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Chapter 1

Diffusion, SDE models and
fluctuation theorems

Excellent reviews of the topics discussed in this chapter can be found in Refs. [CPB08,
HTB90, GHJM98, HM09].

1.1 Random walks

1.1.1 Unbiased random walk (RW)

Consider the one-dimensional unbiased RW (fixed initial position X0 = x0, N steps of
length `)

XN = x0 + `
N∑
i=1

Si (1.1)

where Si ∈ {±1} are iid. random variables (RVs) with P[Si = ±1] = 1/2. Noting that 1

E[Si] = −1 · 1

2
+ 1 · 1

2
= 0, (1.2)

E[SiSj] = δij E[S2
i ] = δij

[
(−1)2 · 1

2
+ (1)2 · 1

2

]
= δij, (1.3)

we find for the first moment of the RW

E[XN ] = x0 + `
N∑
i=1

E[Si] = x0 (1.4)

1By definition, for some RV X with normalized non-negative probability density p(x) = d
dxP[X ≤ x],

we have E[F (X)] =
∫
dx p(x)F (x). For discrete RVs, we can think of p(x) as being a sum of suitably

normalized δ-distributions.
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and for the second moment

E[X2
N ] = E[(x0 + `

N∑
i=1

Si)
2]

= E[x2
0 + 2x0`

N∑
i=1

Si + `2

N∑
i=1

N∑
j=1

SiSj]

= x2
0 + 2x0 · 0 + `2

N∑
i=1

N∑
j=1

E[SiSj]

= x2
0 + 2x0 · 0 + `2

N∑
i=1

N∑
j=1

δij

= x2
0 + `2N. (1.5)

The variance (second centered moment)

E
[
(XN − E[XN ])2

]
= E[X2

N − 2XNE[XN ] + E[XN ]2]

= E[X2
N ]− 2E[XN ]E[XN ] + E[XN ]2]

= E[X2
N ]− E[XN ]2 (1.6)

therefore grows linearly with the number of steps:

E
[
(XN − E[XN ])2

]
= `2N. (1.7)

Continuum limit From now on, assume x0 = 0 and consider an even number of steps
N = t/τ , where τ > 0 is the time required for a single step of the RW and t the total time.
The probability P (N,K) := P[XN/` = K] to be at an even position x/` = K ≥ 0 after N
steps is given by the binomial coefficient

P (N,K) =

(
1

2

)N (
N

N−K
2

)
=

(
1

2

)N
N !

((N +K)/2)! ((N −K)/2)!
. (1.8)

The associated probability density function (PDF) can be found by defining

p(t, x) :=
P (N,K)

2`
=
P (t/τ, x/`)

2`
(1.9)

and considering limit τ, `→ 0 such that

D :=
`2

2τ
= const, (1.10)
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yielding the Gaussian

p(t, x) '
√

1

4πDt
exp

(
− x2

4Dt

)
(1.11)

Eq. (1.11) is the fundamental solution to the diffusion equation,

∂tpt = D∂xxp, (1.12)

where ∂t, ∂x, ∂xx, . . . denote partial derivatives. The mean square displacement of the con-
tinuous process described by Eq. (1.11) is

E[X(t)2] =

∫
dx x2 p(t, x) = 2Dt, (1.13)

in agreement with Eq. (1.7).

Remark One often classifies diffusion processes by the (asymptotic) power-law growth
of the mean square displacement,

E[(X(t)−X(0))2] ∼ tµ. (1.14)

• µ = 0 : Static process with no movement.

• 0 < µ < 1 : Sub-diffusion, arises typically when waiting times between subsequent
jumps can be long and/or in the presence of a sufficiently large number of obstacles
(e.g. slow diffusion of molecules in crowded cells).

• µ = 1 : Normal diffusion, corresponds to the regime governed by the standard Central
Limit Theorem (CLT).

• 1 < µ < 2 : Super-diffusion, occurs when step-lengths are drawn from distributions
with infinite variance (Lévy walks; considered as models of bird or insect movements).

• µ = 2 : Ballistic propagation (deterministic wave-like process).
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1.1.2 Biased random walk (BRW)

Consider a one-dimensional hopping process on a discrete lattice (spacing `), defined such
that during a time-step τ a particle at position X(t) = `j ∈ `Z can either

(i) jump a fixed distance ` to the left with probability λ, or

(ii) jump a fixed distance ` to the right with probability ρ, or

(iii) remain at its position x with probability (1− λ− ρ).

Assuming that the process is Markovian (does not depend on the past), the evolution of
the associated probability vector P (t) = (P (t, x)) = (Pj(t)), where x = `j, is governed by
the master equation

P (t+ τ, x) = (1− λ− ρ)P (t, x) + ρ P (t, x− `) + λP (t, x+ `). (1.15)

Technically, ρ, λ and (1− λ− ρ) are the non-zero-elements of the corresponding transition
matrix W = (Wij) with Wij > 0 that governs the evolution of the column probability
vector P (t) = (Pj(t)) = (P (t, y)) by

Pi(t+ τ) = WijPj(t) (1.16a)

or, more generally, for n steps

P (t+ nτ) = W nP (t). (1.16b)

The stationary solutions are the eigenvectors of W with eigenvalue 1. To preserve normal-
ization, one requires

∑
iWij = 1.

Continuum limit Define the density p(t, x) = P (t, x)/`. Assume τ, ` are small, so that
we can Taylor-expand

p(t+ τ, x) ' p(t, x) + τ∂tp(t, x) (1.17a)

p(t, x± `) ' p(t, x)± `∂xp(t, x) +
`2

2
∂xxp(t, x) (1.17b)

Neglecting the higher-order terms, it follows from Eq. (1.15) that

p(t, x) + τ∂tp(t, x) ' (1− λ− ρ) p(t, x) +

ρ [p(t, x)− `∂xp(t, x) +
`2

2
∂xxp(t, x)] +

λ [p(t, x) + `∂xp(t, x) +
`2

2
∂xxp(t, x)]. (1.18)

Dividing by τ , one obtains the advection-diffusion equation

∂tp = −u ∂xp+D∂xxp (1.19a)
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with drift velocity u and diffusion constant D given by2

u := (ρ− λ)
`

τ
, D := (ρ+ λ)

`2

2τ
. (1.19b)

We recover the classical diffusion equation (1.12) from Eq. (1.19a) for ρ = λ = 0.5. The
time-dependent fundamental solution of Eq. (1.19a) reads

p(t, x) =

√
1

4πDt
exp

(
−(x− ut)2

4Dt

)
(1.20)

Remarks Note that Eqs. (1.12) and Eq. (1.19a) can both be written in the current-form

∂tp+ ∂xjx = 0 (1.21)

with

jx = up−D∂xp, (1.22)

reflecting conservation of probability. Another commonly-used representation is

∂tp = Lp, (1.23)

where L is a linear differential operator; in the above example (1.19b)

L := −u ∂x +D∂xx. (1.24)

Stationary solutions, if they exist, are eigenfunctions of L with eigenvalue 0.

1.2 Brownian motion

1.2.1 SDEs and discretization rules

The continuous stochastic process X(t) described by Eq. (1.19a) or, equivalently, Eq. (1.20)
can also be represented by the stochastic differential equation

dX(t) = u dt+
√

2DdB(t). (1.25)

Here, dX(t) = X(t + dt) − X(t) is increment of the stochastic particle trajectory X(t),
whilst dB(t) = B(t + dt) − B(t) denotes an increment of the standard Brownian motion
(or Wiener) process B(t), uniquely defined by the following properties3:

2Strictly speaking, when taking the limits τ, ` → 0, one requires that ρ and λ change such that u and
D remain constant. Assuming that ρ+ λ = const, this means that (ρ− λ) ∼ `.

3Note that, since X has dimensions of length and D has dimensions length2/time, the Wiener process
B in Eq. (1.25) has units time1/2.
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(i) B(0) = 0 with probability 1.

(ii) B(t) is stationary, i.e., for t > s ≥ 0 the increment B(t) − B(s) has the same
distribution as B(t− s).

(iii) B(t) has independent increments. That is, for all tn > tn−1 > . . . > t2 > t1,
the random variables B(tn) − B(tn−1), . . . , B(t2) − B(t1), B(t1) are independently
distributed (i.e., their joint distribution factorizes).

(iv) B(t) has Gaussian distribution with variance t for all t ∈ (0,∞).

(v) B(t) is continuous with probability 1.

The probability distribution P governing the driving process B(t) is commonly known as
the Wiener measure.

