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The types of mathematical model which have been used to represent all-or-none behavior
in the nerve membrane may be classified as follows: (1) the discontinuous threshold phenomenon,
in which differential equations with discontinuous functions provide both a discontinuity of
response as a function of stimulus intensity at threshold and a finite maximum latency, (2) the
singular-point threshold phenomenon which exists in a phase space having analytic functions in
its differential equations and having a singular point with one characteristic root positive and
the rest with negative real parts, the latency being unbounded, and (3) the guasi threshold
phenomenon, which has a finite maximum latency and continuous functions, but neither a true
discontinuity in response nor an exact threshold. Several models of the nerve membrane in the
literature are classified accordingly, and the applicability of the different types of threshold
phenomena to the membrane is discussed, including an extension to a stochastic model.

INTRODUCTION

The presence of a threshold phenomenon in a biological system im-
poses restrictions on the types of mathematical model suitable to describe
that system. This paper is concerned mainly with threshold phenomena in
the nerve fiber membrane and was inspired to a great extent by the
mathematical models proposed by G. Karreman (1951) and A. L. Hodgkin
and A. F. Huxley (1952). A mathematical classification of threshold phe-
nomena will be given and then used to classify several models of the nerve
membrane and of the iron wire model of nerve which have been proposed
by various authors.

Figure 1a shows a typical picture of the changes of potential (V') across
the membrane of a single giant nerve fiber of the squid, recorded between
an external electrode and an axial internal electrode (Hodgkin, Huxley,
and Katz, 1952). Brief current shocks of different intensities (3) were ap-
plied ending at time ¢ = 0. During the interval { > 0 a uniform zero cur-
rent flow across the membrane was maintained by the external circuit.
The form of each curve depends on the initial state of the membrane at
¢ = 0. This initial state varies continuously with z, and the curves of Fig-
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ure 1a may therefore be described formally by an equation of the follow-
ing form:
V=F(z1, (1)

in which z appears as a parameter. As the stimulus z is increased beyond
a threshold value 2, shape of the curve changes suddenly. As an extrapo-
lation from the experimental data, one assumes that if the curves corre-
sponding to all values of z (within some finite interval Z) were plotted,
the shapes of the curves would change discontinuously as z passed the
value 2. In terms of the all-or-none law of physiology, these curves are
divided into two distinct classes, the “all’’ and the “none” curves. Within
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Freure 1. ¢. Membrane action potentials from squid giant axon, showing the effect of
small differences in stimulus strength z near its threshold value z4. z > 2, for the upper three
“ALL" curves; 5 < g for the lower two “NONE" curves. Following a brief shock at zero
time, a zero membrane current is maintained by the external circuit. (Redrawn from Hodgkin,
Huxley, and Katz, 1952). b, Curves of potential measured at two fixed times, zero and #,
plotted against z, from the curves in a.

each class, the shapes of the curves vary continuously with z, but there are
no intermediates between the members of the two classes. Because of ran-
dom variations in latency, it is impossible to determine from any finite
number of experiments whether the latency of a nerve fiber, as the stimu-
lus intensity approaches threshold from above, is bounded or unbounded.
If the maximum latency of the response is assumed finite (Pecher, 1939),
there will be some time ¢, such that if the ordinate F(#; z) is plotted against
z (Fig. 1b, curve “¢ = ¢,”), there is a discontinuity at some value 2, of 2.
This discontinuous curve may be considered as showing the relation be-
tween stimulus (abscissa) and response (ordinate). However, if the initial
state F(z; 0) is plotted against = (Fig. 1b, broken line), no discontinuity
appears. The threshold phenomenon thus involves a “parting of the
ways,” at some time between zero and ¢, between the courses of behavior
of the membrane for 5 < z, and those for z > z,, at least as reflected in the
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potential V. This property should be present in any mathematical model
of the membrane.

The properties sought belong, strictly speaking, not to the membrane
by itself, but to the total system consisting of the membrane together with
that part of its environment which imposes an external electrical con-
straint upon it, which here consists of the electronic apparatus connected
to the electrodes. The importance of the environment in helping to deter-
mine threshold behavior is shown by the fact that such behavior is present
when the membrane is stimulated by a short current pulse or a step change
in current, but absent when a step change in potential is applied (Cole,
1949; Hodgkin, Huxley, and Katz, 1949). The threshold phenomena to be
considered here include only those in which the stimulus is over at time
¢ = 0, and the external constraint is always the same during the response
(¢ > 0). The case of stimulation of nerve by step currents of different
strengths will therefore be excluded.

