how this calculation can be generalized to obtain the dis-
tribution of backgrounds in which successful mutations arise,
in addition to ρf ðsÞ. We also show that nearly identical versions
of Eqs. 4, 5, and 7 can be obtained by extending the tunable con-
straint framework introduced in ref. 28. This alternative forma-
tion gives a slightly more rigorous route to some of our key
equations, and it suggests that the dynamics of adaptation are re-
latively insensitive to the particular details of our model in the
large populations we consider here.

Results
Fixation Probability and the Rate of Adaptation. In the limit of large
population size and weak mutation, the solution to Eq. 5 has a
sharp transition at a characteristic fitness xc, above which it will
approach the linear Haldane formula for fixation in the absence
of interference (Fig. 1). As shown in SI Appendix, we can approx-
imate the fixation probability as

wðxÞ ≈

8><
>:

0 if x < 0;

xce
x 2−x 2c

2v if 0 < x < xc;
x if x > xc;

[9]

where xc is determined by the condition

2 ¼ Ub

Z
∞

0

dsρðsÞe− s2
2v
e

xc
v s − 1

s

þUb

Z
∞

xc

dx
v

�
x
xc

�
e

x2c −x2

2v

Z
∞

0

dsρðsÞe− s 2
2vþx

vs:

[10]

Below this transition point, Eq. 9 shows that the fixation probabil-
ity is proportional to the time-integral of the deterministic lineage
size, ∫ nðtÞdt, which represents the total number of mutational
opportunities for the lineage before it goes extinct. Intuitively
then, fixation below xc is dominated by the probability that the
lineage generates a second mutant, whereas fixation above xc
is dominated by the probability that the lineage survives drift.
The transition point, xc, whereas originally arising from a purely
mathematical analysis of Eq. 5, has an intuitive interpretation as
the boundary above which interference does not limit the fixation
of new mutants.

We can calculate the marginal fixation probability πðsÞ, and
hence the distribution of fixed mutations ρf ðsÞ, by substituting our
approximate form for wðxÞ into Eq. 6 and integrating. We find

Fig. 1. A schematic illustration of the process of adaptation. The Gaussian
fitness profile fðxÞ (i.e., the distribution of backgrounds) moves at a constant
rate v. The fixation probabilitywðxÞ increases rapidly with x until it reaches a
thin boundary layer near x ¼ xc, after which it transitions to the standard
Haldane result.
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πðsÞ ∝ e−
s2
2v

�
e

xc
v s − 1

s

�
þ e

x2c
2v

vxc

Z
∞

xc

dx xe−
ðx−sÞ2

2v ; [11]

where the normalization is determined by the condition
πð0Þ ≈ 1∕N.

The fixation probability πðsÞ controls the bias of those muta-
tions that actually fix, because ρf ðsÞ follows immediately from
ρf ðsÞ ∝ πðsÞρðsÞ. We note here that in contrast to the original
Haldane formula, πðsÞ displays a regime of effective neutrality
for s < v∕xc, where new mutations fix with a probability approxi-
mately equal to 1∕N independent of their effect. This result
agrees with the earlier findings in ref. 37. Above this threshold,
the fixation probability rapidly increases before reattaining the
Haldane limit for s > xc. The position of these transitional points
relative to the original distribution ρðsÞ can play a large role in the
shape of the distribution of fixed mutations, as we shall see below.

The approximate expressions for wðxÞ and πðsÞ depend on the
rate of adaptation v, which is self-consistently obtained by sub-
stituting Eq. 11 into the consistency condition Eq. 7. This substi-
tution yields a second relation between xc and v for a given dis-
tribution ρðsÞ. Explicit calculations for the two forms of ρðsÞ in
Eqs. 2 and 3 are carried out in SI Appendix, and we summarize
the main results below. In Figs. 2–4, we compare these analytical
predictions to forward-time Wright–Fisher simulations.

Exponential Distribution. In the case where the distribution of fitness
effects is exponential, as in Eq. 2, we find that the integrals over the
effect size s are sharply peaked around a characteristic value

s� ¼ xc −
v
σ
; [12]

and Eqs. 10 and 7 reduce to the coupled equations

2 ¼ Ub

σ

ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

v

r �
1þ σ

xc
þ v
σxc − v

�
e

ðxc−vσÞ2
2v ; [13]

1 ¼ NUb

�
x2c
v
− 1þ 2xcσ

v
þ 2σ2

v

�
e−

1
σðxc− v

2σÞ: [14]

This system of transcendental equations must be solved numerically
to obtain v and xc, but we can obtain approximate analytical expres-
sions for these quantities in two regimes of interest.

If the dominant effect size s� ≈ xc, then successful mutations
originating on backgrounds far from the nose of the fitness dis-
tribution are quite common. In this regime, an iterative solution

of Eqs. 13 and 14 yields the approximate solution

v ≈
σ2 log2½2NUb logð σ

Ub
Þ�

2 log
�

σ
Ub

1ffiffi
π

p logð2NUbÞ
log

1
2ð σ

Ub
Þ

� ∼
σ2 log2ðNUbÞ

2 logð σ
Ub
Þ ; [15]

which self-consistently holds for the intermediate NUb regime
logðNUbÞ ≪ 2 logðσ∕UbÞ. For extremely large NUb, this condi-
tion will cease to be valid, and most successful mutations will
originate close to the nose (s� ≪ xc). In this regime, we find a
different approximate expression for the adaptation rate

v ≈ 2σ2 log½2NUb logðNUbÞ�: [16]

General Distributions. More generally, the integrands in Eqs. 10
and 7 will be peaked around a characteristic s� determined by

s� − xc − v
∂ log ρðs�Þ

∂s
¼ 0. [17]

If the integrals are dominated by the contribution near this peak,
we can proceed in a very similar fashion to the calculation above,
and we find that

Fig. 2. The rate of adaptation, v, as a function of the population sizeN (Left)
and the beneficial mutation rate Ub (Right) for the exponential (β ¼ 1) and
β ¼ 10 distributions. Other parameters are N ¼ 107, Ub ¼ 10−5, and σ ¼ 0.01.
Symbols denote the results of forward-time Wright–Fisher simulations, and
the solid lines are obtained by solving Eqs. 13 and 14 for β ¼ 1 and Eqs. 18 and
19 for β ¼ 10. For comparison, the predictions from clonal interference theory
are plotted as dashed lines.

Fig. 3. The distribution of fitness effects of fixed mutations, ρf ðsÞ, for the
exponential (β ¼ 1) (Top) and β ¼ 10 (Bottom) distributions as measured in
forward-time simulations. Other parameters are N ¼ 107, Ub ¼ 10−5, and
σ ¼ 0.01. Our theoretical predictions are shown as solid red lines. For compar-
ison, we also plot the predictions from clonal interference theory (blue
dashed lines) as well as the distribution of mutational effects that would
fix in the absence of interference (red dashed lines). All distributions are nor-
malized by the total number of mutations that occur during the simulation.

