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The types of mathematical model which have been used to represent all-or-none behavior 
in the nerve membrane may be classified as follows: (1) the discontinuous threshold phenomenon, 
in which differential equations with discontinuous functions provide both a discontinuity of 
response as a function of stimulus intensity at  threshold and a finite maximum latency, (2) the 
singular-point threshold phenomenon which exists in a phase space having analytic functions in 
its differential equations and having a singular point with one characteristic root positive and 
the rest with negative real parts, the latency being unbounded, and (3) the quasi threshold 
phenomenon, which has a finite maximum latency and continuous functions, but neither a true 
discontinuity in response nor an exact threshold. Several models of the nerve membrane in the 
literature are classified accordingly, and the applicability of the different types of threshold 
phenomena to the membrane is discussed, including an extension to a stochastic model. 

INTRODUCTION 

The presence of a threshold phenomenon in a biological system im- 
poses restrictions on the types of mathematical model suitable to describe 
that system. This paper is concerned mainly with threshold phenomena in 
the nerve fiber membrane and was inspired to a great extent by the 
mathematical models proposed by  G. Karreman (1951) and A. L. Hodgkin 
and A. F. Huxley (1952). A mathematical classification of threshold phe- 
nomena will be given and then used to classify several models of the nerve 
membrane and of the iron wire model of nerve which have been proposed 
by various authors. 

Figure la shows a typical picture of the changes of potential (V) across 
the membrane of a single giant nerve fiber of the squid, recorded between 
an external electrode and an axial internal electrode (Hodgkin, Huxley, 
and Katz, 1952). Brief current shocks of different intensities (z) were ap- 
plied ending at time t = 0. During the interval t _> 0 a uniform zero cur- 
rent flow across the membrane was maintained by the external circuit. 
The form of each curve depends on the initial state of the membrane at 
t = 0. This initial state varies continuously with z, and the curves of Fig- 
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ure la may therefore be described formally by an equation of the follow- 
ing form: 

V = F  (z; t), (1) 

in which z appears as a parameter. As the stimulus z is increased beyond 
a threshold value z0, shape of the curve changes suddenly. As an extrapo- 
lation from the experimental data, one assumes that if the curves corre- 
sponding to all values of z (within some finite interval Z) were plotted, 
the shapes of the curves would change discontinuously as z passed the 
value z0. In terms of the all-or-none law of physiology, these curves are 
divided into two distinct classes, the "all" and the "none" curves. Within 
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FI~VR~ 1. a. Membrane  action potent ia ls  from squid g ian t  axon, showing the effect of 
smal l  differences in s t imulus  s t rength  z near  i ts  threshold value z o. z > z o for the upper  three 
" A L L "  curves;  ~ < z 0 for the lower two " N O N E "  curves.  Following a brief shock at  zero 
t ime,  a zero membrane  current  is ma in ta ined  by the external  circuit.  (Redrawn from I-Iodgkin, 
Huxley,  and Katz ,  1952). b. Curves of potent ia l  measured a t  two fixed times, zero and tl, 
plot ted against  ~, from the curves in a. 

each class, the shapes of the curves vary continuously with z, but  there are 
no intermediates between the members of the two classes. Because of ran- 
dom variations in latency, it is impossible to determine from any finite 
number of experiments whether the latency of a nerve fiber, as the stimu- 
lus intensity approaches threshold from above, is bounded or unbounded. 
If the maximum latency of the response is assumed finite (Pecher, 1939), 
there will be some time tl such that if the ordinate F(tl; z) is plotted against 
z (Fig. lb, curve "t = tl"), there is a discontinuity at some value ~0 of z. 
This discontinuous curve may be considered as showing the relation be- 
tween stimulus (abscissa) and response (ordinate). However, if the initial 
state F(z; 0) is plotted against z (Fig. lb, broken line), no discontinuity 
appears. The threshold phenomenon thus involves a "parting of the 
ways," at some time between zero and t~, between the courses of behavior 
of the membrane for z < ~0 and those for z > z0, at least as reflected in the 
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potential V. This property should be present in any mathematical model 
of the membrane. 

The properties sought belong, strictly speaking, not to the membrane 
by itself, but to the total system consisting of the membrane together with 
that part of its environment which imposes an external electrical con- 
straint upon it, which here consists of the electronic apparatus connected 
to the electrodes. The importance of the environment in helping to deter- 
mine threshold behavior is shown by the fact that such behavior is present 
when the membrane is stimulated by a short current pulse or a step change 
in current, but  absent when a step change in potential is applied (Cole, 
1949; Hodgkin, Huxley, and Katz, 1949). The threshold phenomena to be 
considered here include only those in which the stimulus is over at time 
t = 0, and the external constraint is always the same during the response 
(t > 0). The case of stimulation of nerve by step currents of different 
strengths will therefore be excluded. 