DEFINITIONS

Let us assume that the state of the total system at any time may be
described by a finite number of variables of state x, (r =1,2,..., N),
and that the behavior of the system can be defined by a set of differential
equations of the form

d%y
d—xt= Jn (xh Loy o v v xn) (2)

or, in vector notation,
dx
=1, 3

where the vectors are printed in boldface type. The variables x, may be
considered as the coordinates of a vector space or phase space of N di-
mensions, each point of which corresponds to a single state of the system
(Minorsky, 1947; Lefschetz, 1948). The state of the system is represented
at any time by a stafe point, which moves along a trajectory in phase space
defined by a solution x(x°; #) of equation (3), where x° is the initial point
for ¢ = 0. During the stimulus the electrical constraint and therefore the
trajectories of the phase space are not the same as for £ > 0. The point
reached at ¢ = 0 by the state point as a result of the stimulus is x° and is
some function x°(z) of 2. The initial point is thus under the control of the
experimenter, who can vary the parameter z at will, before each stimulus
is delivered.

All or only some of the x, may be measured experimentally. The mem-
brane potential ¥, which is usually measured, may in general be assumed
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to be some continuous function of the «,. Several authors simply take the
membrane potential as one of the x,. In the following discussion, defini-
tions of three different types of threshold phenomena will be formulated in
terms of the properties of trajectories in phase space, and not just in
terms of the behavior of ¥ as a function of time. However, it will always
be assumed that V is so defined as a function of the %, that the continuities
or discontinuities of shape between neighboring trajectories are not lost
when they are converted to curves of V plotted against ¢.

The following definition is an attempt to describe a threshold phenome-
non mathematically. Figure 2 illustrates this definition for a phase plane

j |
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Ficurk 2. Diagram of a discontinuous threshold phenomenon in a phase plane. Broken
line labeled ““¢ = 0” in this and subsequent figures is the locus of initial points resulting when
the stimulus intensity z is varied. 2z = 24 at the point indicated. The two broken lines labeled
“t = 4" are loci of state points for time # and correspond to “ALL” and “NONE” responses.

(V = 2). The trajectories in the upper right-hand region of Figure 2
could be filled in, in various ways, or simply left undefined.

Definition I.

If x°(2) is continuous in z over some interval Z, except possibly for a step
discontinuity at z = z,, and if, for some time # > 0, x(x°(2); 4,) is con-
tinuous in z except for a step discontinuity at z = z,, then a discontinuy-
ous threshold phenomenon (DT P) will be said to exist in the phase space.

This definition is designed to describe a threshold phenomenon with a
bounded latency (#). The discontinuity in the state of the system at time
41, as a function of z, is provided either (1) simply by a discontinuity in
the initial condition at z = 2, with no special conditions on f(x), or
(2) with the initial condition continuous in 2, in which case limitations
must be imposed on f(x). One may wish both x°(z) of Definition I and
f(x) of (3) to have as components some of the elementary, differentiable
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functions of calculus. The justifications for such a choice seem to be that
(1) physical and chemical processes involving many molecules are usually
described by such functions, (2) the results of several experiments always
differ so much that there is a limit to the preciseness to which the func-
tions should be specified, and therefore the simplest ones should be chosen,
and (3) to explain a discontinuous process by using discontinuous func-
tions is to use an ad hoc assumption and dodge the issue. But by the
Cauchy-Lipschitz theorem for the existence of the solutions of differen-
tial equations (Lefschetz, 1948) one can show that if f(x) is differentiable,
with all partial derivatives uniformly bounded in a certain region, the
solution x(x°; ¢) is continuous in (x°; ) for all z. Then if x°(2) is also con-
tinuous in z, a DT'P is impossible. Nevertheless, several authors have
successfully used DTP’s with discontinuous functions, as will be dis-
cussed below.

It should be mentioned that in order to have a DT P with x°(z) continu-
ous it is not necessary that f(x) be discontinuous, but only that it fail to
satisfy a Lipschitz condition at some point. For example, a DT'P appears
in the following system:*

%ﬂ;= — i3
4y _ s
FTARRANE

If one wishes to use differentiable functions, it is necessary to set up a
new definition of threshold phenomenon. One way to revise Definition I
is to sacrifice the existence of a maximum latency, or finite 4. A point
of a phase space at which all dx,/dt = 0 is a degenerate trajectory and is
called a singular point. Figure 3 shows a phase plane with a saddle point
(one type of singular point) at the origin of coordinates arising from equa-
tions of the following form:

d
_.g% = pnxl—l—mez"l‘ g1 (xli x2) ’ 1

(4)
dxg (
s Pu®y -+ Poaks + g2 (%1, %2} . J
In this case the p’s are constants, and the characteristic equation
Pu— N P _o )
P2 Daa— N

* Suggested by Dr. F., H. Clauser.
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in X has one positive and one negative root, and ¢ and g» are power series
in x; and #;, beginning with terms of degree two or greater. If x°(z) is a
continuous function of z and describes a line segment such as that labelled
“t = 0” in Figure 3 as 2 is varied over the interval Z, the trajectory hav-
ing x°(2) as its initial point changes its shape discontinuously at a trajec-
tory called the separairix, for which z has the value z,. This discontinuity
is of a different kind from that of Definition I. In fact, according to the
Cauchy-Lipschitz Theorem, x(x°(z) ; 1) is continuous in z for every fixed #,
and as z is varied, x(x°(2); #1) travels continuously along a line such as that
labelled “¢ = ;" in Figure 3. Let us arbitrarily define the latency as the
time required for # to go from its initial point along an ‘“‘all”’ trajectory to
some line such as that labelled “criterion of excitation’ in Figure 3. For a