Although the derivative ξ(t) = dB/dt is not well-defined mathematically, Eq. (1.25) is
in the physics literature often written in the form

Ẋ(t) = u+
√

2D ξ(t). (1.26)

The random driving function ξ(t) is then referred to as Gaussian white noise, characterized
by

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(s)〉 = δ(t− s), (1.27)

with 〈 · 〉 denoting an average with respect to the Wiener measure.

Ito’s formula Note that property (iv) implies that E[dB2] = dt. This justifies the
following heuristic derivation of Ito’s formula for the differential change of some real-valued
function F (x)

dF (X(t)) := F (X(t+ dt))− F (X(t))

= F ′(X(t)) dX +
1

2
F ′′(X(t)) dX2 + . . .

= F ′(X(t)) dX +
1

2
F ′′(X(t))

[
u dt+

√
2DdB

]2

+ . . .

= F ′(X(t)) dX +DF ′′(X(t)) dB2 + O(dt3/2); (1.28)

hence, in a probabilistic sense, one has to leading order in dt

dF (X(t)) = F ′(X(t)) dX +DF ′′(X(t)) dt

= [uF ′(X(t)) +DF ′′(X(t))] dt+ F ′(X(t))
√

2DdB(t).

(1.29)

It is crucial to note that, due to the choice of the expansion point, the coefficient F ′(X) in
front of dB(t) is to be evaluated at X(t). This convention is the so-called Ito integration
rule. In particular, it is important to keep in mind that nonlinear transformations of Ito
SDEs must feature second-order derivatives.
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Discretization dilemma To clarify the importance of discretization rules when dealing
with SDEs, let us consider a simple generalization of Eq. (1.25), where drift u and diffusion
coefficient D are position dependent. Adopting the Ito convention, the corresponding SDE
reads

dX(t) = u(X) dt+
√

2D(X) ∗ dB(t), (1.30a)

where from now on the ∗-symbol signals that D(X) is to be evaluated at X(t). The simplest
numerical integration procedure for Eq. (1.30a) is the stochastic Euler scheme

X(t+ dt) = X(t) + u(X(t)) dt+
√

2D(X(t))
√
dt Z(t), (1.30b)

where, for each time step dt, a new random number Z(t) is drawn from a standard normal
distribution4. If the driving process B(t) is Eq. (1.30a) were a regular deterministic func-
tion, such as for example B(t) =

√
τ sin(Ωt), then Eq. (1.30a) would reduce to a standard

inhomogeneous ordinary differential equation (ODE). For ODEs, it typically does not mat-
ter whether one computes the coefficients5 u(x) and D(x) at the start point X(t) or the end
point X(t + dt). Mathematically, this is due to the fact that, for well-behaved determin-
istic driving functions, upper and lower Riemann sums yield the same value when letting
dt → 0. If, however, B(t) is a rapidly varying stochastic process, such as the Brownian
motion, then the corresponding lower and upper Riemann sums in general do not converge
to the same value anymore. Therefore, when dealing with SDEs of the type (1.30a), it is
important to explicitly specify the integration convention.

For instance, the so-called backward Ito SDE with coefficients uB and DB, denoted by

dX(t) = uB(X) dt+
√

2DB(X) • dB(t), (1.31a)

is defined as the upper Riemann sum6

X(t+ dt) = X(t) + uB(X(t+ dt)) dt+
√

2DB(X(t+ dt))
√
dt Z(t). (1.31b)

Unlike Eq. (1.30b), the backward Ito scheme (1.31b) is implicit. To reemphasize, for same
functions u ≡ uB and D ≡ DB, Eqs. (1.30) and (1.31) produce trajectories that follow
different statistics7. The analog of the Ito formula (1.29) for a nonlinear transformation of
the backward-Ito SDE reads simply

dF (X) = F ′(X) • dX −DB F
′′(X) dt

= [uB F
′(X)−DB F

′′(X)] dt+ F ′(X)
√

2DB • dB(t).

(1.32)

4That is, a Gaussian distribution with mean µ = 0 and variance σ2 = 1.
5Assuming the functions u and D are sufficiently smooth.
6Note that instead of uB(X(t + dt)) in (1.31b) we could in fact also have written uB(X(t)), because

the deterministic part of the SDE has identical lower and upper Riemann sums for dt→ 0.
7Except, of course, when D = DB = const.

9



For sufficiently smooth coefficient functions, it is straightforward to transform back and
forth between different types of SDEs (see Appendix A). That is, a given backward Ito
SDE with coefficients (uB, DB) can be transformed into a stochastically equivalent Ito SDE
by adapting the coeffficients (u,D) accordingly. More precisely, by fixing

u = uB + ∂xDB, D = DB (1.33)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
Another discretization convention, that is popular in the physics literature is the

Stratonovich-Fisk discretization, denoted by

dX(t) = uS(X) dt+
√

2DS(X) ◦ dB(t), (1.34a)

and defined as the mean value of lower and upper Riemann sum8

X(t+ dt) = X(t) +
uS(X(t)) + uS(X(t+ dt))

2
dt+√

2DS(X(t)) +
√

2DS(X(t+ dt))

2

√
dt Z(t). (1.34b)

Similarly to Eq. (1.34), by fixing

u = uS +
1

2
∂xDS, D = DS (1.35)

one obtains an Ito SDE that is stochastically equivalent to Eqs. (1.31).
From a numerical perspective, the non-anticipatory Ito scheme (1.30b) is advantageous

for it allows to compute the new position directly from the previous one. For analytical
calculations, the Stratonovich-Fisk scheme is somewhat preferable as it preserves the rules
of ordinary differential calculus,9

dF (X) = F ′(X) ◦ dX(t) (1.36)

whilst the backward Ito rule bears certain conceptual advantageous from a physical point of
view [DH09]. However, as mentioned before, in principle one can transform back and forth
between the different types of SDEs, i.e., neither of the different discretization schemes is
intrinsically superior.

Various transformation formulas and their generalizations to higher space dimensions
can be found in Appendix A.

8Note that instead of uB(X(t + dt)) in (1.31b) we could in fact also have written uB(X(t)), because
the deterministic part of the SDE has identical lower and upper Riemann sums for dt→ 0.

9Intuitively, this follows from Eq. (1.32) and (1.32).
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1.2.2 Fokker-Planck equations

Since other types of SDEs can be transformed into an equivalent Ito SDE, we shall focus
in this part on discussing how one can derive a Fokker-Planck equation (FPE) for the
probability density function (PDF) p(t, x) for a process X(t) described by the Ito SDE

dX(t) = u(X) dt+
√

2D(X) ∗ dB(t). (1.37)

The PDF can be formally defined by

p(t, x) = E[δ(X(t)− x)]. (1.38)

To obtain an evolution equation for p, we consider

∂tp = E[
d

dt
δ(X(t)− x)]. (1.39)

To evaluate the rhs., we apply Ito’s formula to the differential d[δ(X(t)− x)]] and find

E[d[δ(X − x)]] = E
[
(∂Xδ(X − x)) dX +D(X) ∂2

Xδ(X(t)− x) dt
]

= E
[
(∂Xδ(X − x))u(X) +D(X) ∂2

Xδ(X(t)− x)
]
dt.

Here, we have used that E[g(X(t)) ∗ dB] = 0, which follows from the non-anticipatory
definition of the Ito integral. Furthermore, by recalling that

∂Xδ(X − x) = −∂xδ(X − x), (1.40)

we may write

E[d[δ(X − x)]] = E
[
(−∂xδ(X − x))u(X) +D(X) ∂2

xδ(X(t)− x)
]
dt

= −∂x E[δ(X − x)u(X)] dt+ ∂2
x E[D(X) δ(X(t)− x)] dt.

Using another property of the δ-function

f(y)δ(y − x) = f(x)δ(y − x) (1.41)

we obtain

E[d[δ(X − x)]] = −∂x E[δ(X − x)u(x)] dt+ ∂2
x E[D(x) δ(X(t)− x)] dt

= −∂x{u(x)E[δ(X − x)]} dt+ ∂2
x{D(x)E[δ(X(t)− x)]} dt

= −∂x {u(x) p− ∂x[D(x)p]} dt.

Combining this with Eq. (1.39) yields the Fokker-Planck (or Smoluchowski) equation

∂tp = −∂x {u(x) p− ∂x[D(x)p]} . (1.42)
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For comparison, an analogous calculation for the backward-Ito SDE

dX(t) = uB(X) dt+
√

2DB(X) • dB(t), (1.43)

gives

∂tp = −∂x [uB(x) p−DB(x) ∂xp] . (1.44)

Compared with the Ito FPE (1.42), the diffusion coefficient DB now enters in front of the
gradient ∂xp. Note, however, that the two different FPEs coincide if one identifies the
coefficients as in Eq. (1.33).