DEFINITIONS 

Let us assume that the state of the total system at any time may be 
described by a finite number of variables of state x~ (n = 1, 2, . . . , N),  
and that the behavior of the system can be defined by  a set of differential 
equations of the form 

dxn 
dt - f"  (x l ,  x ,  . . . . .  x , )  (2) 

or, in vector notation, 
dx 
dt - y ( x ) ,  (3) 

where the vectors are printed in boldface type. The variables x~ may be 
considered as the coordinates of a vector space or phase space of N di- 
mensions, each point of which corresponds to a single state of the system 
(1Vfinorsky, 1947; Lefschetz, 1948). The state of the system is represented 
at any time by  a state po in t ,  which moves along a trajectory in phase space 
defined by a solution x(x~ t) of equation (3), where x ~ is the initial point 
for t = 0. During the stimulus the electrical constraint and therefore the 
trajectories of the phase space are not the same as for t > 0. The point 
reached at t = 0 by the state point as a result of the stimulus is x ~ and is 
some function x~ of z. The initial point is thus under the control of the 
experimenter, who can vary the parameter z at will, before each stimulus 
is delivered. 

All or only some of the x~ may be measured experimentally. The mem- 
brane potential V, which is usually measured, may in general be assumed 
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to be some continuous function of the x~. Several authors  simply take the 
mem}~rane potential  as one of the x~. In  the following discussion, defini- 
tions of three different types of threshold phenomena will be formulated in 
terms of the properties of trajectories in phase space, and not  just  in 
terms of the behavior of V as a function of time. However ,  it will always 
be assumed tha t  V is so defined as a function of the x ,  t ha t  the continuities 
or discontinuities of shape between neighboring trajectories are not  lost 
when they are converted to curves of V plot ted against t. 

The  following definition is an a t t emp t  to describe a threshold phenome- 
non mathematical ly.  Figure 2 illustrates this definition for a phase plane 

z"z'YYT, 
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Flam~E 2. Diagram of a discontinuous threshold phenomenon in a phase plane. Broken 
line labeled "t = 0" in this and subsequent figures is the locus of initial points resulting when 
the stimulus intensity z is varied, z = ~0 at the point indicated. The two broken lines labeled 
"t = h" are loci of state points for time h and correspond to "ALL" and "NONE" responses. 

(-IV = 2). The  trajectories in the upper  right-hand region of Figure 2 
could be filled in, in various ways, or simply left undefined. 

Definition i .  
If  x~ is continuous in z over some interval  Z, except possibly for a step 
discontinuity a t  z = z0, and if, for some time tl > 0, x(x~ tl) is con- 
t inuous in z except for a step discontinuity at z = zo, then a discontinu- 
ous threshold phenomenon (DTP)  will be said to exist in the phase space. 

This definition is designed to describe a threshold phenomenon with a 
bounded latency (h). The  discontinuity in the state of the system at  t ime 
h, as a function of z, is provided either (1) simply by  a discontinuity in 
the initial condition at  z = z0, with no special conditions on .f(x), or 
(2) with the initial condition continuous in z, in which case limitations 
must  be imposed on f (x ) .  One may  wish both x~ of Definition I and 
f (x )  of (3) to have as components  some of the elementary,  differentiable 
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functions of calculus. The justifications for such a choice seem to be that 
(1) physical and chemical processes involving many molecules are usually 
described by such functions, (2) the results of several experiments always 
differ so much that there is a limit to the preciseness to which the func- 
tions should be specified, and therefore the simplest ones should be chosen, 
and (3) to explain a discontinuous process by using discontinuous func- 
tions is to use an ad hoc assumption and dodge the issue. But by the 
Cauchy-Lipschitz theorem for the existence of the solutions of differen- 
tial equations (Lefschetz, 1948) one can show that if f(x) is differentiable, 
with all partial derivatives uniformly bounded in a certain region, the 
solution x(x~ t) is continuous in (x~ t) for all t. Then if x~ is also con- 
tinuous in z, a D T P  is impossible. Nevertheless, several authors have 
successfully used D T P ' s  with discontinuous functions, as will be dis- 
cussed below. 

I t  should be mentioned that in order to have a D T P  with x~ continu- 
ous it is not necessary that I(x) be discontinuous, but  only that it fail to 
satisfy a Lipschitz condition at some point. For example, a D T P  appears 
in the following system:* 

dx 
- -  x i / ~  

dt 

d y _ yil~ 
dt 

If one wishes to use differentiable functions, it is necessary to set up a 
new definition of threshold phenomenon. One way to revise Definition I 
is to sacrifice the existence of a maximum latency, or finite tl. A point 
of a phase space at which all dx~/dt = 0 is a degenerate trajectory and is 
called a singular point. Figure 3 shows a phase plane with a saddle point 
(one type of singular point) at the origin of coordinates arising from equa- 
tions of the following form: 

dx~ l dt - -  PiiXi q-Pi2x2q- ql (Xl, X2) , 

dx2 ( (4) 
dt - P21xl + p~2x2 + q2 (xl, x2) . fl 

In this case the p's are constants, and the characteristic equation 

Pn-- X Pi2 ] = 0 

P21 P22-  k 1 
(5) 