~%criterion of
excitation

F1GURE 3. Diagram of an STP in a phase plane. S.P. is a saddle point. Typical trajectories
of the “ALL” and “NONE” classes are labeled. See text.

model of the nerve membrane, for example, this line might correspond to
the condition that V be halfway between the resting potential and the
peak value of an action potential. There is now no maximum latency.
The nearer z approaches z, the longer the state point subsequently re-
mains in the neighborhood of the saddle point, where the phase velocity
vector dx/dt is very small. The latency can in this way be made arbitrarily
large. This property of the saddle point may be shown by plotting latency
against z. In Figure 4, typical curves of this kind are diagrammed for a
DTP and a saddle-point threshold phenomenon (STP). If the latter curve
were to diverge from the experimental curve (broken line) only for z very
near %, such a model could be accepted as a good approximate represen-
tation of the nerve membrane. Both the STP and the real nerve fiber
may then show increases of latency near threshold which are similar ex-
cept that the latency of the ST P approaches infinity, as z approaches z,
while that of the real fiber remains finite.
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The trajectories in the neighborhood of the saddle point in Figure 3 fall
into three classes according to their behavior: (1) two trajectories are
stable, approaching the saddle point as time increases; (2) two others are
unstable, approaching it as time decreases; and (3) all the rest are kyper-
bolic, first approaching and then leaving the saddle point as time increases.
Furthermore, the hyperbolic trajectories can be divided into four sub-
classes according to the directions along which they approach and leave
the saddle point. If two trajectories are chosen from any two of these
different classes or subclasses, it is impossible to deform one into the other

SUBTHRESHOLD | SUPRATHRESHOLD

> L\~ STP
z A\
5
-3
DTP
Zq Z—

F16URE 4. Diagram of latency as a function of stimulus intensity for a DTP and an ST P. See
text.

by passing through a continuum of intermediate trajectories. It is this
topological property which is responsible for the threshold characteristics
of the saddle point. As z is varied through Z and the initial point x°(z)
moves along the line “¢ = 0,” it passes discontinuously from one subclass
of hyperbolic trajectories to another subclass which behaves in a qualita- -
tively different manner for increasing ¢ Both of these subclasses occupy
contiguous 2-dimensional regions of the phase plane and are separated by
a single stable trajectory, the separatrix.

The saddle-point threshold phenomenon may be generalized to a phase
space of any finite number of dimensions. The following definition is ap-
plicable to systems with functions f(x) which are analytic at a singular
point, i.e., can be expanded in a Taylor series about that point. For some-
what more general conditions, see I. Petrowsky (1934).
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Definition I1.

A singular-poini threshold phenomenon (ST P) will be said to exist in an
N-dimensional phase space (N > 1) if there exists an isolated singular
point having one characteristic root positive and all of the others (if
any) with negative real parts, and if x%(z) is a continuous function
which intersects and is not tangent to the (N — 1)-dimensional sur-
face (the separatrix) composed of stable trajectories, for z = g,

In two dimensions, the condition on the characteristic roots defines a
saddle point. In three dimensions the properties of the singular point can
be visualized if we let the trajectories be described by the solutions

€, =a,e” (n=1,2,3) (6)

of the differential equations

B — Nt (1)
The a,s are constants of integration and are the coordinates of the initial
point. The origin of coordinates is a singular point.

If M < A2 < 0 < )3, then the plane 23 = 0 (the separatrix) contains
the stable solutions and divides the space locally into two regions in both
of which the trajectories are hyperbolic, but in which their behavior for
increasing ¢ is qualitatively different. Those trajectories for which a3 < 0
approach the negative xs-axis pointing toward minus infinity on that axis
and may be taken to represent the “none” response. Those trajectories
for which a3 > 0 approach the positive x3-axis and point toward plus in-
finity (“all’” response). The separatrix separates the ‘“all” from the
“none”’ trajectories. However, if A < 0 < Ay < N3, the hyperbolic tra-
jectories fall into two subclasses which do not differ qualitatively in their
behavior for increasing ¢, but approach the plane #; = 0, pointing in all
possible directions in that plane. In the latter case, therefore, there is no
threshold phenomenon.

In general, for an STP to exist in any N-dimensional phase space, the
singular point must have the property that an (' — 1)-dimensional sur-
face consisting of stable trajectories (the separatrix) forms a local bound-
ary between two N-dimensional regions both of which consist of hyper-
bolic trajectories which for large enough ¢ leave the singular point in two
opposite directions. If all the characteristic roots have non-zero real parts,
then the above conditions are fulfilled if, and only if, the roots are as spec-
ified in Definition IT (Petrowsky, 1934; Lefschetz, 1948). Cases in which
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some of the roots have zero real parts are more complicated and have to
be examined separately.