A summary of Fokker-Planck equations for the three different stochastic integral con-
ventions (Ito, Strantonovich-Fisk and backward-Ito) in arbitrary space dimensions can be
found in Appendix A.

1.3 Dilute microbial suspensions

A minimalist model for the locomotion of an isolated microorganism (e.g., alga or bac-
terium) with positionX(t) and orientation unit vectorN (t) is given by the coupled system
of Ito SDEs

dX = VNdt+
√

2DT ∗ dB(t), (1.45a)

dN = (1− d)DRN dt+
√

2DR (I −NN ) ∗ dW (t). (1.45b)

Here, V is the self-swimming speed of the organism, DT the translational diffusion coef-
ficient, and DR the rotational diffusion coefficient, (I −NN ) is an orthogonal projector
with d-dimensional unit matrix I, andB andW are two independent d-dimensional Brow-
nian motion processes. Eq. (1.45a) describes locomotion due to translational diffusion and
self-swimming in the direction of the orientation N , and Eq. (1.45b) models changes in
orientation as diffusion on the d-dimensional unit sphere.

To confirm that Eq. (1.45b) conserves the unit length of the orientation vector, |N |2 = 1
for all t, it is convenient to rewrite Eqs. (1.45) in component form:

dXi = V Nidt+
√

2DT ∗ dBi(t), (1.46a)

dNj = (1− d)DRNjdt+
√

2DR (δjk −NjNk) ∗ dWk(t). (1.46b)

For the constraint |N |2 = 1 to be satisfied, we must have d|N |2 = 0. Applying the d-
dimensional version of Ito’s formula, see Eq. (A.12), to F (N ) = |N |2, one finds indeed
that

d|N |2 = 2Nj ∗ dNj +
(
∂Ni∂NjNkNk

)
DR(δij −NiNj) dt

= 2Nj ∗
[
(1− d)DRNj dt+

√
2DR (δjk −NjNk) ∗ dWk(t)

]
+

∂Ni(δjkNk +Nkδjk) DR(δij −NiNj) dt

= 2(1− d)DR dt+

(δjkδik + δikδjk) DR(δij −NiNj) dt

= 0. (1.47)
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To understand the dynamics (1.46), it is useful to compute the orientation correlation,

〈N (t) ·N (0)〉 = E[N (t) ·N (0)] = E[Nz(t)], (1.48)

where we have assumed (w.l.o.g.) that N (0) = ez. Averaging Eq. (1.46b), we find that

d

dt
E[Nz(t)] = (1− d)DR E[Nz(t)], (1.49)

implying that, in this model, the memory loss about the orientation is exponential

〈N (t) ·N (0)〉 = e(1−d)DRt, (1.50)

which is approximately true for many microorganisms. Another relevant quantity is the
mean square displacement E[X(t)2], assuming that X(0) = 0. Using Ito’s formula,

d|X|2 = 2Xj ∗ dXj +
(
∂Xi∂XjXkXk

)
DT δij dt

= 2Xj ∗ dXj + (δjkδik + δikδjk) DT δij dt

= 2Xj ∗ dXj + 2dDT dt

= 2Xj[V Njdt+
√

2DT ∗ dBj(t)] + 2dDT dt, (1.51)

averaging and dividing by dt, gives

d

dt
E[X2] = 2V E[X(t)N (t)] + 2dDT . (1.52)

The expectation value on the rhs. can be evaluated by making use of Eq. (1.50):

E[X(t) ·N (t)] = E
[∫ t

0

dX(s) ·N (t)

]
= V E

[∫ t

0

dsN (s) ·N (t)

]
= V

∫ t

0

ds 〈N (t) ·N (s)〉

= V

∫ t

0

ds e(1−d)DR(t−s)

=
V

(d− 1)DR

[
1− e(1−d)DRt

]
.

By inserting this expression into Eq. (1.52) and integrating over t, we find

E[X2] =
2V 2

(d− 1)2D2
R

[
(d− 1)DRt+ e(1−d)DRt − 1

]
+ 2dDT t. (1.53)

If DT is small, then at short times t� D−1
R the motion is ballistic

E[X2] ' V 2t2 + 2dDT t, (1.54)
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At large times, the motion becomes diffusive, with asymptotic diffusion constant

lim
t→∞

E[X2]

t
=

2V 2

(d− 1)DR

+ 2dDT . (1.55)

Inserting typical values for bacteria, V ∼ 10µm/s and DR ∼ 0.1/s, and comparing with
DT ∼ 0.2µm2/s for a micron-sized colloids at room temperature, we see that active swim-
ming and orientational diffusion dominate the diffusive dynamics of microorganisms at
long times.

Concentration profile between two walls An interesting question that is relevant
from a medical perspective concerns the spatial distribution of bacteria and other swimming
microbes in the presence of confinement. Restricting ourselves to dilute suspensions10, we
may obtain a simple prediction from the model (1.45) by considering the FPE for the
associated PDF p(t,x,n). Given p and the total number of bacteria Nb in the solutions,
we obtain the spatial concentration profile by integrating over all possible orientations

c(t,x) = Nb

∫
Sd
dn p(t,n,x). (1.56a)

The associated mean orientation field reads

u(t,x) = Nb

∫
Sd
dn p(t,n,x)n. (1.56b)

The FPE for the Ito-SDE (1.45) can be written as a conservation law

∂tp = −(∂xiJi + ∂niΩi), (1.57a)

where

Ji = (V ni −DT∂xi)p (1.57b)

Ωi = DR

{
(1− d)nip− ∂nj [(δij − ninj)p]

}
. (1.57c)

Focusing on the three-dimensional case, d = 3, we are interested in deriving from Eq. (1.57)
the stationary concentration profile c of a suspension that is confined by two quasi-infinite
parallel walls, which are located z = ±H. That is, we assume that the distance between
the walls is much smaller then their spatial extent in the (x, y)-directions, 2H � Lx, Ly.
To obtain an evolution equation for c, we multiply Eq. (1.57a) by Nb and integrate over n
with ∫

Sd
dn ∂niΩi = 0. (1.58)

10The simplifying assumption that microbes can be considered as non-interacting is usually justified
when their volume filling fraction is less than 1%.
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This yields the mass conservation law

∂tc = −∇ · (V u−DT∇c). (1.59)

To obtain also an evolution equation for u, we multiply Eq. (1.57a) by nk,

∂t(nkp) = −∂xi(nkJi)− nk∂niΩi. (1.60)

and note that

nk∂niΩi = ∂ni(nkΩi)− (∂nink)Ωi = ∂ni(nkΩi)− δikΩi. (1.61)

This allows us to rewrite (1.60) as

∂t(nkp) = −∂xi(nkJi) + Ωk − ∂ni(nkΩi)

= −∂xi [V nknip−DT∂xi(nkp)] +

DR

{
−2nkp− ∂nj [(δkj − nknj)p]

}
− ∂ni(nkΩi)

= −∂xi [V nknip−DT∂xi(nkp)]− 2DRnkp−
∂nj(nkΩj + (δkj − nknj)p). (1.62)

Multiplying by Nb and integrating over n with appropriate boundary conditions gives

∂tuk = −∂xi [V Nb〈nkni〉p−DT∂xiuk]− 2DRuk,

where we have abbreviated

〈nink · · ·〉 =

∫
Sd
dn p(t,n,x)nink · · · . (1.63)

To obtain a closed linear system of equations for the fields (c,u), we neglect11 the higher-
order moments Nb〈nkni〉 in (1.63) and find

∂tu ' −2DRu+DT∇2u. (1.64)

To find the stationary density and orientation profiles, we look for solutions of the form
c = ρ(z) and ux = uy = 0, uz = u(z). According to Eqs. (1.59) to (1.63), the functions ρ
and uz must satisfy

0 = V u−DT c
′, (1.65)

0 = −2DRu+DTu
′′, (1.66)

11Ad hoc simplifications of this type are usually referred to as ‘truncation (of the moment hierarchy)’ or
‘closure conditions’ - they are (almost) always unavoidable when one tries to derive continuum equations
from ODEs, SDEs or FPEs. Closure conditions are not unique, for example, we could also have adopted
the mean field approximation N2

b 〈nkni〉 ' ukui, which leads to a nonlinear set of equations for (c,u).
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and it is physically plausible that they also fulfill the symmetry12 requirements ρ(z) =
ρ(−z) and u(z) = −u(−z). Hence, solution takes the form

u(z) = A sinh(z/Λ), (1.67a)

ρ(z) = A
V Λ

DT

[cosh(z/Λ)− 1] + ρ0, (1.67b)

where Λ =
√
D⊥/(2DR).