Fig. 4. The mean fitness effect of a fixed mutation as a function of the
population size N (Left) and beneficial mutation rate Ub (Right) for the
exponential (β ¼ 1) and β ¼ 10 distributions. Symbols denote the results of
forward-time simulations for the parameters given in Fig. 2. Our theoretical
predictions are shown as solid lines, and the predictions from clonal inter-
ference theory (dashed lines) are shown for comparison.
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2 ¼ Ub

ffiffiffiffiffiffiffiffiffiffiffi
2πΔ2

p
ρðs�Þ

s�

�
1 −

s�

xc

�
−1
e

xcs �
v − s �2

2v ; [18]

1 ¼ 2Ns�ffiffiffiffiffiffi
2π

p
ffiffiffiffiffi
x2c
v

r
e−

x2c
2v ; [19]

where Δ ¼ ½v−1 − ∂ 2
s log ρðs�Þ�−1∕2 is the width of the peak.

Because s� is equivalent to the most likely fixed mutational effect
(SI Appendix), we expect this approximation to hold whenever
ρf ðsÞ is sufficiently peaked around a characteristic effect size.
This requirement is typically satisfied for most unimodal distribu-
tions with an exponentially bounded tail (39), and in particular,
for the short-tailed distributions in Eq. 3. For β ≫ 1, the charac-
teristic effect size is

s� ≈
�
xcσβ

βv

� 1
β−1
; [20]

and the rate of adaptation is given by the approximate form

v ≈
2σ2 log½Nσ log1

2ðNσÞ�
log2

� ffiffi
β

p
σ

Ub
log1

2

� ffiffi
β

p
σ

Ub

��
�
1þ

logð
ffiffi
β

p
σ

Ub
Þ

4 logðNσÞ
�
−2
; [21]

which asymptotically scales as

v ∼
2σ2 logðNσÞ
log2

� ffiffi
β

p
σ

Ub

� : [22]

Note the difference in scaling compared to the exponential dis-
tribution in Eq. 15. In this case, the scaling of v bears a much
closer resemblance to earlier multiple mutation models with a
single mutational effect. We explore this connection in greater
detail below.

Discussion
When large populations acquire beneficial mutations, it is well-
known that interference between competing lineages slows the
rate of adaptation and leads to a distribution of genetic back-
grounds at any given time. By explicitly accounting for this dis-
tribution of backgrounds, our analysis predicts both the rate of
adaptation and the distribution of fitness effects of mutations that
fix during the course of evolution, thereby offering a unified the-
ory of interference in asexual populations.

Our analysis rests on the assumption that in large populations,
the bulk dynamics of the distribution of backgrounds decouples
from the fate of any particular lineage. When mutation is suffi-
ciently weak compared to the strength of selection, we have
argued that the bulk is well-approximated by a traveling fitness
wave with a Gaussian profile, and the fixation probability of a
given lineage depends onUbρðsÞ only through the rate of adapta-
tion v and the transition point xc. We observe excellent agreement
between our predictions and the results of forward-time, Wright–
Fisher simulations (Figs. 2–4, and our approach is further corro-
borated by the fact that the same mathematical structure can be
deduced from an exact stochastic model of traveling waves (28)
(SI Appendix). A virtually identical form for the fixation probabil-
ity wðxÞ arises in the study of large sexual populations (38), which
suggests some sense of universality in that the dynamics of adap-
tation are primarily constrained by the shape and propagation of
the fitness wave, rather than the exact mechanism by which
lineages jump to higher fitnesses. The crucial influence of back-
ground variation on the fate of individual mutations has also been
observed in laboratory populations (33), and is conjectured to
hold in biparental sexual organisms as well (46).

The idea that some essential features of adaptation are insen-
sitive to ρðsÞ after controlling for the speed and width of f ðxÞ is
not unique. Indeed, this intuition plays a crucial role in justifying

the use of multiple mutation theories to model adaptation in ex-
perimental populations (30, 39). As long as the distribution ρðsÞ
falls off sufficiently quickly for large s, the dynamics of adaptation
and the distribution of those mutations that fix will tend to be
dominated by mutations of some characteristic size ~s. Those mu-
tations with s < ~s will typically be outcompeted by mutations of
larger effect, whereas mutations with s > ~s are too rare to occur
before a fitter multiple mutant establishes. Thus, the dynamics of
adaptation can be equivalently described by a multiple mutations
model with a single, effective selection coefficient and mutation
rate despite a full underlying distribution ρðsÞ.

Our results confirm this general intuition [although in some
cases the dispersion in ρf ðsÞ can be rather large, Fig. 3A], and
our analytical description allows us to make this statement quan-
titatively precise. Carrying out the calculations above for the
single-s distribution UbρðsÞ ¼ Ueffδðs − seffÞ (SI Appendix), we
look for effective parameters seff and Ueff such that our approx-
imate solutions for v and wðxÞ match those for the original dis-
tribution. As long as ρf ðsÞ is strongly peaked around a typical
effect size, Eqs. 18 and 19 imply that this single-s equivalence
holds if and only if

seff ¼ s�; Ueff ¼ Ub

ffiffiffiffiffiffiffiffiffiffiffi
2πΔ2

p
ρðs�Þ; [23]

where s� andΔ are given above. In other words, the effective selec-
tion coefficient exactly coincides with the most probable fixed
effect, and the effective mutation rate is scaled by the probability
of observing that mutation under the original distribution ρðsÞ.
By construction, the predictions of our theory for this single-s
model with effective parameters seff and Ueff exactly match the
predictions of our theory for the full ρðsÞ. We note, however, that
because the effective parameters themselves depend on N, Ub,
and ρðsÞ, the dependence of v on population size andmutation rate
will differ from a true single-s theory, which could be used to distin-
guish the underlying distribution of fitness effects experimentally.

Although the mapping defined by Eq. 23 is always valid, it can
be instructive to consider an even simpler single-s mapping in
the special case that xc ≈ s�, which occurs for the exponential dis-
tribution in the intermediate-NUb regime. In this case, a more
intuitive understanding of the dynamics can be obtained by map-
ping to a selective sweeps model where the rate of adaptation is
given by the well-known formula v ¼ NUeffs2eff . We again find
that seff and Ueff are given by Eq. 23 if we define an effective
population size

Neff ¼ N
�

v
xc − s�

�
f
�
xc − s�

v

�
; [24]

which accounts for the fact that mutations typically arise from a
background with fitness x ≈ xc − s� rather than from the wild-type
fitness (SI Appendix).

These different effective models reflect dramatic differences in
the typical dynamics of fixation. For the large-NUb exponential
regime and the β ≫ 1 distributions, successful mutations typically
arise on backgrounds at the nose of the wave and mutate to fit-
nesses near the interference threshold xc. Multiple mutations
of size s� are therefore essential for fixation, and the background
in which each mutant arises plays a central role in its ultimate
chance of fixation. On the other hand, for the intermediate-
NUb exponential regime, typical mutations arise from the bulk
of the fitness profile and mutate to fitnesses near xc. Thus, the
background on which they arise is less important; fixations are
dominated by a single driving mutation which can leapfrog all
other variation in the population. However, this behavior differs
from the standard selective sweeps or clonal interference picture
in that new driving mutations typically arise before the previous
mutation has fixed.