A second way to revise Definition I is to keep the existence of a maxi-
mum latency, but sacrifice the discontinuity between the ‘““all” and the
“none” trajectories. Figure 5a shows an example in a phase plane. For all
t1, x(x°(z); t1) is continuous in 2, but for some values of # it varies very
rapidly when z is near z,. Figure 5b shows how V = F(4;; 2) might appear

< —

F16urE 5. a. Diagram of a QT P in a phase plane. The shape of the trajectory changes con-
tinuously as z is varied. The two-dimensional separatrix is cross-hatched. b. Curve analogous
to that of Figure 18, but plotted for the case of Figure 5a.

as plotted against z. The discontinuous curve of Figure 1b has been re-
placed by a continuous curve with a very rapid rise near z = z,. We may
describe these properties mathematically as follows:

Definition I11,
If x%(z) is continuous in z over some interval Z, and if there exist a posi-

tive time #; and two values 2; and 2, of 2 such that the ratio

Px [0 (22) 5 0] —x {x0(z) 5 4] |
| 35— 21|

is sufficiently large, then a guasi threshold phenomenon (QTP) will be
said to exist in the phase space.

This definition is necessarily inexact, since the phrase “‘sufficiently
large” is subject to arbitrary interpretation. A QT P may therefore grade
insensibly into what is for all practical purposes not a threshold phenome-
non at all. However, QT P’s have been used by several authors, and a cri-
terion for judging a Q7' P, based on statistical considerations, is discussed
below.

For the sake of comparison, one may say that the (¥ — 1)-dimensional
separatrix of the STP has been replaced in the QTP by a ‘“thin”’ N-di-
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mensional neighborhood of an (V' — 1)-dimensional surface, as indicated
by the cross-hatched region in Figure 5a. The thickness of this neighbor-
hood, i.e., the magnitude of its smallest dimension, determines the sharp-
ness of the QT P. The single threshold value 2, of stimulus may be con-
sidered as replaced by the closed interval [z, 2s).

The three types of threshold phenomenon mentioned above do not ex-
haust the possibilities. One can also set up a threshold phenomenon with
some of the properties of the saddle-point type by using a line or surface
consisting of singular points instead of an isolated one. Also, a limit cycle
(periodic closed trajectory), to which some trajectories are stable and
others unstable, can be substituted for the saddle point. In this case again
hyperbolic trajectories can be found with any specified latency, no matter
how large, most of which may be spent with the state point oscillating in
the neighborhood of the limit cycle.

EXAMPLES

Some of the models of excitable surfaces which have been proposed by
various authors can now be classified according to the type of threshold
phenomenon present. First, however, it will be necessary to define more
precisely the conditions of environmental constraint to be imposed on the
systems under discussion. As mentioned above, an excitable system is not
isolated from its environment, but linked to it by one or more variables,
which for a nerve fiber membrane are membrane potential difference and
membrane current density. Moreover, the potential difference and current
density in general are not constant everywhere on the membrane, but vary
from point to point. A nerve membrane may be considered as being made
up of a large number of elementary areas of molecular dimensions. Over each
such area the current density and potential difference may be considered
to have single values, but in different areas they may have different values
at the same time. If a region in the neighborhood of a stimulating electrode
were to be described mathematically, it would be necessary to have a
complete set of variables of state for each elementary area, and the corre-
sponding phase space would have too many dimensions for convenient
treatment. Fortunately, the presence of threshold behavior in a membrane
does not appear to depend necessarily on the interaction of different ele-
mentary areas, as does the conduction of a nerve impulse. Both the giant
axon of the squid (Cole, 1949; Marmont, 1949; Hodgkin, Huxley, and
Katz, 1949) and the iron wire model of nerve (Bonhoeffer, 1941, 1948)
have been stimulated to produce an all-or-none response uniform over the
surface—named by A. L. Hodgkin and A. F. Huxley (1952) the “mem-
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brane action potential’—during which the membrane current is held
uniformly at zero, following an initial current pulse as stimulus.

1. Discontinuous Threshold Phenomena

The models of nerve of N. Rashevsky (1933, 1948) and A. V. Hill (1936)
are incomplete in the sense that they describe the behavior of the system
only up until the time that a certain variable of state reaches a threshold
value. If the subsequent events were to be described by an extended
model, of the type considered in this paper, either the differential equa-
tions in these models would have to be changed in order to describe the
behavior of the system during the response, or new variables of state
would have to be introduced for this purpose. In either case, since there
is in these models a maximum time #, after stimulation at which time the
threshold value can be reached, if it is to be reached at all, there is some
time # (> 4,) for which Definition I would apply.

W. A. H. Rushton’s (1938) model of nerve contains in the equivalent
circuit of the membrane an e.m.f. which disappears when V reaches a
certain value during the stimulating shock. This makes x°(z) discontinu-
ous at 2z, and there is a DTP.