* Suggested by Dr. F. H. Clauser. 
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in k has one positive and one negative root, and ql and q2 are power series 
in xl and x2, beginning with terms of degree two or greater. If x~ is a 
continuous function of z and describes a line segment such as that labelled 
"t = 0" in Figure 3 as z is varied over the interval Z, the trajectory hav- 
ing x~ as its initial point changes its shape discontinuously at a trajec- 
tory called the separatrix, for which z has the value zo. This discontinuity 
is of a different kind from that of Definition I. In fact, according to the 
Cauchy-Lipschitz Theorem, x(x~ ; tl) is continuous in z for every fixed tl, 
and as z is varied, x(x~ tl) travels continuously along a line such as that  
labelled "t = 6" in Figure 3. Let us arbitrarily define the latency as the 
time required for x to go from its initial point along an "all" trajectory to 
some line such as that labelled "criterion of excitation" in Figure 3. For a 

~ ~ \ \  ~ - c r i t e r i o n  of 
~'~ ~ excitation 

/11(/ 
t=t, 

F I o u ~  3. Diagram of an S T P  in a phase plane. S.P. is a saddle point. Typical trajectories 
of the " A L L "  and " N O N E "  classes are labeled. See text. 

model of the nerve membrane, for example, this line might correspond to 
the condition that V be halfway between the resting potential and the 
peak value of an action potential. There is now no maximum latency. 
The nearer z approaches z0, the longer the state point subsequently re- 
mains in the neighborhood of the saddle point, where the phase velocity 
vector dx/dt is very small. The latency can in this way be made arbitrarily 
large. This property of the saddle point may be shown by  plotting latency 
against z. In Figure 4, typical curves of this kind are diagrammed for a 
D T P  and a saddle-point threshold phenomenon (STY) .  If the latter curve 
were to diverge from the experimental curve (broken line) only for z very 
near z0, such a model could be accepted as a good approximate represen- 
tation of the nerve membrane. Both the S T P  and the real nerve fiber 
may then show increases of latency near threshold which are similar ex- 
cept that the latency of the S T P  approaches infinity, as z approaches zo, 
while that of the real fiber remains finite. 
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The trajectories in the neighborhood of the saddle point in Figure 3 fall 
into three classes according to their behavior: (1) two trajectories are 
stable, approaching the saddle point as time increases; (2) two others are 
unstable, approaching it as time decreases; and (3) all the rest are hyper- 
bolic, first approaching and then leaving the saddle point as time increases. 
Furthermore, the hyperbolic trajectories can be divided into four sub- 
classes according to the directions along which they approach and leave 
the saddle point. If two trajectories are chosen from any two of these 
different classes or subclasses, it is impossible to deform one into the other 
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FIGURE 4. Diagram of latency as a function of stimulus intensity for a DTP and an STP.  See 
text. 

by passing through a continuum of intermediate trajectories. I t  is this 
topological property which is responsible for the threshold characteristics 
of the saddle point. As z is varied through Z and the initial point x~ 
moves along the line "t = 0," it passes discontinuously from one subclass 
of hyperbolic trajectories to another subclass which behaves in a qualita- 
tively different manner for increasing t. Both of these subclasses occupy 
contiguous 2-dimensional regions of the phase plane and are separated by 
a single stable trajectory, the separatrix. 

The saddle-point threshold phenomenon may be generalized to a phase 
space of any finite number of dimensions. The following definition is ap- 
plicable to systems with functions/(x) which are analytic at a singular 
point, i.e., can be expanded in a Taylor series about that point. For some- 
what more general conditions, see I. Petrowsky (1934). 
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Definition II .  
A singular-point threshold phenomenon (STP) will be said to exist in an 
N-dimensional phase space (N >_ 1) if there exists an isolated singular 
point having one characteristic root positive and all of the others (if 
any) with negative real parts, and if x~ is a continuous function 
which intersects and is not tangent to the (N - 1)-dimensional sur- 
face (the separatrix) composed of stable trajectories, for z = z0. 

In two dimensions, the condition on the characteristic roots defines a 
saddle point. In three dimensions the properties of the singular point can 
be visualized if we let the trajectories be described by the solutions 

x~= a~e xn~ (n = 1, 2, 3) (6) 

of the differential equations 

dxn 
- X ~ x ~ .  ( 7 )  

dt 

The a~'s are constants of integration and are the coordinates of the initial 
point. The origin of coordinates is a singular point. 

If Xl < X2 < 0 < X3, then the plane x3 = 0 (the separatrix) contains 
the stable solutions and divides the space locally into two regions in both 
of which the trajectories are hyperbolic, but in which their behavior for 
increasing t is qualitatively different. Those trajectories for which a3 < 0 
approach the negative xs-axis pointing toward minus infinity on that axis 
and may be taken to represent the "none" response. Those trajectories 
for which aa > 0 approach the positive xa-axis and point toward plus in- 
finity ("all" response). The separatrix separates the "all" from the 
"none" trajectories. However, if Xl < 0 < X2 < X3, the hyperbolic tra- 
jectories fall into two subclasses which do not differ qualitatively in their 
behavior for increasing t, but approach the plane xl = 0, pointing in all 
possible directions in that plane. In the latter case, therefore, there is no 
threshold phenomenon. 

In general, for an STP to exist in any N-dimensional phase space, the 
singular point must have the property that an (N -- 1)-dimensional sur- 
face consisting of stable trajectories (the separatrix) forms a local bound- 
ary between two N-dimensional regions both of which consist of hyper- 
bolic trajectories which for large enough t leave the singular point in two 
opposite directions. If all the characteristic roots have non-zero real parts, 
then the above conditions are fulfilled if, and only if, the roots are as spec- 
ified in Definition II (Petrowsky, 1934; Lefschetz, 1948). Cases in which 
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some of the roots have zero real parts are more complicated and have to 
be examined separately. 