The cosh-profile (1.67b) agrees qualitatively with experimental measurements for dilute
bacterial suspensions [BTBL08, LT09].

1.4 Escape problem

Escape problems are ubiquitous in biological, biophysical and biochemical processes. Promi-
nent examples include, but are not restricted to,

• unbinding of molecules from receptors,

• chemical reactions,

• transfer of ion through through pores,

• evolutionary transitions between different fitness optima.

Their mathematical treatment typically involves models that are structurally very similar
to the one-dimensional examples discussed in this section13.

1.4.1 Generic minimal model

Consider the over-damped SDE

dx(t) = −∂xUdt+
√

2D ∗ dB(t) (1.68a)

with a confining potential U(x)

lim
x→±∞

U(x)→∞ (1.68b)

that has two (or more) minima and maxima. A typical example is the bistable quartile
double-well

U(x) = −a
2
x2 +

b

4
x4 , a, b > 0 (1.68c)

12Neglecting gravity is valid approximation, provided the density of the microbes roughly matches that
of the surrounding fluid (which is approximately try for bacteria in water).

13Although things usually get more complicated in higher-dimensions.
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with minima at ±
√
a/b.

Generally, we are interested in characterizing the transitions between neighboring min-
ima in terms of a rate k (units of time−1) or, equivalently, by the typical time required for
escaping from one of the minima. To this end, we shall first dicuss the general structure of
the time-dependent solution of the FPE14 for the corresponding PDF p(t, x), which reads

∂tp = −∂xj , j(t, x) = −[(∂xU)p+D∂xp], (1.68d)

and has the stationary zero-current (j ≡ 0) solution

ps(x) =
e−U(x)/D

Z
, Z =

∫ +∞

−∞
dx e−U(x)/D. (1.69)

To find the time-dependent solution, we can make the ansatz

p(t, x) = %(t, x) e−U(x)/(2D), (1.70)

which leads to a Schrödinger equation in imaginary time

−∂t% =
[
−D∂2

x +W (x)
]
% =: H%, (1.71a)

with an effective potential

W (x) =
1

4D
(∂xU)2 − 1

2
∂2
xU. (1.71b)

Assuming the Hamilton operator H has a discrete non-degenerate spectrum, λ0 < λ1 < . . .,
the general solution p(t, x) may be written as

p(t, x) = e−U(x)/(2D)

∞∑
n=0

cn φn(x) e−λnt, (1.72a)

where the eigenfunctions φn of H satisfy∫
dx φ∗n(x)φm(x) = δnm, (1.72b)

and the constants cn are determined by the initial conditions

cn =

∫
dx φ∗n(x) eU(x)/(2D) p(0, x). (1.72c)

At large times, t→∞, the solution (1.72a) must approach the stationary solution (1.69),
implying that

λ0 = 0 , c0 =
1√
Z
, φ0(x) =

e−U(x)/(2D)

√
Z

. (1.73)

14FPEs for over-damped processes are sometimes referred to as Smoluchowski equations.
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Note that λ0 = 0 in particular means that the first non-zero eigenvalue λ1 > 0 dominates
the relaxation dynamics at large times and, therefore,

τ∗ = 1/λ1 (1.74)

is a natural measure of the escape time. In practice, the eigenvalue λ1 can be computed
by various standard methods (WKB approximation, Ritz method, techniques exploiting
supersymmetry, etc.) depending on the specifics of the effective potential W .

1.4.2 Two-state approximation

We next illustrate a commonly used simplified description of escape problems, which can
be related to (1.74). As a specific example, we can again consider the escape of a particle
from the left well of a symmetric quartic double well-potential

U(x) = −a
2
x2 +

b

4
x4 , p(0, x) = δ(x− x−) (1.75a)

where

x− = −
√
a/b (1.75b)

is the location of the left minimum, but the general approach is applicable to other types
of potentials as well.

The basic idea of the two-state approximation is to project the full FPE dynamics onto
simpler set of master equations by considering the probabilities P±(t) of the coarse-grained
particle-states ‘left well’ (−) and ‘right well’ (+), defined by

P−(t) =

∫ 0

−∞
dx p(t, x), (1.76a)

P+(t) =

∫ ∞
0

dx p(t, x). (1.76b)

If all particles start in the left well, then

P−(0) = 1 , P+(0) = 0. (1.77)

Whilst the exact dynamics of P±(t) is governed by the FPE (1.68d), the two-state approx-
imation assumes that this dynamics can be approximated by the set of master equations15

Ṗ− = −k+ P− + k− P+ , Ṗ+ = k+ P− − k− P+. (1.78)

For a symmetric potential, U(x) = U(−x), forward and backward rates are equal, k+ =
k− = k, and in this case, the solution of Eq. (1.78) is given by

P±(t) =
1

2
∓ 1

2
e−2k t. (1.79)

15Note that Eqs. (1.78) conserve the total probability, P−(t) + P−(t) = 1.
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For comparison, from the FPE solution (1.72a), we find in the long-time limit

p(t, x) ' ps(x) + c1e
−U(x)/2Dφ1(x) e−λ1t, (1.80)

Due to the symmetry of ps(x), we then have

P−(t) ' 1

2
+ C1 e

−λ1t (1.81a)

where

C1 = c1

∫ 0

−∞
e−U(x)/2Dφ1(x) , c1 = φ∗1(x−) eU(x−)/(2D). (1.81b)

Since Eq. (1.81a) neglects higher-order eigenfunctions, C1 is in general not exactly equal
but usually close to 1/2. But, by comparing the time-dependence of (1.81a) and (1.79), it
is natural to identify

k ' λ1

2
=

1

2τ∗
. (1.82)

We next discuss, by considering in a slightly different setting, how one can obtain an
explicit result for the rate k in terms of the parameters of the potential U .

1.4.3 Constant-current solution

Consider a bistable potential as in Eq. (1.75), but now with a particle source at x0 < x− < 0
and a sink16 at x1 > xb = 0. Assuming that particles are injected at x0 at constant flux
j(t, x) ≡ J = const, the escape rate can be defined by

k :=
J

P−
, (1.83)

with P− denoting the probability of being in the left well, as defined in Eq. (1.76a) above.
To compute the rate from Eq. (1.83), we need to find a stationary constant flux solution
pJ(x) of Eq. (1.68d), satisfying pJ(x1) = 0 and

J = −(∂xU)pJ −D∂xpJ (1.84)

for some constant J . This solution is given by [HTB90]

pJ(x) =
J

D
e−U(x)/D

∫ x1

x

dy eU(y)/D, (1.85)

16The source could be a protein production site and the barrier could present a semi-permeable mem-
brane.
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as one can verify by differentiation

−(∂xU)pJ −D∂xpJ = −(∂xU)pJ −D∂x
[
J

D
e−U(x)/D

∫ x1

x

dy eU(y)/D

]
= −(∂xU)pJ − J

[
−(∂xU)

D
e−U(x)/D

∫ x1

x

dy eU(y)/D − 1

]
= J. (1.86)

Therefore, the inverse rate k−1 from Eq. (1.83) can be formally expressed as

k−1 =
P−
J

=
1

D

∫ x1

−∞
dx e−U(x)/D

∫ x1

x

dy eU(y)/D, (1.87)

and a partial integration yields the equivalent representation

k−1 =
1

D

∫ x1

−∞
dx eU(x)/D

∫ x

−∞
dy e−U(y)/D. (1.88)

Assuming a sufficiently steep barrier, the integrals in Eq. (1.88) may be evaluated by
adopting steepest descent approximations near the potential minimum at x− and near the
maximum at the barrier position xb. More precisely, taking into account that U ′(x−) =
U ′(xb) = 0, one can replace the potentials in the exponents by the harmonic approximations

U(x) ' U(x−)− 1

2τb
(x− x−)2, (1.89a)

U(y) ' U(x−) +
1

2τ−
(y − x−)2, (1.89b)

where

τ− = −U ′′(x0) > 0 , τb = U ′′(xb) > 0 (1.90)

carry units of time. Inserting (1.89) into (1.88) and replacing the upper integral boundaries
by +∞, one thus obtains the so-called Kramers rate [HTB90, GHJM98]

k ' e−∆U/D

2π
√
τ−τb

=: kK , ∆U = U(xb)− U(x−). (1.91)

This result agrees with the well-known empirical Arrhenius law. Note that, because typi-
cally D ∝ kBT for thermal noise, binding/unbinding rates depend sensitively on tempera-
ture – this is one of the reasons why many organisms tend to function properly only within
a limited temperature range.
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1.5 Stochastic resonance

Noise typically impairs signal transduction, but under certain conditions an optimal dose
of randomness may actually help to enhance weak signals [GHJM98]. This remarkable
phenomenon is known as stochastic resonance (SR). Whilst SR was originally proposed as
a possible explanation for periodically recurring climate cycles [NN81, BPSV83], experi-
ments suggest [FSGB+02] that some organisms like juvenile paddle-fish might exploit SR
to enhance signal detection while foraging for food.