In the model of F. Offner, A. Weinberg, and G. Young (1940), when
the membrane potential V reaches a critical value V., a resistance in the
equivalent circuit of the membrane decreases discontinuously from its
resting value to its excited value. This is a DTP with N = 1; x is V,
x%(z) is continuous, but f(x) is discontinuous at V = V..

2. Singular-point Threshold Phenomena

G. Karreman and H. D. Landahl have described several models of an
excitable membrane. In the simplest (Karreman, 1951; Karreman and
Landahl, 1952), N = 1, and the phase space is a line on which there are
three singular points. The first in succession is stable and corresponds to
the resting state. The second is unstable and is the site of an STP. The
third corresponds to a stable excited state; no provision is made for re-
covery from excitation in this model. As the stimulus z (applied negative
potential difference) is increased beyond its threshold value, x°(z) passes
the unstable singular point. Thereafter the state point passes to the excited
state.

In a more complicated model, N = 2, and the system can be repre-
sented on a phase plane with coordinates ¥ 'and y (Karreman and Lan-
dahl, 1952, 1953). This model shows different mathematical properties
according to the value of the parameter 7, which depends on various physi-
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cal properties of the membrane. The singular points, at which dx/dt =
dy/dt = 0, are the points of intersection between two curves called
isoclines: the vertical isocline is the curve on which dx/dt = 0; the hori-
zontal isocline, that on which dy/d¢ = 0. The isoclines are shown in all
figures with short straight arrows crossing them in a direction which is
the same as that of the trajectories crossing them. When » = 183, there
are three singular points (Fig. 6). Singular point A corresponds to the

<

Xo—> vertical isacline )\

Ficure 6. STP in Karreman and Landahl’s membrane model when the parameterr = 183.
{Modified from Karreman and Landahl, 1952, 1953). 4 is the stable resting state, B a saddle
point, and C an unstable singular point. “sep.” indicates the separatrix. Typical “ALL” and
“NONE” trajectories are shown, the former only at its beginning and end; the omittcd
central part circles around C.

stable resting state. Point B is a saddle point at which there is an STP,
and C is unstable. When 7 has larger values, the threshold phenomenon
changes to a QT P, as described below.

Recently M. J. Polissar (in Johnson, Eyring, and Polissar, 1954) has
presented a mathematical model of the nerve or muscle membrane in
which IV = 2. The variables of state of the system are in his notation E,
the membrane potential, and the P.D.}M ., or “‘potential demand of the
membrane.” The model is based on a phenomenological picture of the
membrane in which ‘it is assumed that the change in the transmembrane
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potential E is the chief factor determining the change in the structure of
the membrane. . .. A given transmembrane potential demands a par-
ticular state of the membrane. In turn, each instantaneous state of the
membrane demands a particular value for the transmembrane potential.”
This situation is then described more specifically as the tendency of E
and the D.P.M. to vary in certain directions which depend on the values
of both of them. Polissar represents the state of the system at any mo-
ment by the position of two ‘““conjugate points” in a plane having E and
the P.D.M. as coordinates (but not a phase plane). Each of these points
is constrained to move only along a corresponding curve in the plane. The
position of one point on its curve is determined by the value of E; that of
the other by the value of the P.D.M. But if we replace these two points
by a single state point which can range over a phase plane with coordinates
E and P.D.M., the resulting representation is mathematically equivalent
to Polissar’s, and allows one to visualize the over-all behavior of the sys-
tem more easily than does his. The phase plane representation will there-
fore be used in the following discussion.

Polissar does not explicitly state differential equations corresponding
to (2), but gives qualitative rules for the behavior of E and the P.D.M.
under the condition of zero membrane current. These rules determine the
qualitative properties of the trajectories. In Figure 7, the vertical isocline
is defined by the condition dE/d¢t = 0, and the horizontal isocline by
[@(P.D.M .)]/dt = 0. These isoclines happen to be the same lines as those
along which the two conjugate points move in Polissar’s original represen-
tation. The two isoclines intersect at three singular points 4, B, and C. In
the region above the vertical isocline dE/d¢ is positive and is negative
below it. Above the horizontal isocline [d(P.D.M.)]/dt is negative and
positive below it. The trajectories which have been sketched in Figure 7
show that 4 and C are stable singular points, and B is a saddle point, at
which there is an STP. Point 4 corresponds to the resting state.

Polissar takes our z to be the duration of a stimulating current pulse of
constant intensity, which we may take as ending at zero time. If z < 3z,
the initial point will be at a point such as D and will return to 4 along a
trajectory such as that labelled “NONE.” If z > z,, the state point will
move along a trajectory such as that marked “ALL,” going from K to C.
Point C represents a state of excitation which is stable—this model does
not describe the process of recovery. However, with the phase plane repre-
sentation it would be possible to modify this model to show recovery by
changing C to an unstable singular point, as in Karreman and Landahl’s
two-dimensional model mentioned above.