A second way to revise Definition I is to keep the existence of a maxi- 
mum latency, but  sacrifice the discontinuity between the "all" and the 
"none" trajectories. Figure 5a shows an example in a phase plane. For all 
t~, x(x~ tl) is continuous in z, but  for some values of tl it varies very 
rapidly when z is near z0. Figure 5b shows how V = F(t~; ~) might appear 

t l 
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FIG Ut~E 5. a. Diagram of a QTP in a phase plane. The shape of the trajectory changes con- 
tinuously as z is varied. The two-dimensional separatrix is cross-hatched, b. Curve analogous 
to that of Figure lb, but plotted for the case of Figure 5a. 

as plotted against z. The discontinuous curve of Figure lb has been re- 
placed by a continuous curve with a very rapid rise near z = so. We may 
describe these properties mathematically as follows: 

Definition III.  
If x~ is continuous in z over some interval Z, and if there exist a posi- 
tive time tl and two values zl and z2 of z such that the ratio 

I x Ix  ~ (z~)  ; ill  - x Ix  0 ( z l )  ; td I 
I z 2 -  z~ I 

is sufficiently large, then a quasi threshold phenomenon (QTP) will be 
said to exist in the phase space. 

This definition is necessarily inexact, since the phrase "sufficiently 
large" is subject to arbitrary interpretation. A QTP may therefore grade 
insensibly into what is for all practical purposes not a threshold phenome- 
non at all. However, QTP's have been used by several authors, and a cri- 
terion for judging a QTP, based on statistical considerations, is discussed 
below. 

For the sake of comparison, one may say that the (N -- 1)-dlmensional 
separatrix of the STP has been replaced in the QTP by a "thin" N-di- 
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mensional neighborhood of an (N -- 1)-dimensional surface, as indicated 
by the cross-hatched region in Figure 5a. The thickness of this neighbor- 
hood, i.e., the magnitude of its smallest dimension, determines the sharp- 
ness of the QT_P. The single threshold value zo of stimulus may be con- 
sidered as replaced by the closed interval [zl, z2]. 

The three types of threshold phenomenon mentioned above do not ex- 
haust the possibilities. One can also set up a threshold phenomenon with 
some of the properties of the saddle-point type by using a line or surface 
consisting of singular points instead of an isolated one. Also, a limit cycle 
(periodic closed trajectory), to which some trajectories are stable and 
others unstable, can be substituted for the saddle point. In this case again 
hyperbolic trajectories can be found with any specified latency, no matter  
how large, most of which may be spent with the state point oscillating in 
the neighborhood of the limit cycle. 

EXAMPLES 

Some of the models of excitable surfaces which have been proposed by 
various authors can now be classified according to the type of threshold 
phenomenon present. First, however, it will be necessary to define more 
precisely the conditions of environmental constraint to be imposed on the 
systems under discussion. As mentioned above, an excitable system is not 
isolated from its environment, but linked to it by one or more variables, 
which for a nerve fiber membrane are membrane potential difference and 
membrane current density. Moreover, the potential difference and current 
density in general are not constant everywhere on the membrane, but vary 
from point to point. A nerve membrane may be considered as being made 
up of a large number of elementary areas of molecular dimensions. Over each 
such area the current density and potential difference may be considered 
to have single values, but in different areas they may have different values 
at the same time. If a region in the neighborhood of a stimulating electrode 
were to be described mathematically, it would be necessary to have a 
complete set of variables of state for each elementary area, and the corre- 
sponding phase space would have too many dimensions for convenient 
treatment. Fortunately, the presence of threshold behavior in a membrane 
does not appear to depend necessarily on the interaction of different ele- 
mentary areas, as does the conduction of a nerve impulse. Both the giant 
axon of the squid (Cole, 1949; NIarmont, 1949; Hodgkin, Huxley, and 
Katz, 1949) and the iron wire model of nerve (Bonhoeffer, 1941, 1948) 
have been stimulated to produce an all-or-none response uniform over the 
surface--named by A. L. Hodgkin and A. F. Huxley (1952) the "mere- 
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brane action potential"--during which the membrane current is held 
uniformly at zero, following an initial current pulse as stimulus. 

1. Discontinuous Threshold Phenomena 

The models of nerve of N. Rashevsky (1933, 1948) and A. V. Hill (1936) 
are incomplete in the sense that they describe the behavior of the system 
only up until the time that a certain variable of state reaches a threshold 
value. If the subsequent events were to be described by an extended 
model, of the type considered in this paper, either the differential equa- 
tions in these models would have to be changed in order to describe the 
behavior of the system during the response, or new variables of state 
would have to be introduced for this purpose. In either case, since there 
is in these models a maximum time tm after stimulation at which time the 
threshold value can be reached, if it is to be reached at all, there is some 
time tl (> tin) for which Definition I would apply. 