The occurrence of SR requires three main ‘ingredients’

1. a nonlinear measurement device17,

2. a periodic signal weaker than the threshold of measurement device,

3. additional input noise, uncorrelated with the signal of interest.

To provide some intuition, assume that a weak periodic signal (frequency Ω) is detected
by a particle that can move move in the bistable double well-potential (1.75). For weak
noise, the particle will remain trapped in one of the minima and we will be unable to
infer the signal from the particle’s motion. Similarly, not much information about the
underlying signal can be gained if the noise is too strong, for in this case the particle will
jump randomly back and forth between the minima. If, however, the noise strength is
tuned such that the Kramers escape rate (1.91) is of the order of the driving frequency,

kK ∼ Ω, (1.92)

then it is plausible to expect that the particle’s escape dynamics will be closely correlated
with the driving frequency, thus exhibiting SR.

1.5.1 Generic model

To illustrate SR more quantitatively, consider the periodically driven SDE

dX(t) = −∂xU dt+ A cos(Ωt) dt+
√

2D ∗ dB(t), (1.93a)

where A is the signal amplitude and

U(x) = −a
2
x2 +

b

4
x4 (1.93b)

a symmetric double-well potential with minima at ±x∗ = ±
√
a/b and barrier height

∆U = a2/(4b). Introducing rescaled variables

x′ = x/x∗ , t′ = at , A′ = A/(ax∗) , D′ = D/(ax2
∗) , Ω′ = Ω/a.

17That is, the input-output relationship between the input signal and the observable must be nonlinear
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and dropping primes. we can rewrite (1.93a) in the dimensionless form

dX(t) = (x− x3) dt+ A cos(Ωt) dt+
√

2D ∗ dB(t), (1.93c)

with a rescaled barrier height ∆U = 1/4. The associated FPE reads

∂tp = −∂x{[−(∂xU) + A cos(Ωt)]p−D∂xp}. (1.94)

For our subsequent discussion, it is useful to rearrange terms on the rhs. as

∂tp = ∂x[(∂xU)p+D∂xp]− A cos(Ωt)∂xp. (1.95)

To solve Eq. (1.95) perturbatively, we insert the series ansatz

p(t, x) =
∞∑
n=0

Anpn(t, x), (1.96)

which gives

∞∑
n=0

An∂tpn =
∞∑
n=0

{
An∂x[(∂xU)pn +D∂xpn]− An+1 cos(Ωt)∂xpn

}
(1.97)

Focussing on the liner response regime, corresponding to powers A0 and A1, we find

∂tp0 = ∂x[(∂xU)p0 +D∂xp0] (1.98a)

∂tp1 = ∂x[(∂xU)p1 +D∂xp1]− cos(Ωt)∂xp0 (1.98b)

Equation (1.98a) is just an ordinary time-independent FPE, and we know its stationary
solution is just the Boltzmann distribution

p0(x) =
e−U(x)/D

Z0

, Z0 =

∫
dx e−U(x)/D (1.99)

To obtain a formal solution to Eq. (1.98b), we make use of the following ansatz

p1(t, x) = e−U(x)/(2D)

∞∑
m=1

a1m(t)φm(x), (1.100)

where φm(x) are the eigenfunctions of the unperturbed effective Hamiltonian, cf. Eq. (1.71),

H0 = −D∂2
x +

1

4D
(∂xU)2 − 1

2
∂2
xU. (1.101)

Inserting (1.100) into Eq. (1.98b) gives

∞∑
m=1

ȧ1mφm = −
∞∑
m=1

λma1m φm − cos(Ωt) eU(x)/(2D) ∂xp0. (1.102)
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Multiplying this equation by φn(x), and integrating from −∞ to +∞ while exploiting the
orthonormality of the system {φm}, we obtain the coupled ODEs

ȧ1m = −λma1m −Mm0 cos(Ωt), (1.103)

with ‘transition matrix’ elements

Mm0 =

∫
dx φm e

U(x)/(2D)∂xp0. (1.104)

The asymptotic solution of Eq. (1.103) reads

a1m(t) = −Mm0

[
Ω

λ2
m + Ω2

sin(Ωt) +
λm

λ2
m + Ω2

cos(Ωt)

]
. (1.105)

Note that, because ∂xp0 is an antisymmetric function, the matrix elements Mm0 vanish18

for even values m = 0, 2, 4, . . ., so that only the contributions from odd values m = 1, 3, 5 . . .
are asymptotically relevant.

Focussing on the leading order contribution, m = 1, and noting that p0(x) = p0(−x),
we can estimate the position mean value

E[X(t)] =

∫
dx p(t, x)x (1.106)

from

E[X(t)] ' A

∫
dx p1(t, x)x

' A

∫
dx e−U(x)/(2D) a11(t)φ1(x)x

= −AM10

[
Ω

λ2
1 + Ω2

sin(Ωt) +
λ1

λ2
1 + Ω2

cos(Ωt)

] ∫
dx e−U(x)/(2D) φ1(x)x

Using λ1 = 2kK, where kK is the Kramers rate from Eq. (1.91), we can rewrite this more
compactly as

E[X(t)] = X cos(Ωt− ϕ) (1.107a)

with phase shift

ϕ = arctan

(
Ω

2kK

)
(1.107b)

18The potential U(x) is symmetric and, therefore, the effective Hamiltonian commutes with parity
operator, implying that the eigenfunctions φ2k are symmetric under x 7→ −x, whereas eigenfunctions
φ2k+1 are antisymmetric under this map.
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and amplitude

X = −A M10

(4k2
K + Ω2)1/2

∫
dx e−U(x)/(2D) φ1(x)x. (1.107c)

The amplitude X depends on the noise strength D through kK, through the integral factor
and also through the matrix element

M10 =

∫
dx φ1 e

U(x)/(2D)∂xp0. (1.108)

To compute X, one first needs to determine the eigenfunction φ1 of H0 as defined in
Eq. (1.101). For the quartic double-well potential (1.93b), this cannot be done analytically
but there exist standard techniques (e.g., Ritz method) for approximating φ1 by functions
that are orthogonal to φ0 =

√
p0/Z0. Depending on the method employed, analytical

estimates for X may vary quantitatively but always show a non-monotonic dependence on
the noise strength D for fixed potential-parameters (a, b). As discussed in [GHJM98], a
reasonably accurate estimate for X is given by

X ' Aa

Db

(
4k2

K

4k2
K + Ω2

)1/2

, (1.109)

which exhibits a maximum for a critical value D∗ determined by

4k2
K = Ω2

(
∆U

D∗
− 1

)
. (1.110)

That is, the value D∗ corresponds to the optimal noise strength, for which the mean
value E[X(t)] shows maximal response to the underlying periodic signal – hence the name
‘stochastic resonance’ (SR).

1.5.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P±(t) of the coarse-grained particle-states ‘left well’ (−) and ‘right well’ (+),
as defined by Eq. (1.76). This approach leads to the following two-state master equations
with time-dependent rates

Ṗ−(t) = −k+(t)P− + k−(t)P+, (1.111a)

Ṗ+(t) = k+(t)P− − k−(t)P+. (1.111b)

The general solution of this pair of ODEs is given by [GHJM98]

P±(t) = g(t)

[
P±(t0) +

∫ t

t0

ds
k±(s)

g(s)

]
(1.112a)
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where

g(t) = exp

{
−
∫ t

t0

ds [k+(s) + k−(s)]

}
. (1.112b)

To discuss SR within this framework, it is plausible to postulate time-dependent Arrhenius-
type rates,

k±(t) = kK exp

[
±Ax∗

D
cos(Ωt)

]
. (1.113)

Adopting these rates and considering the asymptotic limit t0 → −∞, one can Taylor-
expand the exact solution (1.112) for Ax∗ � D to obtain

P±(t) = kK

[
1± Ax∗

D
cos(Ωt) +

(
Ax∗
D

)2

cos2(Ωt)± . . .