270 RICHARD FITZHUGH

3. Quasi Threshold Phenomena
K. F. Bonhoefier (1948) described the behavior of the iron wire model
of the nerve fiber qualitatively in a phase plane (N = 2). The coordinates
x and y are two quantities of which the physical nature is not completely
specified; « is the ‘““degree of activation” and y is the “‘refractoriness” of
the wire. Bonhoeffer did not state his differential equations explicitly, but

1 vertical isocline
s separotrix

o

a

herizontal
isocline

F16URE 7. STP in Polissar’s membrane model. (Modified from Johnson, Eyring, and Polis-
sar, 1954.) See text.

/——

! e

Ficure 8. QTP in Bonhoeffer’s model of the iron wire model of nerve. (Redrawn from Bon-
hoefier, 1948.) See text.
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represented the isoclines and a few of the trajectories graphically. Figure 8
shows no singular point in the region of divergence of the “all’”’ from the
“none” trajectories for this model. Since the trajectories and isoclines are
drawn as smooth lines, all functions were presumably intended to be dif-
ferentiable, and this model may be classified as a QT P.

In the model (N = 2) of Karreman and Landahl (1952, 1953) discussed
above, a QTP is obtained when the parameter » has a value of 190 or
greater. The horizontal isocline moves to the right as 7 is increased, points

,%j'g< '

N

vertical isocline

4
/

%
7

horizontal isocline:
ALL
(end)
X —— *

Ficure 9. QTP appearing in Karreman and Landahl’s model when » = 200. (Redrawn
from Karreman and Landahl, 1953.)

B and C approach each other, coalesce, and disappear leaving 4 as the
only singular point (Fig. 9).

Hodgkin and Huxley’s (1952) model of the squid giant axon membrane
is the most complex yet proposed. It has five variables of state: the mem-
brane current density I, the membrane potential V, and three variables
n, m, and %, which determine the potassium and sodium conductances.
The equations describing the behavior of these variables are of the fol-
lowing form:

1=Cu VAP m, 1, V). )

an

’d_t—=F2(n)V)7 (9)
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d

Zr=Fa(m, V), (10)
dh

G=Fy), (11)

where Cj, is the membrane capacitance per unit area of membrane and
the F’s are analytic functions. In the case of the membrane action poten-
tial, the condition of external electrical constraint during ¢ > 0is I = 0,
the variables of state are reduced to V, n, m, and k. Equation (8) then

becomes
av 1

W=-(_f—a;Fl(n’ m, b, V). (12)
Equations (9) through (12) represent the equations (2) for this model,
and N = 4. The singular points in this four-dimensional phase space can
be determined from (9)—-(12) by setting

dV _dn _dm dk

W=—JZ=—E=E=O. (13)
There is a line in the five-dimensional space (with coordinates I, V, #, m,
k) defined by the four equations which result when (13) is substituted into
(8)-(11). This line is the locus of all possible singular points that can
arise in the five-space as a result of applying any arbitrary external
electrical constraint to I and V. For the membrane action potential, there
will be as many singular points as there are intersections of this locus with
the hyperplane I = 0. These may be found by studying the projections
of the locus and of the hyperplane on the I-V plane. The projection of
the hyperplane is simply the line I = 0. The projection of the locus is
described by the following equation,

I=F1 (noo, M, hoo, V) 9 (14)

which is obtained by substituting (13) into (8). Here n.,, 7., and %, are
the values assumed by #, m, and % when (13) is substituted into (9)-(11);
they are analytic functions of ¥ only. The right-hand side of (14) is equal
to the sum of the steady-state potassium, sodium, and “leakage’ currents
(I, Iv,, and I;). These currents are plotted as functions of ¥V in Figure 10.
The curve labelled ““I”’ is the projected locus of singular points in the I-V
plane, and intersects the horizontal axis only once, at the origin. This in-
tersection determines the only singular point, which corresponds to the
stable resting state. Since there is no saddle point, there is no ST P. Since
all functions are analytic and therefore satisfy the conditions of the Cau-
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chy-Lipschitz theorem, there is no DTP, and a QTP is indicated. If a
QTP exists here, it should be possible to find a value of stimulus which
would produce a response intermediate between ‘‘all” and “none” for this
model. K. S. Cole (1954; Cole et al., 1955), however, found a value for the
threshold stimulus (intensity of a 0.01 msec shock) in this case accurate to
one part in sixty thousand, with no intermediate responses. By studying
the projections of trajectories in the four-dimensional phase space onto a
plane with coordinates V and dV/dt, he concluded that there are two non-
stable singular points, in addition to the stable singular point mentioned
above. Certain of these projected trajectories do behave in such a way as
to suggest the presence of a saddle point, but since the method just de-
scribed indicates the existence of only one singular point (at least as de-
fined in the present paper), the stable one, it would appear that the com-
plete phase velocity vector in the four-dimensional phase space, although
it may become very small in a certain region, does not vanish completely.
In such a case, it might be possible to interpret a Q7 P as a lower-dimen-
sional “moving saddle point,” in a way similar to A. J. Lotka’s (1925) in-
terpretation of a quasi-equilibrium state governed by one slowly changing
variable as a “moving equilibrium,” but this idea will not be pursued
further here.