Recent work by Schiffels et al. (37) has leveraged this driving
mutation approximation to study adaptation under an exponen-
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tial ρðsÞ, similar to the case considered here. By adding passen-
ger-mutation corrections, they also correctly predict the rate of
adaptation and the distribution of fixed mutations observed in
Fig. 3A, thereby offering further evidence for our interpretation
above. This work provides an accurate and interesting comple-
ment to our analysis in the intermediate-NUb regime where sin-
gle driving mutations dominate the dynamics. However, our
results show that this approximation breaks down for largerNUb,
and also does not hold for more general distributions (e.g.,
β ≫ 1) when ρðsÞ decreases much faster than exponentially. In
these cases, we obtain a qualitatively different picture of interfer-
ence in which multiple driving mutations play a dominant role. By
successfully accounting for both extremes, the present framework
(and the corresponding single-s mappings) can help predict the
degree to which we might expect more clonal interference or mul-
tiple mutation effects for a given set of parameters.

This discussion also suggests possible experimental tests of our
theory using experimental evolution. For a given distribution of
fitness effects UbρðsÞ, our framework provides concrete predic-
tions for the most accessible experimental quantities: the rate of
adaptation and the distribution of fixed mutational effects. By
measuring how these quantities vary with N, we can directly
probe our theoretical predictions. Combining these results with
measurements of the fitness variation maintained by a population
(30) and with direct genomic information from adapted lineages
to measure the distribution of backgrounds on which successful
mutations arise (47), we can further test our predicted picture of

the typical mode of adaptation, and observe how this mode
changes as a function of population size.

Up to this point, we have focused exclusively on beneficial
mutations. This focus was justified on the basis of earlier studies
(22, 24, 25) that find that deleterious mutations have a negligible
effect on the dynamics of adaptation when beneficial mutations
are common. Nevertheless, because the vast majority of available
mutations in real populations are likely to be neutral or deleter-
ious, it would be desirable to extend our theory to explicitly
account for these mutations. If we can safely ignore the effects of
deleterious mutations on the dynamics of adaptation, their fixa-
tion probabilities follow the form of πðsÞ calculated above, which
rapidly decays for s < 0. However, as the ratio of deleterious
to beneficial mutations increases, we eventually expect these mu-
tations to alter the dynamics of adaptation itself, which will in
turn effect the distribution of fixed mutations. We aim to explore
this dependence in detail in a future paper.
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APPENDIX A: THE DISTRIBUTION OF BACKGROUNDS

Our analysis in the main text is simplified by our assumption that the distribution of backgrounds, f(x), can be
approximated by the Gaussian form

f(x) ≈ 1√
2πv

e−
x2

2v , (A1)

where v is the average rate of adaptation. This approximation has arisen several times in earlier (single-s) treatments
of adaptation [1–4] and is based on simple deterministic growth under the action of selection alone. For the purposes
of our paper — which incorporates f(x) into a theory of interference in adapting asexual populations — this crude
approximation suffices because it leads to highly accurate predictions for v and ρf , and it illustrates the main point
in a simple manner.

Nevertheless, a more rigorous derivation of f(x) from first principles would be greatly desirable, both for the sake
of completeness as well as for those regimes where Eq. (A1) starts to break down. A full derivation is beyond the
scope of the present work, but we outline the main idea below.

Let n(X, t) denote the number of individuals with absolute fitness X at time t. These fitness classes evolve according
to the stochastic integro-differential equation

∂n(X, t)

∂t
=
[
X −X(t)

]
n(X, t) + Ub

∫ ∞
0

ds ρ(s) [n(X − s, t)− n(X, t)] +
√

2n(X, t)η(X, t) , (A2)

where X(t) = 1
N

∫
dX Xn(X, t) is the mean fitness of the population and η(X, t) denotes a complicated noise term

arising from the stochastic dynamics of reproduction and the finite population constraint. For any particular popula-
tion, the full profile of n(X, t) consists of a relatively small set of δ-functions where particular lineages have established.
It is only by averaging over many possible instances and their corresponding fluctuations that we can obtain the con-
tinuous version in Eq. (A1). Traveling wave theory [2, 3, 5, 6] and tunable constraint models (see Appendix C) give
two different prescriptions for obtaining the mean-field profile f(X, t), which is roughly defined as

f(X, t) ≈
〈
n(X, t)

N

〉
. (A3)

Both predict a stochastic threshold at some characteristic relative fitness xedge, above which the fitness profile rapidly
decays to zero. Below this threshold, the effect of the noise term η(X, t) on the mean profile f(X, t) can be neglected.
In order to obtain a fully deterministic description of f(X, t), we must make the additional assumption that the
stochastic mean fitness X(t) can be replaced by its average value

X(t) ≈
〈
X(t)

〉
= vt+ constant . (A4)

This assumption can be violated in the steady-state due to correlated fluctuations in the rate of adaptation and
the shape of the wave, but we assume that these fluctuations have a negligible impact on the large-scale dynamics
of adaptation.1 After switching to the co-moving frame and rewriting everything in terms of the relative fitness

1 Even in cases where these fluctuations are negligible on a macroscopic scale, we must be careful about equating the “theoretical” relative
fitness x = X − vt with the the actual relative fitness X −X(t) as measured in simulations or experiments. This is especially true for
small x, when the typical fluctuations in X(t) are comparable to x. As a result, direct comparisons of f(X, t) with the observed shape
will have limited utility when the typical fluctuations are on the order of the standard deviation of the wave profile.
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x = X − vt, the shape of the wave below the stochastic threshold is described by the deterministic differential
equation

− v∂xf(x) = xf(x) + Ub

∫ ∞
0

ds ρ(s) [f(x− s)− f(x)] . (A5)

The Gaussian profile in Eq. (A1) is just the solution to this equation when Ub = 0. It is also the leading order solution
for Ub > 0 if the mutational term is small, or

xe−
x2

2v � Ub

∫ ∞
0

ds ρ(s)

[
e−

(x−s)2
2v − e− x

2

2v

]
, (A6)

for the relevant regions of x. In the case where ρ(s) is exponential, we can verify that this condition holds near the
most likely background fitness x = xc − s∗ as long as

xc − s∗√
v

σ

Ub
� 1 , (A7)

which is certainly satisfied for the parameter regimes considered here. For the more general class of distributions
analyzed in Appendix F, we can leverage our approximate analytical calculations to show that a sufficient condition
for Eq. (A6) to hold near x = xc − s∗ is

xc � s∗ , (A8)

in addition to the other assumptions required by Appendix D and Appendix F. This will be true for the β = 10
distribution in the parameter ranges considered here.

In general, however, the fitness profile must be derived by solving Eq. (A5) (or its counterpart in Eq. (C6)), and
substituting it into the consistency condition for the velocity in Eqs. (6) and (7) in the main text. In particular, we
expect the simple Gaussian approximation to break down for large mutation rates, where the mutational term leads
to nontrivial modifications of the wave shape [7].