]
. (1.114)

These approximations are valid for slow driving (adiabatic regime), and they allow us to
compute expectation values to leading order in Ax∗/D. In particular, one then finds for
the mean position the asymptotic linear response result [GHJM98]

E[X(t)] = X cos(Ωt− ϕ) (1.115a)

where

X =
Ax2
∗

D

(
4k2

K

4k2
K + Ω2

)1/2

, ϕ = arctan

(
Ω

2kK

)
(1.115b)

with kK denoting Kramers rate as defined in Eq. (1.91). Note that Eqs. (1.115) are con-
sistent with our earlier result (1.107).

1.6 Brownian motors

Many biophysical processes, from muscular contractions to self-propulsion of microorgan-
isms or intracellular transport, rely on biological motors. These are, roughly speaking,
collections of proteins that are capable of rectifying thermal and other random fluctua-
tions to achieve directed motion. Here, we focus on a minimal mathematical model that
captures, in a simplified manner, the main building principles of Brownian motors:19

• a spatially periodic structure (ratchet potential) that violates reflection symmetry,

• thermal or non-thermal random fluctuations, and

• a deterministic or stochastic pumping process that drives the system away from
thermal equilibrium.

19For further reading, we refer to the review articles [HM09, Rei02].
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Generally speaking, the combination of broken spatial symmetry and non-equilibrium driv-
ing is sufficient for generating stationary currents by means of a ratchet effect.

Most biological micro-motors operate in the low Reynolds number regime, where inertia
is negligible. A minimal model can therefore be formulated in terms of an over-damped
Ito-SDE

dX(t) = −U ′(X) dt+ F (t)dt+
√

2D(t) ∗ dB(t). (1.116)

Here, U is a periodic potential

U(x) = U(x+ L) (1.117a)

with broken reflection symmetry, i.e., there is no δx such that

U(−x) = U(x+ δx). (1.117b)

A typical example is

U = U0[sin(2πx/L) +
1

4
sin(4πx/L)]. (1.117c)

The function F (t) is a deterministic driving force, and the noise amplitude D(t) can be
time-dependent as well.

The corresponding FPE for the associated PDF p(t, x) reads

∂tp = −∂xj , j(t, x) = −{[U ′ − F (t)]p+D(t)∂xp}, (1.118)

and we assume that p is normalized to the total number of particles, i.e.

NL(t) =

∫ L

0

dx p(t, x) (1.119)

gives the number of particles in [0, L]. The quantity of interest is the mean particle velocity
vL per period defined by

vL(t) :=
1

NL(t)

∫ L

0

dx j(t, x). (1.120)

Inserting the expression for j, we find for spatially periodic solutions with p(t, x) = p(t, x+ L)
that

vL =
1

NL(t)

∫ L

0

dx [F (t)− U ′(x)] p(t, x). (1.121)
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1.6.1 Tilted Smoluchowski-Feynman ratchet

As a first example, assume that F = const. and D = const. This case can be considered
as a (very) simple model for kinesin or dynein walking along a polar microtubule, with the
constant force F ≥ 0 accounting for the polarity. We would like to determine the mean
transport velocity vL for this model.

To evaluate Eq. (1.121), we focus on the long-time limit, noting that a stationary
solution p∞(x) of the corresponding FPE (1.118) must yield a constant current-density j∞,
i.e.,

j∞ = −[(∂xΦ)p∞ +D∂xp∞] (1.122)

where

Φ(x) = U(x)− xF (1.123)

is the full effective potential acting on the walker. By comparing with (1.85), one finds
that the desired constant-current solution is given by

p∞(x) =
1

Z
e−Φ(x)/D

∫ x+L

x

dy eΦ(y)/D. (1.124)

This solution is spatially periodic, as can be seen from

p∞(x+ L) =
1

Z
e−[U(x+L)−(x+L)F ]/D

∫ x+2L

x+L

dy e[U(y)−yF ]/D

=
1

Z
e−[U(x)−(x+L)F ]/D

∫ x+L

x

dz e[U(z+L)−(z+L)F ]/D

=
1

Z
e−[U(x)−(x+L)F ]/D

∫ x+L

x

dz e[U(z)−(z+L)F ]/D

= p∞(x), (1.125)

where we have used the coordinate transformation z = y − L ∈ [x, x + L] after the first
line. Inserting p∞(x) into Eq. (1.121) gives

vL = − 1

NL

∫ L

0

dx (∂xΦ) p∞

= − 1

ZNL

∫ L

0

dx (∂xΦ) e−Φ(x)/D

∫ x+L

x

dy eΦ(y)/D

=
D

ZNL

∫ L

0

dx
[
∂x e

−Φ(x)/D
] ∫ x+L

x

dy eΦ(y)/D. (1.126)
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Integrating by parts, this can be simplified to

vL = − D

ZNL

∫ L

0

dx e−Φ(x)/D∂x

∫ x+L

x

dy eΦ(y)/D

= − D

ZNL

∫ L

0

dx e−Φ(x)/D
[
eΦ(x+L)/D − eΦ(x)/D

]
=

D

ZNL

∫ L

0

dx
{

1− e[Φ(x+L)−Φ(x)]/D
}

=
D

ZNL

∫ L

0

dx
{

1− e−F [(x+L)−x]/D
}

=
DL

ZNL

(
1− e−FL/D

)
, (1.127)

where NL can be expressed as

NL =
1

Z

∫ L

0

dx

∫ x+L

x

dy e−[Φ(x)−Φ(y)]/D. (1.128)

We thus obtain the final result

vL = DL
1− e−FL/D∫ L

0
dx
∫ x+L

x
dy e−[Φ(x)−Φ(y)]/D

, (1.129)

which holds for arbitrary periodic potentials U(x). Note that there is no net-current at
equilibrium F = 0.

1.6.2 Temperature ratchet

As we have seen in the preceding sections, the combination of noise and nonlinear dynam-
ics can yield surprising transport effects. Another example is the so-called temperature-
ratchet, which can be captured by the minimal SDE model

dX(t) = [F − U ′(X)] dt+
√

2D(t) dB(t), (1.130a)

where D(t) = D(t+ T ) is now a time-dependent noise amplitude, such as for instance

D(t) = D̄ {1 + A sign[sin(2πt/T )]} , (1.130b)

where |A| < 1. Such a temporally varying noise strength can be realized by heating
and cooling the ratchet system periodically. Transport can be quantified in terms of the
combined spatio-temporal average

〈Ẋ〉 :=
1

T

∫ t+T

t

ds

∫ L

0

dx j(t, x)

=
1

T

∫ t+T

t

ds

∫ L

0

dx [F − U ′(x)] p(t, x). (1.131)
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This choice is motivated by the fact that the equations of motions are periodic in space
and time, which suggests an asymptotically oscillating solution p(t, x) = p(t, x + L) =
p(t + T, L) = p(t + T, x + L) for the probability density. Equation (1.130) has been
studied numerically (see slide and Sec. 2.6 in Ref. [Rei02]), and was found to predict
an counterintuitive effect: In the presence of a small load force, optimally tuned periodic
thermal pumping allows particles to climb up-hill (see slides for an illustration).

1.7 Fluctuation-dissipation relation

Until now, we focused primarily on over-damped Brownian motion processes, as sufficient
to describe low-Reynolds number object. When inertia is not negligible, the above concepts
can be easily extended by adding friction and noise to the Hamiltonian equation of motions.
Considering a Hamiltonian H(x1, . . . , xN , p1, . . . , pN), the corresponding system of SDEs
reads

dxi =
∂H

∂pi
dt (1.132a)

dpi = −∂H
∂xi

dt− γpidt+
√

2D dBi(t). (1.132b)

where (B1(t), . . . , BN(t)) are standard Brownian motions, γ is the Stokes friction coefficient
and D the diffusion constant in momentum space. The last two terms in Eq. (1.132b)
provide an effective description of the momentum transfer with a surrounding heat bath.
If the Hamiltonian has the standard form

H =
∑
i

p2
i

2m
+ U(x1, . . . , xN), (1.133)

corresponding to momentum coordinates pi = mẋi, then the overdamped SDE is formally
recovered by assuming dpi ' 0 in Eq. (1.132b) and dividing by mγ, yielding

dxi = − 1

mγ

∂U

∂xi
dt+

√
2D

m2γ2
dBi(t). (1.134)

We see that the spatial diffusion constant D and the momentum diffusion constant D are
related by

D =
D

m2γ2
. (1.135)

The Fokker-Planck equation (FPE) governing the phase space PDF f(t, x1, . . . , xN , p1, . . . , pN)
of the stochastic process (1.132) reads

∂tf +
∑
i

(
∂H

∂pi

∂f

∂xi
− ∂H

∂xi

∂f

∂pi

)
=
∑
i

∂

∂pi

(
γpif + D

∂f

∂pi

)
(1.136)
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The lhs. vanishes if f is a function of the Hamiltonian H. The rhs. vanishes for the
particular ansatz

f =
1

Z
exp

(
− H

kBT

)
, (1.137)

where T is the temperature of the surrounding heat bath. To see this, note that

∂f

∂pi
= − 1

kBT

∂H

∂pi
exp

(
− H

kBT

)
= − 1

kBT

pi
m
f (1.138)

so that the components of the dissipative momentum current,

Ji = −
(
γpif + D

∂f

∂pi

)
= −

(
γpif −

D

kBT

pi
m
f

)
= −

(
γ − D

mkBT

)
pif (1.139)

vanishes if

D = γmkBT ⇔ D =
kBT

γm
. (1.140)

Equation (1.140) is the fluctuation-dissipation relation, connecting the diffusion constant
(strength of the fluctuations) and the friction coefficient (dissipation) through the temper-
ature of the bath.