Since the experimentally produced membrane action potential obeys
the all-or-none law, it might be thought that a QTP would be unsuitable
for a model of the membrane. Whether or not this is so will depend con-
siderably on the magnitude of certain statistical variations inherent in
the assumed physical nature of the Hodgkin-Huxley model, although they
do not appear explicitly in their differential equations. The mathematical
formulation of the model could be extended to include these statistical
variations in the values of the variables of state by assuming that the
state point travels through phase space with a “Brownian motion” super-
imposed on an average drift velocity given by the phase velocity vector.
In most of the phase space, this random motion would be so small com-
pared to that resulting from the phase velocity vector that the former
would be negligible in determining the behavior of the system. In the
neighborhood of the separatrix of a threshold phenomenon, however, the
random motion might be so large as to decide whether a state point tends
to follow the “all” or the “none” set of trajectories. In a statistical en-
semble of systems originally in the resting state, all of which are given
identical stimulus shocks of the same near-threshold intensity, a certain
proportion of them may give an action potential and the remainder may
not. A similar result has been found experimentally; a nerve fiber may re-
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spond to some, but not all of a succession of stimuli, and this is due to
variability in the behavior of the fiber rather than in the strength of the
stimulus (Blair and Erlanger, 1933).

Random motion of the state point in phase space could produce this
result in any of the three types of threshold phenomenon described earlier.
It assumes particular importance for the QT P, however, since it provides
a criterion for judging whether a Q7 P is sufficiently sharp to portray ade-
quately an all-or-none process. If the random motion during and following
the stimulus is of an order of magnitude equal to or greater than the
thickness of the “thin”” N-dimensional separatrix (mentioned earlier), the
QT P may be considered satisfactory, since the state point will then very
seldom stay within the separatrix long enough to be carried to a region of
phase space corresponding to a response intermediate between “all” and
“none.” Cole’s (unpublished) calculations give the figures —6.373043 and
—6.372943 mV for the values of ¥ immediately following brief stimulat-
ing pulses which are slightly “suprathreshold” and ‘“‘subthreshold” re-
spectively. The difference between these two values is 0.100 xV, which
may be taken as the difference in stimulus intensities which appears in the
denominator of the fraction appearing in Definition ITI. Time # can be
taken to be 7.9 msec, the time of the peak of the action potential following
a just suprathreshold stimulus. Then the difference between the values
of V for the “all” and “none” responses, measured at time #;, is 98 mV.
Therefore the ratio in Definition ITI will have 9.8 X 10° as a lower limit.
If it can be shown that fluctuations in V of the order of magnitude of
0.100 uV can often be expected by chance, then the QT P of the Hodgkin-
Huxley model is sufficiently sharp for its purpose.

Fluctuations might be expected in any of the variables #, m, &, and V,
but only those in V resulting from a random e.m.f., similar to that which
appears across all electrical conductors (Johnson, 1928), will be consid-
ered. These fluctuations are of the same nature as those considered at the
end-plate of muscle by P. Fatt and B. Katz (1952). The properties of this
“noise e.m.f.”” are independent of the physical nature of the conductor
and depend only on the value of the resistance and the temperature. The
mean square noise e.m.f. across any linear, passive impedance in the fre-
quency range df is given by the formula

(E?) saf = 4R;kTd S , (135)

where R, is the real part of the impedance for frequency f, % is Boltzmann’s
constant, and 7 is the absolute temperature (Nyquist, 1928). Hodgkin
and Huxley’s equivalent circuit for a unit area of the membrane is a capac-
itance Cy; in parallel with three branches, each consisting of an e.m.f. and
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a resistor in series. If g denotes the total D.C. conductance of this circuit
for the resting state, then
= 8§
Ry = T i fice (16)
The total root-mean-square noise e.m.f. over the entire frequency range
from zero to infinity of a section of membrane of area 4 in cm? at 6.3° C
and for Cy = 1.0 pF/cm?is

> 12 ¢ BT \V2_ 0.062 uV

The experiments on which Hodgkin and Huxley based their model were
done using an area of approximately 0.110 cm? (Hodgkin, Huxley, and
Katz, 1952), which gives a root-mean-square noise e.m.f. of 0.19 uV, when
substituted into (17). This value includes noise of all frequencies, but noise
of too low and too high frequencies may be ineffective in causing random
transitions between “all” and “none” trajectories. Since the latency of
the Hodgkin-Huxley model just at threshold is about 6 msec (Cole ef al.,
1955), the most effective frequency range may be estimated as between 10
and 1000 cycles/sec. Integration of (15) between these limits, assuming
g = 0.639 mmho/cm?, gives a root-mean-square noise e.m.f. of 0.17 uV in
the resting state. Moreover, noise in the physical model resulting from
sources other than the conducting ions would increase this figure. Since the
figure of 0.17 uV is of the same order of magnitude as the value of 0.100
uV calculated by Cole for the difference in V' between an “all” and a
“none’” trajectory, the QTP of the Hodgkin-Huxley model is sufficiently
sharp for its purpose.