W. A. H. Rushton's (1938) model of nerve contains in the equivalent 
circuit of the membrane an e.m.f, which disappears when V reaches a 
certain value during the stimulating shock. This makes x~ discontinu- 
ous at z, and there is a DTP. 

In the model of F. Offner, A. Weinberg, and G. Young (1940), when 
the membrane potential V reaches a critical value Vc, a resistance in the 
equivalent circuit of the membrane decreases discontinuously from its 
resting value to its excited value. This is a D T P  with N = 1; x is V, 
x~ is continuous, but  f(x) is discontinuous at V = Vc. 

2. Singular-point Threshold Phenomena 

G. Karreman and H. D. Landahl have described several models of an 
excitable membrane. In the simplest (Karreman, 1951; Karreman and 
Landahl, 1952), N = 1, and the phase space is a line on which there are 
three singular points. The first in succession is stable and corresponds to 
the resting state. The second is unstable and is the site of an STP.  The 
third corresponds to a stable excited state; no provision is made for re- 
covery from excitation in this model. As the stimulus z (applied negative 
potential difference) is increased beyond its threshold value, x~ passes 
the unstable singular point. Thereafter the state point passes to the excited 
state. 

In a more complicated model, N = 2, and the system can be repre- 
sented on a phase plane with coordinates x 'and y (Karreman and Lan- 
dahl, 1952, 1953). This model shows different mathematical properties 
according to the value of the parameter r, which depends on various physi- 
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cal properties of the membrane. The singular points, at which dx/dt = 
dy/dt = O, are the points of intersection between two curves called 
isoclines: the vertical isocline is the curve on which dx/dt = 0; the hori- 
zontal isocline, that on which dy/dt = 0. The isoclines are shown in all 
figures with short straight arrows crossing them in a direction which is 
the same as that of the trajectories crossing them. When r = 183, there 
are three singular points (Fig. 6). Singular point A corresponds to the 

\ 

horizontol isoc?ine - ~  J ' ~  

FmlIRE 6. STP in Karreman and Landahl 's  membrane model when the parameter r = 183. 
(Modified from Karreman and Landah], 1952, 1953). A is the stable resting state, B a saddle 
p~int, and C an unstable singular point. "sep." indicates the separatrix. Typical "ALL" and 
" N O N E "  trajectories are shown, the former only at its beginning and end; the omittcd 
central part  circles around C. 

stable resting state. Point B is a saddle point at which there is an STP, 
and C is unstable. When r has larger values, the threshold phenomenon 
changes to a QTP, as described below. 

Recently M. J. Polissar (in Johnson, Eyring, and Polissar, 1954) has 
presented a mathematical model of the nerve or muscle membrane in 
which N = 2. The variables of state of the system are in his notation E, 
the membrane potential, and the P.D.M., or "potential demand of the 
membrane." The model is based on a phenomenological picture of the 
membrane in which "it is assumed that the change in the transmembrane 
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potential E is the chief factor determining the change in the structure of 
the membrane . . . .  A given transmembrane potential demands a par- 
ticular state of the membrane. In turn, each instantaneous state of the 
membrane demands a particular value for the transmembrane potential." 
This situation is then described more specifically as the tendency of E 
and the D.P.M. to vary in certain directions which depend on the values 
of both of them. Polissar represents the state of the system at any mo- 
ment by the position of two "conjugate points" in a plane having E and 
the P.D.M. as coordinates (but not a phase plane). Each of these points 
is constrained to move only along a corresponding curve in the plane. The 
position of one point on its curve is determined by the value of E; that of 
the other by the value of the P.D.M. But if we replace these two points 
by a single state point which can range over a phase plane with coordinates 
E and P.D.M., the resulting representation is mathematically equivalent 
to Polissar's, and allows one to visualize the over-all behavior of the sys- 
tem more easily than does his. The phase plane representation will there- 
fore be used in the following discussion. 

Polissar does not explicitly state differential equations corresponding 
to (2), but  gives qualitative rules for the behavior of E and the P.D.M. 
under the condition of zero membrane current. These rules determine the 
qualitative properties of the trajectories. In Figure 7, the vertical isocline 
is defined by the condition dE~dr = 0, and the horizontal isocline by 
[d(P.D.M.)]/dt = 0. These isoclines happen to be the same lines as those 
along which the two conjugate points move in Polissar's original represen- 
tation. The two isoclines intersect at three singular points A, B, and C. In 
the region above the vertical isocline dE~dr is positive and is negative 
below it. Above the horizontal isocline [d(P.D.M.)]/dt is negative and 
positive below it. The trajectories which have been sketched in Figure 7 
show that A and C are stable singular points, and B is a saddle point, at 
which there is an STP. Point A corresponds to the resting state. 