1.8 Fluctuation theorems

20 Microbiological systems often perform ‘thermodynamic’ operations with a mesoscopic
number of degrees of freedom. To characterize biological motors, protein energetics, etc.
in terms of thermodynamic quantities (work, entropy, etc.), an extension of traditional
thermodynamic concepts to non-equilibrium processes is has been developed over the last
decade. Theoretical work in this direction was triggered by the development of new ex-
perimental techniques [BSLS00] that make it possible to probe the folding and twisting
characteristics of individual DNA molecules with the help of optical tweezers (see Fig. 1.1
for a simple schematic). These efforts led, amongst others, to the discovery of a number
of exact fluctuation theorems (FTs) for non-equilibrium systems, the simplest version of
which we will discuss below.

The total Hamiltonian comprising the system of interest, e.g. a DNA molecule described
by coordinates x(t)), its environment y and mutual interactions reads

H(x,y;λ(t)) = H(x;λ(t)) +Henv(y) +Hint(x,y) (1.141)

where λ(t) denotes one or more external control parameters (e.g., the force exerted by a
tweezer in a molecule pulling experiments, see Fig. 1.1). The function λ(t) defines the

20The discussion in this section closely follows that in the Christopher Jarzynski’s review article [Jar11].
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Figure 1.1: Schematic representation of a molecule pulling experiment (from Ref. [Jar11]).
The molecule is modeled by a collection of masses connected by springs. The tweezer acts
on one end of the molecule, e.g., via an attached gold bead (blue), whereas the other end
is attached to surface.

protocol of the control parameter variation and, for simplicity, we will assume that there is
only a single control parameter λ from now on. For example, for the toy model in Fig. 1.1
we have x = (z1, z2, z3, p1, p2, p3) and

H(x;λ(t)) =
3∑
i=1

p2
i

2m
+

2∑
k=0

u(zk+1 − zk) + u(λ− z3) (1.142)

where u is interaction potential and z0(t) ≡ 0 the position of the wall. The work performed
during an infinitesimal parameter variation dλ is defined by

δW := dλ
∂H

∂λ
(x;λ). (1.143)

For a given protocol λ(t) with initial condition λ(0) = λ0 and final λ(τ) = λτ , the total
work performed on the system is

W =

∫
δW =

∫ τ

0

dt λ̇(t)
∂H

∂λ
(x(t);λ(t)) (1.144)

where the integral is computed along the trajectory x(t) realized by the system. That
is, for a given realization W depends not only on the protocol but also on the initial
state x0 of the system and the initial state y0 of the environment, if we assume that
Hint(x,y) > 0 during the process. If we repeat this process many times for the same
protocol, we will observe different values of work {W1,W2, . . . , } that will be governed by
a certain probability density ρ(W ). FTs are exact equalities and inequalities for certain
expectation values

〈G(W )〉 :=

∫
dW ρ(W ) G(W ), (1.145)
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that, under very general conditions, hold regardless of exact time dependence λ(t).
To simplify the subsequent discussion, let us assume that we are able to decouple the

system from the environment21 at time t = 0, and assume that at time t = 0 the PDF of
the system state is given by a canonical distribution

f(x0;λ0, T ) =
1

Z(λ0, T )
exp

[
−H(x0;λ0)

kBT

]
, (1.146a)

where T is the initial equilibrium temperature of system and environment at t = 0, and

Z(λ0, T ) =

∫
dx0 exp

[
−H(x0;λ0)

kBT

]
(1.146b)

the classical partition function. In this case, the initial free energy of the system is given
by

F0 = −kBT lnZ(λ0, T ). (1.147)

Moreover, since the dynamics for t > 0 is completely Hamiltonian, we have

dH

dt
=

∑
i

(
∂H

∂pi
ṗi +

∂H

∂zi
żi

)
+
∂H

∂t

=
∑
i

[
∂H

∂pi

(
−∂H
∂zi

)
+
∂H

∂zi

(
∂H

∂pi

)]
+
∂H

∂λ
λ̇

=
∂H

∂λ
λ̇ (1.148)

and, therefore,

W =

∫ τ

0

dt λ̇
∂H

∂λ
=

∫ τ

0

dH = H(xτ ;λτ )−H(x0;λ0) (1.149)

where x(τ) = xτ . Now consider the expectation value of the function G(W ) = e−W/(kBT ),
which can be expressed as〈

e−W/(kBT )
〉

=

∫
dx0 f(x0;λ0, T ) e−W/(kBT )

=

∫
dx0 f(x0;λ0, T ) e−[H(xτ ;λτ )−H(x0;λ0)]/(kBT )

=
1

Z(λ0, T )

∫
dx0 exp

[
−H(x0;λ0)

kBT

]
e−[H(xτ ;λτ )−H(x0;λ0)]/(kBT )

=
1

Z(λ0, T )

∫
dx0 e

−H(xτ ;λτ )/(kBT ) (1.150)

21Similar results hold for more complex dynamical models where the system remains coupled to the bath
throughout the process; see discussion in Ref. [Jar11] and references therein.
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Changing the integration variable from x0 7→ xτ , we can write this as

〈
e−W/(kBT )

〉
=

1

Z(λ0, T )

∫
dxτ

∣∣∣∣∂xτ∂x0

∣∣∣∣−1

e−H(xτ ;λτ )/(kBT )

=
1

Z(λ0, T )

∫
dxτ e

−H(xτ ;λτ )/(kBT )

=
Z(λτ , T )

Z(λ0, T )
(1.151)

Here, we have used Liouville’s theorem, which states that the phase volume is conserved
under a purely Hamiltonian evolution x0 7→ x(τ),∣∣∣∣∂xτ∂x0

∣∣∣∣ = 1 (1.152)

Rewriting further

〈
e−W/(kBT )

〉
= exp

{
kBT

kBT
ln

[
Z(λτ , T )

Z(λ0, T )

]}
= exp

{
− 1

kBT
[−kBT lnZ(λτ , T )− (−kBT ) lnZ(λ0, T )]

}
one thus finds the FT 〈

e−W/(kBT )
〉

= e−∆F/(kBT ) (1.153a)

where

∆F = F (λτ , T )− F (λ0, T ) (1.153b)

The FT (1.153) states that, in principle, one can estimate free energy differences by measur-
ing work W . In this context, it should be noted however that, in practice, the exponential
average

〈
e−W/(kBT )

〉
is difficult to sample as direct estimators suffer from slow convergence.

Furthermore, using Jensen’s inequality22

〈ex〉 ≥ e〈x〉 (1.154)

22Jensens’s inequality states that, if φ(x) is convex then

E[φ(X)] ≥ φ(E[X])

Proof: Let L(x) = a + bx be a line, tangent to φ(x) at the point x∗ = E[X]. Since φ is convex, we have
φ(x) ≥ L(x). Hence

E[φ(X)] ≥ E[L(X)] = a+ bE[X] = L(E[X]) = φ(E[X])
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we find

e−∆F/(kBT ) =
〈
e−W/(kBT )

〉
≥ e〈−W/(kBT )〉

which is equivalent to the Clausius inequality

∆F ≤ 〈W 〉, (1.155)

i.e., the average work provides an upper bound for the free energy difference.
Finally, we still note that

P[W < ∆F − ε] :=

∫ ∆F−ε

−∞
dW ρ(W )

≤
∫ ∆F−ε

−∞
dW ρ(W ) e(∆F−ε−W )/(kBT )

≤ e(∆F−ε)/(kBT )

∫ ∞
−∞

dW ρ(W ) e−W/(kBT )

= e(∆F−ε)/(kBT )
〈
e−W/(kBT )

〉
= e−ε/(kBT ) (1.156)

That is, the probability that a certain realization W violates the Clausius relation by an
amount ε is exponentially small.
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1.9 Problems (due Tuesday, Oct 21)

1. Provide and explain rough order-of-magnitude estimates.

(a) How heavy is a bacterium?