In addition, we note that the Gaussian approximation appears to yield good quantitative results, even though we
continue this approximation well beyond the stochastic cutoff found in traveling wave theory or tunable constraint
models (see Appendix C). This stands in contrast to earlier single-s theories, which emphasize that the dynamics are
also strongly influenced by the shape of f(x) near the high-fitness nose of the distribution [1, 2, 7–9]. In the present
work, we find that the dominant contributions to integrals over f(x) always occur for x < xc, so the exact behavior
above the cutoff may be unimportant in this case. A more thorough analysis of this aspect of the theory and the ways
in which xc relates to the stochastic cutoff in earlier models will be explored in future work.

APPENDIX B: DERIVATION OF THE MASTER EQUATION

Given a model of the bulk behavior of the population, our second key assumption is that after conditioning on this
bulk behavior, individual lineages go extinct or fix independently. This allows us to consider the fixation probability
of a single lineage in isolation, without having to worry about the joint fixation probabilities of all extant lineages in
the population.

We take advantage of the fact that in large populations, the exact stochastic dynamics of reproduction have a
negligible impact on macroscopic quantities like v and ρf (s) [1, 5]. At most, different models of reproduction lead to
an O(1) constant multiplying N in the various formulae that follow. This allows us to choose the simplest stochastic
model available without worrying whether the microscopic details match those in natural organisms. In our case, this
means that we choose to model the dynamics of individual lineages using a continuous-time branching process with
birth rate B(X, t) = 1 + X − X(t), death rate D = 1, and mutations to fitness X + s at rate Ubρ(s). We derive a
master equation for the fixation probability of a single individual below.

Let p(n,X, t) be the extinction probability of a lineage with n individuals at time t with absolute fitness X. By
explicitly considering birth, death, and mutation events, we obtain the backward master equation

p(n,X, t− dt) =
[
1− ndt(2 +X −X(t) + Ub)

]︸ ︷︷ ︸
Prob[nothing happened]

p(n,X, t) + ndt(1 +X −X(t))︸ ︷︷ ︸
Prob[birth]

p(n+ 1, X, t)

+ ndt︸︷︷︸
Prob[death]

p(n− 1, X, t) + ndtUb

∫ ∞
0

ds ρ(s)︸ ︷︷ ︸
Prob[mutation event]

p(1, X + s, t)p(n− 1, X, t) . (B1)
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Taking the continuous-time limit, we can rewrite this as

− 1

n
∂tp(n,X, t) = −[2 +X −X(t) + Ub]p(n,X, t) + [1 +X −X(t)]p(n+ 1, X, t)

+ p(n− 1, X, t) + Ub

∫ ∞
0

ds ρ(s)p(1, X + s, t)p(n− 1, X, t) . (B2)

By assumption, each lineage goes extinct independently, which implies that

p(n,X, t) = p(1, X, t)n , (B3)

and hence

− ∂tp(1, X, t) = −[2 +X −X(t) + Ub]p(1, X, t) + [1 +X −X(t)]p(1, X, t)2 + 1 + Ub

∫ ∞
0

ds ρ(s)p(1, X + s, t) . (B4)

The fixation probability of an individual, w(X, t), is related to the extinction probability through the relation

w(X, t) = 1− p(1, X, t) , (B5)

so we can simply substitute into Eq. (B4) to obtain

− ∂tw(X, t) = [X −X(t)− Ub]w(X, t)− [1 +X −X(t)]w(X, t)2 + Ub

∫ ∞
0

ds ρ(s)w(X + s, t) . (B6)

Due to time-translation symmetry, it is clear that the fixation probability of an individual can depend on the absolute
fitness and the absolute time only through the relative fitness

x = X −X(t) . (B7)

This allows us to replace time derivatives with spatial derivatives, ∂t → −v∂x, and yields an ordinary differential
equation for w(x):

v∂xw(x) = xw(x)− (1 + x)w(x)2 + Ub

∫ ∞
0

ds ρ(s) [w(x+ s)− w(x)] . (B8)

We obtain Eq.(5) in the main text by making the additional assumption that selection acts over time-scales much
longer than a single generation, which implies that x� 1. This is simply an alternate way to state that all relevant
selection pressures are small.

APPENDIX C: RELATIONSHIP TO TUNABLE CONSTRAINT MODELS

The results in the main text were presented in the context of the “deterministic profile/independent fixation”
approach outlined above, but it is interesting to note that we can also formulate our theory in terms of the tunable
constraint framework introduced in [9]. The advantage of this alternate formulation is that we can write down an exact
set of differential equations for the average fitness profile f(x) and the fixation probability w(x) that naturally account
for the stochastic nature of the high-fitness “nose” and correlated fluctuations in the mean fitness. Unfortunately, this
considerable simplification is gained by treating a different model of the stochastic dynamics (see below), and there is
no guarantee that the predictions of these “exactly solvable models” will show better agreement with Wright-Fisher
simulations. Nevertheless, we find that in the regimes considered here, the tunable constraint predictions are identical
with those presented in the main text (up to a replacement N → N/2 in our expressions for v and ρf (s) arising from
the different stochastic dynamics).

In the tunable constraint model, the population evolves in time according to a two-step process for each infinitesimal
time interval dt. First, the fitness class sizes n(X, t) evolve according to

∂n(X, t)

∂t
= [X − vt]n(X, t) + Ub

∫ ∞
0

ds ρ(s) [n(X − s, t)− n(X, t)] +
√

2n(X, t)η(X, t) , (C1)

which differs from Eq. (A2) in that the nonlinear selection term has been replaced with the linear version[
X −

∫
dX Xn(X, t)∫
dX n(X, t)

]
n(X, t)→ [X − vt]n(X, t) , (C2)
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and
√

2n(X, t)η(X, t) corresponds to the noise term in an unconstrained birth-death process, with

〈η(X, t)〉 = 0 , 〈η(X, t)η(X ′, t)〉 = δ(X −X ′)dt . (C3)

In the second step, the population is uniformly culled to enforce the constraint∫
dxn(x+ vt, t)w̃(x) = 2 , (C4)

where w̃(x) is some arbitrary deterministic constraint function that is constant in time. When w̃(x) is independent
of x, we recover the normal “fixed-N” constraint of the Wright-Fisher model, but in general Eq. (C4) allows for
fluctuations in the population size.

Taken together, Eqs. (C1) and (C4) completely determine the stochastic dynamics in the tunable constraint model,
and we define the wave shape f(x) to exactly coincide with the average

f(x) =

〈
n(x+ vt, t)

N

〉
. (C5)

Following the derivation in [9], it can be shown that if we choose w̃(x) to coincide with the non-extinction probability
w(x) defined the main text, then f(x) and w(x) jointly satisfy the closed system of equations

−v∂xf(x) = xf(x) + Ub

∫ ∞
0

ds ρ(s) [f(x− s)− f(x)]− w(x)f(x) , (C6)

v∂xw(x) = xw(x) + Ub

∫ ∞
0

ds ρ(s) [w(x+ s)− w(x)]− w(x)2 , (C7)

and ∫
f(x)w(x) =

2

N
. (C8)

[The notation in [9] involved two functions u∗(x) and c(x) for the fixation probability and mean number density,
respectively. In terms of the notation of the present paper, these functions are given by u(x)∗ ≡ w(x)/2 and c(x) ≡
Nf(x).]