Polissar takes our z to be the duration of a stimulating current pulse of 
constant intensity, which we may take as ending at zero time. If z < z0, 
the initial point will be at a point such as D and will return to A along a 
trajectory such as that labelled "NONE."  If z > zo, the state point will 
move along a trajectory such as that marked "ALL," going from E to C. 
Point C represents a state of excitation which is stable--this model does 
not describe the process of recovery. However, with the phase plane repre- 
sentation it would be possible to modify this model to show recovery by  
changing C to an unstable singular point, as in Karreman and Landahl's 
two-dimensional model mentioned above. 
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3. Quasi Threshold Phenomena 

K. F. Bonhoeffer (1948) described the behavior of the iron wire model 
of the nerve fiber qualitatively in a phase plane (N = 2). The coordinates 
x and y are two quantities of which the physical nature is not completely 
specified; x is the "degree of activation" and y is the "refractoriness" of 
the wire. Bonhoeffer did not state his differential equations explicitly, but 

I vertical isocline --,~J 
separotrix~ / ' 

/ / / ~ / / / " ' -  h Or iz o. n t a I 

\ / / / '  

Fiaum~ 7. STP in Polissar's membrane model. (Modified from Johnson, Eyring, and Polis- 
sar, 1954.) See text. 

f 

f 

X 

FzOuR~ 8. QTP in Bonhoeffer's model of the iron wire model of nerve. (Redrawn from Bon- 
hoeffer, 1948.) See text. 
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represented the isoclines and a few of the trajectories graphically. Figure 8 
shows no singular point in the region of divergence of the "all" from the 
"none" trajectories for this model. Since the trajectories and isoclines are 
drawn as smooth lines, all functions were presumably intended to be dif- 
ferentiable, and this model may be classified as a QTP. 

In the model (N = 2) of Karreman and Landahl (1952, 1953) discussed 
above, a QTP is obtained when the parameter r has a value of 190 or 
greater. The horizontal isocline moves to the right as r is increased, points 

I 

~;~l ~ I t=O 
vertical isocline .,-J " , ~  I 

' 4 -  
horizonta isocl ine~ 

ALL 
(end) '~ 

\ 
FIGVRE 9. QTP appearing in Karreman and Landahl's model when r = 200. (Redrawn 

from Karreman and Landahl, 1953.) 

B and C approach each other, coalesce, and disappear leaving A as the 
only singular point (Fig. 9). 

Hodgkin and Huxley's (1952) model of the squid giant axon membrane 
is the most complex yet proposed. I t  has five variables of state: the mem- 
brane current density I,  themembrane  potential V, and three variables 
n, m, and h, which determine the potassium and sodium conductances. 
The equations describing the behavior of these variables are of the fol- 
lowing form: 

d V (n, m, h, V) (8) I = CM - ~ -  --]- F1 

dn 
dt -F2 (n, V), (9) 
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dm 
dt -F3 (m, V) ,  (10) 

dh 
dt -F4 (h, V), (11) 

where Cu is the membrane capacitance per unit area of membrane and 
the F's are analytic functions. In the case of the membrane action poten- 
tial, the condition of external electrical constraint during t _> 0 is/" = 0, 
the variables of state are reduced to V, n, m, and h. Equation (8) then 
becomes 

dV 1 
- F l ( n ,  m ,  h , V ) .  (12) 

dt CM 

Equations (9) through (12) represent the equations (2) for this model, 
and N = 4. The singular points in this four-dimensional phase space can 
be determined from (9)-(12) by setting 

dV dn dm dh 
dt dt dt dt 

- 0 .  (13) 

There is a line in the five-dimensional space (with coordinates I, V, n, m, 
h) defined by the four equations which result when (13) is substituted into 
(8)-(11). This line is the locus of all possible singular points that can 
arise in the five-space as a result of applying any arbitrary external 
electrical constraint to I and V. For the membrane action potential, there 
will be as many singular points as there are intersections of this locus with 
the hyperplane I = 0. These may be found by studying the projections 
of the locus and of the hyperplane on the I -V  plane. The projection of 
the hyperplane is simply the line f = 0. The projection of the locus is 
described by the following equation, 

I = F~ (no~, m~o, h,o, V), (14) 

which is obtained by substituting (13) into (8). Here n~o, m~, and ha are 
the values assumed by n, m, and h when (13) is substituted into (9)-(11); 
they are analytic functions of V only. The right-hand side of (14) is equal 
to the sum of the steady-state potassium, sodium, and "leakage" currents 
(IK,/x~, and fl). These currents are plotted as functions of V in Figure 10. 
The curve labelled " I"  is the projected locus of singular points in the I -V 
plane, and intersects the horizontal axis only once, at the origin. This in- 
tersection determines the only singular point, which corresponds to the 
stable resting state. Since there is no saddle point, there is no STP.  Since 
all functions are analytic and therefore satisfy the conditions of the Cau- 
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chy-Lipschitz theorem, there is no DTP, and a QTP is indicated. If a 
Q TP exists here, it should be possible to find a value of stimulus which 
would produce a response intermediate between "all" and "none" for this 
model. K. S. Cole (1954; Cole et al., 1955), however, found a value for the 
threshold stimulus (intensity of a 0.01 msec shock) in this case accurate to 
one part in sixty thousand, with no intermediate responses. By studying 
the projections of trajectories in the four-dimensional phase space onto a 
plane with coordinates V and dV/dt, he concluded that there are two non- 
stable singular points, in addition to the stable singular point mentioned 
above. Certain of these projected trajectories do behave in such a way as 
to suggest the presence of a saddle point, but  since the method just de- 
scribed indicates the existence of only one singular point (at least as de- 
fined in the present paper), the stable one, it would appear that the com- 
plete phase velocity vector in the four-dimensional phase space, although 
it may become very small in a certain region, does not vanish completely. 
In such a case, it might be possible to interpret a QTP as a lower-dimen- 
sional "moving saddle point," in a way similar to A. J. Lotka's (1925) in- 
terpretation of a quasi-equilibrium state governed by  one slowly changing 
variable as a "moving equilibrium," but  this idea will not be pursued 
further here. 