This discussion has shown that any intermediates between “all” and
“none’’ behavior in the Hodgkin-Huxley model will appear only when the
accuracy of specifying the initial conditions is increased beyond the limits
of uncertainty which appear when the physical interpretation of the model
is considered. Moreover, the possibility remains that just at the threshold
of excitation the assumption that I = 0 at each point of the membrane
fails in the experimental situation. If a slight inhomogeneity of the state
of the membrane or of the potential distribution could cause an excitation
to begin locally and spread elsewhere rapidly as a result of current flow
between different areas, the assumptions of the above analysis would be
false and its conclusions might no longer be applicable.

The experimentally obtained static or steady-state I-V curve of a mem-
brane forms at least one branch of the projected locus of singular points
mentioned above. The experimental data for this curve for the squid axon
(circles in Fig. 10) lie along a curve of similar shape to the theoretical
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locus, crossing the horizontal axis only once, at the origin. S-shaped curves
of the type shown in Figure 10 of Hodgkin, Huxley, and Katz (1952),
showing the relation between ionic current density and membrane poten-
tial measured at a fixed time after shocks of various strengths, do not
imply the presence of three singular points, although they cross the hori-
zontal axis (I = 0) in three places, since such a curve is not 2 projection

— ~
P
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—_— e
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(locus of singular points) |

-1000

Ficure 10, Components of membrane current plotted against membrane potential ¥ in the
steady state, for Hodgkin and Huxley’s membrane model. Circles are experimental data
taken from Figure 13 of Hodgkin, Huzxley, and Katz (1952) for the curve “I,”” which repre-
sents both the steady-state total membrane current as a function of ¥ and the projection of
the locus of singular points onto the -V plane. The single intersection of curve “I”’ with the
horizontal axis excludes an STP. Curves of the potassium, sodium, and leakage current com-
ponents of T are labeled “Ix,” “In,,” and “I” respectively. For oval, see text.

of a locus of singular points. Therefore when such an S-shaped curve is ob-
tained experimentally, it does not mean that the real system can be de-
scribed by an ST P, as seems to be implied by Bonhoeffer (1953). It might
be possible to modify Hodgkin and Huxley’s model to contain an STP if
an additional branch were added to the locus of singular points, as, for
example, the oval sketched as a broken line in Figure 10. In such a model
there would be three singular points whenever 7 took a constant value
within a certain interval L which includes zero. An ST P would not be
obtained if 7 were fixed at any constant value outside of L.
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DISCUSSION

In the foregoing classification of threshold phenomena, detailed local
mathematical properties (“in the small”’) such as differentiability and the
nature of the characteristic roots of a singular point, play a role which
may seem exaggerated, in view of the fact that the precision with which a
mathematical model of a biological process can be made to agree with ex-
periment is limited by the variability of the data. This objection can be
answered by saying that as long as exact mathematical expressions are
used in models of biological systems, the properties and limitations of
these expressions are worth understanding. But this answer only poses
the further question whether the differential equation, a type of descrip-
tion of nature which has been borrowed from physics and chemistry, really
is appropriate to describe a biological system whose properties have not
yet been traced to physical and chemical mechanisms.

The types of threshold phenomena discussed here differ not only in the
detailed properties of their differential equations, but more generally in
the disposition of their trajectories in phase space, in particular (1) the
division of trajectories into distinct classes such that those in each class
can be obtained one from another by a continuous deformation through
other members of that class, while the members of two different classes
are not so connected; and (2) the existence of boundary regions in phase
space where trajectories of different classes meet. These properties (“in
the large”’) are invariant under continuous, one-to-one transformations
of the coordinates of phase space and fall within the domain of topology, a
branch of mathematics which may be intrinsically better fitted for the pre-
liminary description and classification of biological systems than analysis,
which includes differential equations (cf. Minorsky, 1947, Introduction;
Rashevsky, 1954). This suggestion is of little practical value at present,
since too little is known of the topology of vector fields in many-dimension-
al spaces, at least to those interested in theoretical biology. Nevertheless,
the most logical procedure in the description of a complex biological sys-
tem might be to characterize the topology of its phase space, then to es-
tablish a set of physically identifiable coordinates in the space, and finally
to fit differential equations to the trajectories, instead of trying to reach
this final goal at one leap.

I wish to thank Dr. Kenneth S. Cole for his interest in this work and
for allowing me to use unpublished calculations which were made for him
on the National Bureau of Standards digital computer SEAC by H. A.
Antosiewicz and P. Rabinowitz. Drs. Earl Coddington and John Moore
made valuable suggestions during the course of the work.
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