Note that Eq. (C6) is identical to the deterministic equation for the fitness profile in Appendix A up to the addition
of the nonlinear term w(x)f(x), which enforces the stochastic cutoff at the nose. This term is negligible when
w(x) � x or when x < xc, so long as our usual “sharpness” condition xc �

√
v is satisfied. Similarly, Eq. (C7) is

just the defining equation for the non-extinction probability that we employ in the main text. It was shown in [9]
that w(x)/2 can be identified with the fixation probability of an individual at relative fitness x in this model, so the
consistency condition in Eq. (C8) is equivalent to the statement that the entire population must eventually descend
from a single individual.

Together, Eqs. (C6), (C7), and (C8) fully determine the rate of adaptation and the distribution of fixed mutational
effects as a function of N , Ub, and ρ(s). In the tunable constraint framework it is most natural to use the consistency
condition in Eq. (C8) because it is directly related to the finite population constraint that was used to introduce w̃(x).
However, we can also show that Eqs. (C6), (C7), and (C8) automatically imply that the consistency condition in Eq.
[7] in the main text is satisfied as well. To see this, we begin by multiplying both sides of Eq. (C6) by xw(x) and
integrating over x. The term on the left-hand side becomes∫ ∞

−∞
dxxw(x) [−v∂xf(x)] = v

(
N

2

)
+

∫ ∞
−∞

dxxfv∂xw , (C9)

where we have used the consistency condition Eq. (C8). After making the change of variables x− s→ x, the second
term on the right can be written in the form∫ ∞
−∞

dxxw(x)Ub

∫ ∞
0

ds ρ(s)f(x− s) =

∫ ∞
0

ds

∫ ∞
−∞

dx (x+ s)w(x+ s)Ubρ(s)f(x) (C10)

=

∫ ∞
−∞

xf(x)Ub

∫ ∞
0

ds ρ(s)w(x+ s) +

∫ ∞
0

ds sρ(s)Ub

∫ ∞
−∞

dx f(x− s)w(x) .

(C11)
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Putting everything together, we see that

v

(
N

2

)
+

∫ ∞
−∞

dxxf v∂xw =

∫ ∞
0

ds sρ(s)Ub

∫ ∞
−∞

dx f(x− s)w(x)

+

∫ ∞
−∞

xf(x)

{
xw(x) + Ub

∫ ∞
0

ds ρ(s) [w(x+ s)− w(x)]− w(x)2

}
, (C12)

or

v =

∫ ∞
0

ds sρ(s)

(
N

2

)
Ub

∫ ∞
−∞

dx f(x− s)w(x) , (C13)

where we have used the equations of motion for w(x) in Eq. (C7).
Thus, we see that up to the nonlinear cutoff in Eq. (C6), this tunable constraint model is equivalent to the

considerably more ad-hoc approach outlined in the main text. It is interesting to see that many of our assumptions in
the original framework can be derived more rigorously from the tunable constraint perspective whenever the nonlinear
cutoff in Eq. (C6) can be neglected.

However, this increased rigor does not necessarily imply increased correctness when comparing to fixed-N simula-
tions, since it describes the solution to a different stochastic process. The population size fluctuates in the tunable
constraint model, while the relative growth rate x (and therefore the location of the edge) is defined in a deterministic
manner. In Wright-Fisher simulations, the population size is fixed while relative growth rate is given by the random
variable X −X(t).

Yet we find that in the regimes where at least one of our models is relevant, they are both valid descriptions of the
dynamics (though there may be slight quantitative disagreements due to the aforementioned N → N/2 replacement).
This agreement between fixed-N models and their tuned counterparts has been observed earlier [9], and it indicates
that the dynamics of adaptation are quite robust to population size fluctuations. In fact, since most quantities of
interest depend only logarithmically on N , one may speculate that population size fluctuations do not strongly affect
the dynamics as long as fluctuations in logN are small. This insensitivity to fluctuations in N gives some hope that
these simple models may also be applicable to real (well-mixed) systems with unknown demographic history.

APPENDIX D: ANALYSIS OF THE FIXATION PROBABILITY

In Appendix B and Appendix C , we argued that the fixation probability of a single individual with relative fitness
x satisfies the integro-differential equation

v∂xw(x)︸ ︷︷ ︸
V

= xw(x)︸ ︷︷ ︸
S

+Ub

∫ ∞
0

ds ρ(s) [w(x+ s)− w(x)]︸ ︷︷ ︸
M

−w(x)2︸ ︷︷ ︸
N

, (D1)

where we have now explicitly labeled the velocity (V ), selection (S), mutation (M), and nonlinear (N) terms. This
equation comes with the implicit boundary condition that w(x) is finite for all x, which should remove the constant of
integration associated with the derivative in the velocity term. Of course, an exact analytical solution to this equation
for arbitrary ρ(s) would completely solve our problem, but the difficulty involved in solving any integro-differential
equation suggests that an exact solution is presently beyond our reach.

We do notice, however, that the integral is entirely contained in the M term, which suggests that we may be able to
develop a perturbative solution to this problem in the limit that M is in some sense small. This plan is complicated
by the fact that our perturbative theory will actually be singular in the limit that M → 0, because the mutation term
plays a crucial role in regulating the behavior of the solution. If M = 0, the only solution that does not diverge for
finite x is the trivial solution w(x) = 0, which agrees with our intuition that a lineage cannot survive the constant
increase of X(t) without the ability to mutate to higher fitnesses. Thus, the leading-order solution as M → 0 is not
the same as the solution to Eq. (D1) with M = 0.

Nevertheless, it will still be the case that M can be negligible in certain regions even though it cannot be negligible
on a global scale. The local analysis that follows is essentially the same as the one in Neher et al [4], which focused
on a regime where recombination is the dominant mechanism for increasing fitness. We show how this framework can
be extended to the case of mutation-dominated adaptation below.