Since the experimentally produced membrane action potential obeys 
the all-or-none law, it might be thought that a QTP would be unsuitable 
for a model of the membrane. Whether or not this is so will depend con- 
siderably on the magnitude of certain statistical variations inherent in 
the assumed physical nature of the Hodgkin-Huxley model, although they 
do not appear explicitly in their differential equations. The mathematical 
formulation of the model could be extended to include these statistical 
variations in the values of the variables of state by  assuming that the 
state point travels through phase space with a "Brownian motion" super- 
imposed on an average drift velocity given by the phase velocity vector. 
In most of the phase space, this random motion would be so small com- 
pared to that resulting from the phase velocity vector that the former 
would be negligible in determining the behavior of the system. In the 
neighborhood of the separatrix of a threshold phenomenon, however, the 
random motion might be so large as to decide whether a state point tends 
to follow the "all" or the "none" set of trajectories. In a statistical en- 
semble of systems originally in the resting state, all of which are given 
identical stimulus shocks of the same near-threshold intensity, a certain 
proportion of them may give an action potential and the remainder may 
not. A similar result has been found experimentally; a nerve fiber may re- 
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spond to some, but not all of a succession of stimuli, and this is due to 
variability in the behavior of the fiber rather than in the strength of the 
stimulus (Blair and Erlanger, 1933). 

Random motion of the state point in phase space could produce this 
result in any of the three types of threshold phenomenon described earlier. 
It assumes particular importance for the QTP, however, since it provides 
a criterion for judging whether a QTP is sufficiently sharp to portray ade- 
quately an all-or-none process. If the random motion during and following 
the stimulus is of an order of magnitude equal to or greater than the 
thickness of the "thin" N-dimensional separatrix (mentioned earlier), the 
QTP may be considered satisfactory, since the state point will then very 
seldom stay within the separatrix long enough to be carried to a region of 
phase space corresponding to a response intermediate between "all" and 
"none." Cole's (unpublished) calculations give the figures -- 6.373043 and 
--6.372943 mV for the values of V immediately following brief stimulat- 
ing pulses which are slightly "suprathreshold" and "subthreshold" re- 
spectively. The difference between these two values is 0.100/zV, which 
may be taken as the difference in stimulus intensities which appears in the 
denominator of the fraction appearing in Definition III.  Time tl can be 
taken to be 7.9 msec, the time of the peak of the action potential following 
a just suprathreshold stimulus. Then the difference between the values 
of V for the "all" and "none" responses, measu.:ed at time tl, is 98 inV. 
Therefore the ratio in Definition I I I  will have 9.8 X 105 as a lower limit. 
If it can be shown that fluctuations in V of the order of magnitude of 
0.100 ~V can often be expected by chance, then the Q TP of the Hodgkin- 
Huxley model is suiS.ciently sharp for its purpose. 

Fluctuations might be expected in any of the variables n, m, h, and V, 
but only those in V resulting from a random e.m.f., similar to that which 
appears across all electrical conductors (Johnson, 1928), will be consid- 
ered. These fluctuations are of the same nature as those considered at the 
end-plate of muscle by P. Fat t  and B. Katz (1952). The properties of this 
"noise e.m.f." are independent of the physical nature of the conductor 
and depend only on the value of the resistance and the temperature. The 
mean square noise e.m.f, across any linear, passive impedance in the fre- 
quency range df is given by the formula 

(E 2) id f = 4RjkTd f , (15) 

where Rf is the real part of the impedance for frequency f, k is Boltzmann's 
constant, and T is the absolute temperature (Nyquist, 1928). Hodgkin 
and Huxley's equivalent circuit for a unit area of the membrane is a capac- 
itance Cu in parallel with three branches, each consisting of an e.m.f, and 
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a resistor in series. If g denotes the total D.C. conductance of this circuit 
for the resting state, then 

g (16) RI - g~ + 47r2 f f C  ~ �9 

The total root-mean-square noise e.m.f, over the entire frequency range 
from zero to infinity of a section of membrane of area A in cm ~ at 6.3 ~ C 
and for CM = 1.0/zF/cm * is 

(fo~ kT "~ 1/2 0.062t~V k , ~  A /  = ---x/~k (17) 

The experiments on which Hodgkin and Huxley based their model were 
done using an area of approximately 0.110 cm ~ (Hodgkin, Huxley, and 
Katz, 1952), which gives a root-mean-square noise e.m.f, of 0.19 t~V, when 
substituted into (17). This value includes noise of all frequencies, but noise 
of too low and too high frequencies may be ineffective in causing random 
transitions between "all" and "none" trajectories. Since the latency of 
the Hodgkin-Huxley model just at .threshold is about 6 msec (Cole et al., 
1955), the most effective frequency range may be estimated as between 10 
and 1000 cycles/sec. Integration of (15) between these limits , assuming 
g -- 0.639 mmho/cm 2, gives a root-mean-square noise e.m.f, of 0.17/zV in 
the resting state, iVs noise in the physical model resulting from 
sources other than the conducting ions would increase this figure. Since the 
figure of 0.17 I~V is of the same order of magnitude as the value of 0.100 
~V calculated by Cole for the difference in V between an "all" and a 
"none" trajectory, the QTP of the Hodgkin-Huxley model is sufficiently 
sharp for its purpose. 