For large positive x, a typical lineage will either die or be destined for fixation long before additional mutations
or the steady increase of the mean fitness can significantly affect its growth rate. Thus, in this region, the dominant
balance in Eq. (D1) is given by the S and N terms, which yields the approximate solution

w(x) ≈ x . (D2)
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Note that this is simply the ordinary Haldane formula for the fixation probability of a single individual with fitness
x [10]. This balance is consistent as long as the V and M terms are small, which occurs when

x2 � v , (D3)

x2 � Ub

∫ ∞
0

ds ρ(s)s . (D4)

As we look towards smaller x, we will eventually reach a point where the steady increase in X(t) can have a significant
impact on the eventual fixation of a lineage. In this “interference” regime, the fixation probability of a lineage is greatly
reduced, and the nonlinear term becomes negligible. If the mutation term can also be treated as small, the dominant
balance in this regime is given by the V and S terms, which yields the approximate solution

w(x) ≈ Ae x
2

2v , (D5)

where A is a constant of integration. If x = xc denotes the location of the boundary between the interference and
drift regimes, this constant can be determined by matching the two solutions at x = xc. This yields

A = xce
− x

2
c

2v . (D6)

After substituting this solution back into Eq. (D1), we can verify that the nonlinear term is negligible as long as(xc
x

)
e
x2−x2c

2v � 1 , (D7)

which will be true for x close to xc as long as xc �
√
v. The rate at which the nonlinear term decreases for x < xc

can be used to define an effective width of the boundary layer between the two regions

δB.L. ∼
v

xc
, (D8)

which is increasingly narrow for xc �
√
v. Similarly, we can verify that the mutation term M is negligible at x = xc

as long as

x2
c � Ub

∫
ds ρ(s)s . (D9)

It is clear that as we move toward even smaller fitnesses, Eq. (D5) must eventually break down, because it makes
the nonsensical prediction that w(x) increases for increasingly lower fitness when x < 0. At some intermediate point,
the mutation term becomes relevant again, and the approximate differential equation becomes much more difficult
to solve. Fortunately, as long as xc �

√
v, the fixation probabilities for these fitnesses will be so low in this regime

that we can effectively approximate them by w(x) ≈ 0. In addition, we show in Appendix G that the dominant
contribution from w(x) comes from x ≈ xc, so our results will be insensitive to the form of w(x) in this region for the
moderate mutation rates considered here.

Putting everything together, we arrive at an approximate expression for the fixation probability,

w(x) ≈


0 if x < 0,

xce
x2−x2c

2v if 0 < x < xc,

x if x > xc.

(D10)

Note that while we have taken advantage of a sharp transition at x = xc, we have not yet determined the value of xc.
Strictly speaking, the location of the transition point is completely determined by Eq. (D1), but in our approximate
analysis, the delicate balance that determines this transition is overshadowed by the terms in the dominant balance.

In order to tease out this dependence, we multiply both sides of Eq. (D1) by the Gaussian integrating factor e−x
2/2v

and integrate over the relative fitness x. After an integration by parts, this has the effect of removing the “Gaussian”
V and S terms and leaves us with the relation∫ ∞

−∞
dx e−

x2

2v w(x)2 = Ub

∫ ∞
−∞

dxw(x)

∫ ∞
0

ds ρ(s)

[
e−

(x−s)2
2v − e− x

2

2v

]
. (D11)
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We can now evaluate these integrals by using the approximate form of w(x) given in Eq. (D10). The left hand side
can be evaluated by splitting the region of integration into two pieces and using Laplace’s approximation on each one:∫ ∞

−∞
dx e−

x2

2v w(x)2 =

∫ 0

−∞
0 +

∫ xc

0

dxA2e
x2

2v +

∫ ∞
xc

dxx2e−
x2

2v

= 0 +A2 v

xc
e
x2c
2v +

v

xc
x2
ce
− x

2
c

2v

= 2Av , (D12)

where we have once again assumed that xc �
√
v. The right hand side can evaluated in a similar manner:∫

dx e−
x2

2vM = Ub

∫ xc

0

dxAe
x2

2v

∫ ∞
0

ds ρ(s)e−
(x−s)2

2v + Ub

∫ ∞
xc

dxx

∫ ∞
0

ds ρ(s)e−
(x−s)2

2v

− Ub
∫ xc

0

dxA− Ub
∫ ∞
xc

dxxe−
x2

2v

= vAUb

[∫
ds ρ(s)e−

s2

2v

(
e
xc
v s − 1

s

)
+

∫ ∞
xc

dxx

vA
e−

x2

2v

∫ ∞
0

ds ρ(s)e−
s2

2v+ xc
v s

− 1

xc

(
1 +

x2
c

v

)]
. (D13)

Combining this with the LHS result, we find that the location xc of the transition must obey the condition

2 = Ub

[∫
ds ρ(s)e−

s2

2v

(
e
xc
v s − 1

s

)
+

∫ ∞
xc

dx

v

x

xc
e
x2c−x

2

2v

∫ ∞
0

ds ρ(s)e−
s2

2v+ x
v s −

(
1

xc
+
x2
c

v

)]
. (D14)

The corresponding Eq. (10) in the main text is obtained by dropping the last term on the right, which is negligible
when xc �

√
v because the first term effectively scales like exp(x2

c/v).

APPENDIX E: EXPONENTIAL DISTRIBUTION

In this section, we implement our approximate analytical framework for the case where ρ(s) is given by an expo-
nential distribution

ρ(s) =
1

σ
e−s/σ . (E1)

1. Location of the transition

In order to carry out the integration over s in Eq. (D14), we notice that the integrands are dominated by an
exponential factor whose argument is given by the function

g(s) = − s
2

2v
+
x

v
s− s

σ
, (E2)

which suggests that they can be evaluated using Laplace’s method. This function has a maximum when s∗ = x− v
σ ,

and at this maximum point we find that

g(s∗) =
(x− v

σ )2

2v
, g′′(s∗) = −1

v
. (E3)

If we assume that xc − v/σ �
√
v, then a simple application of Laplace’s method reduces Eq. (D14) to the form

2 =

[
Ub
σ

√
2πv

xc − v
σ

e
(xc− v

σ
)2

2v

]
+
Ub
σ

√
2πve

v
2σ2

∫ ∞
xc

dxx

vA
e−

x
σ

=
Ub
σ

√
2πv

xc − v
σ

e
(xc− v

σ
)2

2v +
Ub
v

√
2πv

(
1 +

σ

xc

)
e

(xc− v
σ

)2

2v , (E4)

or

2 =
Ub
σ

√
2πv

[
1

xc − v
σ

+
σ

v

(
1 +

σ

xc

)]
e

(xc− v
σ

)2

2v . (E5)
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2. Consistency condition for the velocity

In order to self-consistently solve for the velocity, we substitute our approximate expressions for the fixation proba-
bility Eq. (D10) and the fitness profile Eq. (A1) into the velocity consistency condition in the main text and evaluate
the s-integrals using Laplace’s method. This yields

v = NUb

∫ ∞
0

ds sρ(s)

∫ ∞
−∞

dxw(x)f(x− s)

=
NUb√

2πv

[∫ ∞
0

ds
( s
σ

)
e−

s
σ−

s2

2v

∫ xc

0

dxAe
s
v x +

∫ ∞
xc

dxxe−
x2

2v

∫ ∞
0

ds
( s
σ

)
e
x
v s−

s2

2v−
s
σ

]
=

NUb√
2πv

[
vA

σ

√
2πve

(xc− v
σ

)2

2v +

√
2πv

σ
e

v
2σ2

[
σe−

xc
σ

(
x2
c −

v

σ
(xc + σ) + 2xcσ + 2σ2

)]]
, (E6)

or

1 = NUb
x2
c

v

[
1− v

x2
c

+
2σ

xc
+

2σ2

x2
c

]
e−

xc
σ + v

2σ2 . (E7)

Together, Eq. (E7) and Eq. (E5) allow us to solve for v and xc.

APPENDIX F: GENERAL DISTRIBUTIONS

We now consider a broader class of distributions ρ(s) that result in a ρf (s) that is strongly peaked around a
characteristic effect size (exact technical conditions are defined below). This will tend to be the case for most
unimodal ρ(s) with exponentially bounded tails.

1. Location of the transition

In general, the s-integrals in Eq. (D14) involve an exponential factor whose argument is the function

g(s) = − s
2

2v
+
x

v
s+ log ρ(s) , (F1)

which has a maximum s∗ determined by

g′(s∗) = −s
∗

v
+
x∗

v
+
∂ log ρ(s∗)

∂s
= 0 , (F2)

and a characteristic width

∆ = |g′′(s∗)|−1/2 =

[
1

v
− ∂2 log ρ(s∗)

∂s2

]−1/2

. (F3)

If s∗ � ∆ and xcs
∗ � v, we can compute the s-integrals in Eq. (D14) using a Laplace approximation, which yields

2 = Ub

[√
2π∆2eg(s

∗)

s∗
+

∫ ∞
xc

dx

v

x

v

√
2π∆2e

x2c
2v−

x2

2v+g(s∗)

]
. (F4)

If xc−s∗√
v
� 1, we can exmploy the Laplace approximation again on the x-integral, and we obtain

2 =
Ub
√

2π∆2ρ(s∗)

s∗

[
1− s∗

xc

]−1

e
xcs

∗
v −

s∗2

2v . (F5)

This expression will apply for all distributions that satisfy the required conditions for the approximations:

s∗

∆
� 1 , (F6)

xcs
∗

v
� 1 , (F7)

xc − s∗√
v
� 1 , (F8)
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in addition to the assumption that xc �
√
v, which is required for Eq. (D10) to hold. In other words, the dominant

effect size must be greater than the typical width of ρf (s) as well as the typical width of the boundary layer δB.L. ∼
v/xc, while the optimal background fitness must be several standard deviations away from the mean of f(x).

For concreteness, we apply this analysis to the class of “exponential-like” distributions of the form

ρ(s) =
1

σΓ(1 + β−1)
e−( sσ )

β

, (F9)

with β ≥ 1. When β � 1, the characteristic effect size is given by the self-consistent solution

s∗ ≈
(
xcσ

β

βv

) 1
β−1

1− 1

1 + β(β − 1) v
σ2

(
xc
βv

) β−2
β−1

 ≈ (xcσββv

) 1
β−1

, (F10)

which requires that s∗ � xc. The characteristic width ∆ is therefore given by

∆ =

[
1

v
+
β(β − 1)

σ2

(
s∗

σ

)β−2
]−1/2

≈ σ√
β(β − 1)

(
xcσ
βv

) β−2
β−1

. (F11)

On the other hand, when β = 1, we have s∗ = xc − v/σ and the characteristic width is given by ∆ = v, so we recover
Eq. (E5) with a slight loss in accuracy.

2. Consistency condition for the velocity

We can obtain the second relation between v and xc in the same manner that we did for the exponential case, by
substituting our approximate expressions for w(x) and f(x) into the consistency condition in the main text. In this
case, however, we can take a short-cut (with the same accuracy as the Laplace approximations above) by noting that

v = NUb

∫ ∞
−∞

dxw(x)

∫ ∞
0

ds sρ(s)f(x− s) ≈ Ns∗√
2πv

∫ ∞
−∞

dxe−
x2

2vM ≈ 2Ns∗vxce
− x

2
c

2v

√
2πv

, (F12)

or

1 =
2Ns∗xc√

2πv
e−

x2c
2v . (F13)

Multiplying Eqs. (F13) and (F5), we obtain an expression more similar to its exponential analog in Eq. (E7):

1 =
NUb
√

2π∆2ρ(s∗)xc√
2πv

[
1− s∗

xc

]−1

e−
(xc−s∗)2

2v . (F14)

Together, Eqs. (F5) and (F14) allow us to solve for v and xc.

APPENDIX G: STATISTICS OF FIXED MUTATIONS

In the main text, we have seen how our expressions for w(x) and f(x) can be combined to determine the distribution
of fixed mutations, ρf (s). This procedure can be generalized to include other statistics of successful mutations.
In general, we can associate three quantities with every mutation: its fitness effect (s), the relative fitness of the
background in which it arose (xi), and the relative fitness of the mutant immediately after the mutation event (xf ).
Let p(xi, s, xf |fixed) denote the joint distribution of these quantities conditioned on successful fixation. Then from
Bayes’ theorem, we have

p(xi, s, xf |fixed) ∝ p(fixed|xi, s, xf )p(xi, s, xf ) (G1)

∝ w(xf )f(xi)ρ(s)δ(xf − xi − s) , (G2)
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which, in principle, allows us to calculate any derived statistic.
For instance, we can use this joint distribution to calculate the joint MLE – the most likely xi, s, and xf given

that the mutation fixed. Since the three quantities are connected by the δ-function, it is easiest to do this calculation
after integrating over xi and then substituting xi = xf − s at the end. We therefore try to maximize

p(s, xf |fixed) ∝ w(xf )f(xf − s)ρ(s) (G3)

∝

exp
(

log xf − (xf−s)2
2v + log ρ(s)

)
if xf > xc,

exp
(
x2
f

2v −
(xf−s)2

2v + log ρ(s)
)

if xf < xc.
(G4)

Since we already assumed that xc �
√
v, this function is maximized when xf = xc and s satisfies

− s

v
+
xc
v

+ ∂s log ρ(s) = 0 , (G5)

which is exactly the definition of s∗ from the main text. We therefore have for the joint MLEs:

x̂i = xc − s∗ , (G6)

ŝ = s∗ , (G7)

x̂f = xc . (G8)

APPENDIX H: SINGLE-s EQUIVALENCE

Previous work on adaptation in large asexual populations often assumes (either implicitly or explicitly) a type of
“equivalence principle,” in which the dynamics of adaptation under an arbitrary distribution ρ(s) can be mapped to
an equivalent model with a single, effective2 selection coefficient seff and mutation rate Ueff [11, 12]. This assumption
is motivated by the intuition that mutations with s < seff will tend to be lost to interference with stronger mutations,
while those with s > seff will typically be too rare to occur before a fitter multiple mutant establishes.

In addition to offering an intuitive picture of the effects of interference on the dynamics of adaptation, this idea
of single-s equivalence can have important consequences for experimental measurement and model building. If a
“strong” form of the equivalence principle holds, and all observable quantities are equivalent to an effective model
with the same effective parameters, it would severely limit our power to infer the underlying distribution ρ(s) by
measuring these quantities for a particular population size. On the other hand, a strong equivalence principle implies
that more complicated models (e.g. those including recombination, deleterious mutations, epistasis, etc.) could be
safely constructed from single-s theories without sacrificing realism, as long as we are careful to recognize that seff

and Ueff themselves depend on the population parameters (N,Ub, ρ(s)) in a potentially complicated way. This last
point is an important one, since it implies that even if single-s equivalence holds, the functional dependence of v on
N (or any other population parameter) is not the same as a “true” single-s model where seff is independent of N .
This difference in scaling is already an important difference from a true single-s theory, and may offer a means to
distinguish between different underlying distributions by measuring the rates of adaptation at different population
sizes.