This discussion has shown that any intermediates between "all" and 
"none" behavior in the Hodgkin-Huxley model will appear only when the 
accuracy of specifying the initial conditions is increased beyond the limits 
of uncertainty which appear when the physical interpretation of the model 
is considered. 1V~oreover, the possibility remains that just at the threshold 
of excitation the assumption that [ = 0 at each point of the membrane 
fails in the experimental situation. If a slight inhomogeneity of the state 
of the membrane or of the potential distribution could cause an excitation 
to begin locally and spread elsewhere rapidly as a result of current flow 
between different areas, the assumptions of the above analysis would be 
false and its conclusions might no longer be applicable. 

The experimentally obtained static or steady-state [-V curve of a mem- 
brane forms at least one branch of the projected locus of singular points 
mentioned above. The experimental data for this curve for the squid axon 
(circles in Fig. 10) lie along a curve of similar shape to the theoretical 
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locus, crossing the horizontal axis only once, at the origin. S-shaped curves 
of the type shown in Figure 10 of Hodgkin, Huxley, and Katz (1952), 
showing the relation between ionic current density and membrane poten- 
tial measured at a fixed time after shocks of various strengths, do not 
imply the presence of three singular points, although they cross the hori- 
zontal axis (I = 0) in three places, since such a curve is not a projection 

l 

[locus of singular points) J~//  

/ !  
-~ o 

- 1 0 o o  

FmvP,~ lO. Components of membrane current plotted against membrane potential V in the 
steady state, for Hodgkin and Huxley's membrane model. Circles are experimental data 
taken from Figure 13 of Hodgkin, Huxley, and Katz (1952) for the curve "I," which repre- 
sents both the steady-state total membrane current as a function of V and the projection of 
the locus of singular points onto the I - V  plane. The single intersection of curve "I" with the 
horizontal axis excludes an STP. Curves of the potassium, sodium, and leakage current com- 
ponents of I are labeled "I~," "IN,," and "I"  respectively. For oval, see text. 

of a locus of singular points. Therefore when such an S-shaped curve is ob- 
tained experimentally, it does not mean that the real system can be de- 
scribed by an STP, as seems to be implied by Bonhoeffer (1953). I t  might 
be possible to modify Hodgkin and Huxley's model to contain an STP if 
an additional branch were added to the locus of singular points, as, for 
example, the oval sketched as a broken line in Figure 10. In such a model 
there would be three singular points whenever I took a constant value 
within a certain interval L which includes zero. An STY would not be 
obtained if I were fixed at any constant value outside of L. 
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DISCUSSION 

In the foregoing classification of threshold phenomena, detailed local 
mathematical properties ("in the small") such as differentiability and the 
nature of the characteristic roots of a singular point, play a role which 
may seem exaggerated, in view of the fact that the precision with which a 
mathematical model of a biological process can be made to agree with ex- 
periment is limited by the variability of the data. This objection can be 
answered by saying that as long as exact mathematical expressions are 
used in models of biological systems, the properties and limitations of 
these expressions are worth understanding. But this answer only poses 

t h e  further question whether the differential equation, a type of descrip- 
tion of nature which has been borrowed from physics and chemistry, really 
is appropriate to describe a biological system whose properties have not 
yet been traced to physical and chemical mechanisms. 

The types of threshold phenomena discussed here differ not only in the 
detailed properties of their differential equations, but more generally in 
the disposition of their trajectories in phase space, in particular (1) the 
division of trajectories into distinct classes such that those in each class 
can be obtained one from another by a continuous deformation through 
other members of that class, while the members of two different classes 
are not so connected; and (2) the existence of boundary regions in phase 
space where trajectories of different classes meet. These properties ("in 
the large") are invariant under continuous, one-to-one transformations 
of the coordinates of phase space and fall within the domain of topology, a 
branch of mathematics which may be intrinsically better fitted for the pre- 
liminary description and classification of biological systems than analysis, 
which includes differential equations (cf. Minorsky, 1947, Introduction; 
Rashevsky, 1954). This suggestion is of little practical value at present, 
since too little is known of the topology of vector fields in many-dimension- 
al spaces, at least to those interested in theoretical biology. Nevertheless, 
the most logical procedure in the description of a complex biological sys- 
tem might be to characterize the topology of its phase space, then to es- 
tablish a set of physically identifiable coordinates in the space, and finally 
to fit differential equations to the trajectories, instead of trying to reach 
this final goal at one leap. 

I wish to thank Dr. Kenneth S. Cole for his interest in this work and 
for allowing me to use unpublished calculations which were made for him 
on the National Bureau of Standards digital computer SEAC by H. A. 
Antosiewicz and P. Rabinowitz. I)rs. Earl Coddington and John 1V[oore 
made valuable suggestions during the course of the work. 
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