It may also be the case that a much weaker form of the equivalence principle is true, in which each aspect of the
dynamics (e.g. steady-state rates of adaptation, transient effects, fluctuations, neutral diversity, etc.) is described by
a different effective model. In this case, the utility of the principle is reduced, since the equivalent model must be
established for each quantity of interest. Previous studies have almost exclusively focused on the concept of equivalence
for the steady-state rate of adaptation. We consider this case as well, and extend this weaker form of the equivalence
principle to include the dominant mutant fitness xc. (In our approximate framework, since w(x) depends on ρ(s) only
through v and xc, this weak equivalence extends to the entire function w(x) as well.) Further generalization of these
ideas for other quantities remains an important avenue for future work.

In order to establish a mapping to a model with a single selection coefficient, we must first introduce a theory of
single-s models in the multiple-mutation regime. Several examples already exist in the literature, but we will find it
most convenient to apply the approach outlined above to the case where

ρ(s) = δ(s− seff) , (H1)

2 We use the term effective parameter to denote a parameter that is itself a function of the underlying parameters (N,Ub, ρ(s))
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and Ub = Ueff . Under the usual assumptions that xc − seff �
√
v and xcseff/v � 1, Eq. (D14) reduces to

2 =
Ueff

seff

[
1− seff

xc

]−1

e
xcseff
v − s

2
eff
2v , (H2)

and the consistency condition for the velocity becomes

1 =
NUeffxc√

2πv

[
1− seff

xc

]−1

e−
(xc−seff )

2

2v . (H3)

By definition, v and xc must be the same in this equivalent model. Since our approximate expression for w(x) in
Eq. (D10) depends only on these two quantities, it will also be identical at leading order. We obtain the desired
mapping by comparing Eqs. (H2) and (H3) with their counterparts for the full ρ(s) in Eqs. (F5) and (F14) and
solving for seff and Ueff . We immediately see that this equivalence holds if and only if

seff = s∗ , Ueff = Ub
√

2π∆2ρ(s∗) . (H4)

Thus, the effective selection coefficient has an intuitive interpretation as the peak of ρf (s) (or rather, the joint MLE
identified in Appendix G) and the effective mutation rate is rescaled by the probability of observing a mutation of that
size under the original distribution. This novel prediction shows that our effective theory is more than a mathematical
nicety, but that it is related to the “relevant” effect sizes identified by ρf (s). Furthermore, we see that the form of
the single-s mapping to seff and Ueff is essentially the same for a wide class of ρ(s).

In the special case where s∗ ≈ xc, it can be instructive to consider an even simpler alternative mapping. This will
occur, for example, in the intermediate-NUb exponential regime where the typical mutational effect is on the order
of the width of the fitness profile. In this case, we can gain additional intuition about the dynamics of adaptation by
mapping to a selective-sweeps single-s theory in which only one driving mutation is typically competing at a given
time. Using the well-known formula

v = NUeffs
2
eff (H5)

for the rate of adaptation in this regime, we see that our equivalence holds if we take

(NU)eff =

[
N

v

xc − s∗
f(xc − s∗)

] [
Ub
√

2π∆2ρ(s∗)
]
. (H6)

Since the population size and mutation rate always enter together in the selective-sweeps regime, we can never entirely
decompose these two parameters, but we can understand Eq. (H6) more intuitively if we take Ueff to be same as in
Eq. (H4) and define an effective population size

Neff = N

(
v

xc − s∗

)
f(xc − s∗) , (H7)

where xc − s∗ is the most likely background fitness identified in Appendix G. Again, we find that our effective
parameter has an intuitive interpretation: in this case, the effective population size is scaled by the probability of a
given mutation arising on the most likely background fitness, as determined by the full dynamics.

The dramatic difference in the equivalent single-s model reflects a dramatic difference in the dynamics of fixation
in these two regimes. The typical mutations in the intermediate-NUb exponential regime are sufficiently large that
they often fix in the linear (Haldane) region of π(s), which implies that they are relatively free from interference
effects. In contrast, the typical mutations in the large-NUb exponential regime (and the β > 1 distributions above)
are much smaller compared to the width of f(x), so the background on which they arise plays a much larger role in
their ultimate chances of fixation.

The fact that an exponential ρ(s) maps to a selective sweeps model in certain regimes explains why the intuitive
calculation of Desai and Fisher [1] did not succeed in this case, since they exclusively looked for a mapping to the
multiple-mutations regime. In addition, it may explain why the original theories of clonal interference were much
more successful in predicting the rate of adaptation for exponential ρ(s), and why numerical “driving mutation”
approximations [13] were able to correct for the discrepancy in ρf (s).
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APPENDIX I: SIMULATIONS AND NUMERICAL METHODS

We validate several of our key approximations in the main text by comparing our theoretical predictions with
the results of foward-time, discrete-generation simulations similar to the standard Wright-Fisher model [14]. These
simulations begin with a clonal population of N individuals, and in each subsequent generation the population
undergoes a selection step followed by a mutation step. In the selection step, each lineage (i.e. unique genotype) is
assigned a new size from a Poisson distribution with mean

λi = C(1 + xi)ni , (I1)

where ni is the current size of the lineage, xi is its fitness relative to the population average, and C = N/
∑
i ni is

a normalization constant chosen to ensure that the total population size remains close to N . In the mutation step,
each individual mutates with probability Ub, in which case it founds a new lineage with a fitness increment randomly
drawn from ρ(s). This process is continued for a sufficiently long period of time that the population reaches the
steady-state mutation-selection balance introduced in the main text.

For the relatively large population sizes considered in this work, this simulation algorithm is virtually indistinguish-
able from standard Wright-Fisher dynamics. In particular, it shares the property that the variance in the number of
offspring differs from that of the continuous-time branching process by a factor of c = 2 [1]. Like the c = 1/2 factor
arising in the tunable constraint framework of Appendix C, we can account for this difference simply by making the
replacement N → cN in the theoretical expressions derived in the main text.

The numerical values for our theoretical predictions used in the figures are obtained by numerically solving the
system of transcendental equations for v and xc given in Appendix E and Appendix F for the exponential and β > 1
distributions. This can be done using standard iterative root-finding procedures such as the fsolve() function in
the SciPy Python library [15]. To ensure proper convergence, care must be taken to choose a suitable “guess” for
the root, which we take to be equal to our approximate solution for v in the main text (a similar expression can be
easily derived for xc). This generally leads to good convergence in the parameter regimes we tested, but extension
to additional parameter regimes may require more fine-tuning of the algorithm. A copy of our implementation in
Python is freely available upon request.
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