(b) How fast must a bacterium swim so that swimming makes sense?

(c) How large is the effective diffusion constant of bacteria that perform run-and-
tumble motion with run periods 1s?

(d) How large are the self-propulsion force and the torque generated by a bacterial
motor?

2. Brownian motion

(a) Show that the probability density of the classical one-dimensional RW ap-
proaches a Gaussian PDF in the continuum limit `, τ → 0 such that D =
`2/(2τ) = const.

(b) Compute the mean square displacement of the n-dimensional BM.

(c) Using heuristic arguments, estimate the return probability of a classical RW in
n = 1, 2, 3 dimensions.

(d) The Geometric BM is defined by the Ito SDE

dY = µY dt+ σY ∗ dB(t). (1.157a)

where µ and σ are constant parameters. Use Ito’s formula to show that

Y (t) = Y (0) exp

[(
µ− σ2

2

)
t+ σB(t)

]
. (1.157b)

Determine mean value and variance of Y (t).

3. Microcanonical fluctuation theorem

(a) Consider a Hamiltonian system H(x;λ(t)) with protocol λ(t) such that λ(0) =
λ0 and λ(τ) = λτ . For the forward process (+), λ0 → λτ , assume that the
system is initially, at time t = 0, in the microcanonical state H(x;λ0) = E0,
corresponding to the PDF

p(x;λ0) =
δ(E0 −H(x;λ0)

ω(E0, λ0)
(1.158a)

Define the corresponding microcanonical PDF for the backward process (−),
λτ → λ0, and determine the work W± performed during each realization of the
forward/backward process.
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(b) Using Liouville’s theorem, show that the associated work PDFs p±(w) satisfy
the relation

p−(−w)

p+(w)
=

ω(E0, λ0)

ω(E0 + w, λτ )
. (1.158b)

(c) Express equation (1.158b) in terms of the Boltzmann entropy SB = lnω of the
final and initial state, and also in terms of the Gibbs entropy SG = ln Ω and the
Gibbs temperature TG = Ω/ω.
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Chapter 2

Polymers

2.1 Persistent random walks

2.1.1 von Mises-Fisher (vMF) distribution

The PDF of the vMF distribution on the unit sphere n ∈ S reads

f(n|µ) = C2e
κn·µ. (2.1)

The parameter µ ∈ S determines the mean direction and κ the spread, with κ = 0
corresponding to a uniform distribution and κ→∞ to a δ-distribution at n = µ. Assuming
w.l.o.g. µ = (0, 0, 1) and using spherical coordinates n = (cosφ sin θ, sinφ sin θ, cos θ) with
(φ, θ) ∈ [0, 2π)× [0, π], the normalization constant C2 can be computed from

1 = C2

∫ 2π

0

dφ

∫ π

0

dθ sin θ f(n|µ)

= C2

∫ 2π

0

dφ

∫ π

0

dθ sin θ eκ cos θ

= C2
4π sinhκ

κ
, (2.2)

yielding

C2 =
κ

4π sinhκ
. (2.3)

Similarly, one finds for the mean

E[n|µ] = C2

∫
dnn eκn·µ =

(
1

tanhκ
− 1

κ

)
µ =: σµ, (2.4a)

where the scale-factor σ(κ) exhibits the following limiting behaviors

lim
κ→0

σ(κ) = 0, (2.4b)

lim
κ→∞

σ(κ) = 1. (2.4c)
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2.1.2 vMF polymer model

Consider an idealized polymer consisting of i = 1, . . . , N segments of length λ. Each
segment has an orientation µi, so that the vector connecting the two polymer ends is given
by

R(N) =
N∑
i=1

Ri = λ

N∑
i=1

µi. (2.5)

The total length of the polymer is L = Nλ and w.l.o.g. we choose R(0) and µ1 = (0, 0, 1).
We assume that the conditional PDF of µi for a given µi−1, is a vMF-distribution with
spread parameter κ,

f(µi|µi−1) = C2e
κµi·µi−1 . (2.6)

We would like to compute correlation functions and statistical moments of R(N) in
the limit of large N . Of particular interest are the mean end-position

E[R(N)|µ1] = λ
N∑
n=1

E[µn|µ1], (2.7a)

the squared end-to-end distance

D(N) = E[R(N) ·R(N)], (2.7b)

and the excursion PDF

pN(r) = E
[
δ(r −R(N))

]
. (2.7c)

Mean end-position and persistence length

To compute the mean end-position E[R(N)|µ1] for a given initial condition µ1, let us first
note that the conditional expectation value E[µn|µ1] can be computed as

E[µn|µ1] = Cn−1
2

∫
µn e

κ
∑N
i=2 µi·µi−1

n∏
i=2

dµi

= σ Cn−2
2

∫
µn−1 e

κ
∑n−1
i=2 µi·µi−1

n−1∏
i=2

dµi

· · ·
= σn−1µ1, (2.8)

yielding

E[R(N)|µ1] = λ

N∑
n=1

σn−1 µ1 = λ
N−1∑
n=0

σn µ1 = λ
1− σN

1− σ
µ1. (2.9)
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In the limit case of a uniform distribution, κ→ 0, we find at fixed N

E[R(N)|µ1] = λµ1 (2.10a)

whereas for an infinitely stiff polymer with κ→∞

E[R(N)|µ1] = λNµ1, (2.10b)

illustrating that the vMF-model interpolates between undirected random walking and bal-
listic motion.

An important quantity that characterizes the stiffness of a polymer is the persistence
length LP , intutively defined in terms of the asymptotically exponential decay of the ori-
entation correlation function

〈cos θN〉 ≡ E[µN · µ1] ' e−L/LP (2.11)

for large polymer length L = Nλ. Noting that

E[µN · µ1] = E[µN |µ1] · µ1, (2.12)

we can obtain LP from (2.8) by

1

LP
= − lim

L→∞

1

L
ln〈µN · µ1〉

= − lim
N→∞

1

λN
lnσN−1

= −1

λ
lnσ. (2.13)

Inserting the explicit expression σ(κ) from (2.4a), we find for κ� 1

LP '
λ

ln(3/κ)
, (2.14a)

whereas for κ� 1

LP ' λκ. (2.14b)

Squared end-to-end distance

To compute the squared end-to-end distance

D(N) = E[R(N) ·R(N)] = λ2

N∑
i,j=1

E[µi · µj], (2.15)

we may use that the orientation correlation is translation-invariant

E[µi · µj] = σ|i−j|. (2.16)
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Computing the double sum (2.15), one obtains

D(N) = λ2N − σ
(
2− 2σN + σN

)
(σ − 1)2

, (2.17)

and from this the limiting behaviors

lim
κ→0

D(N) = lim
σ→0

D(N) = λ2N, (2.18a)

lim
κ→∞

D(N) = lim
σ→1

D(N) = λ2N2, (2.18b)

corresponding to normal diffusion and ballistic growth. Conversely, when keeping κ < ∞
fixed but letting the number of monomers N →∞, then

D(κ) := lim
N→∞

D

N
= λ2 1 + σ

1− σ
, (2.18c)

This means that, for finite κ, the end-to-end distance increases with N1/2 corresponding
to normal diffusion. For floppy polymers with κ→ 0, one finds that D → λ2, whereas for
large κ

lim
κ→∞

D

κ
= 2λ2. (2.19)

That is, for long stiff polymers with κ� 1, we have

D ' 2λ2κ = 2λLP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
(

3

2πDN

)3/2

e−3r2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r
as a macroscopic state-variable, that can be realized by a number of different polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is λ3p(r), assuming the spatial resolution is of the order of the
segment length λ. The corresponding microcanonical entropy is given by

S ' kB ln[λ3p(r)] = S0 − kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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To obtain a prediction for the mean force f required to stretch the polymer by a small
amount dr, we can exploit the general thermodynamic relation

dE = δW + δQ, (2.23a)

where work and heat increments are defined as usual by

δW = −f · dr , δQ = TdS, (2.23b)

with T denoting temperature. If one neglect self-avoidance interactions, which are present
in real polymers, the energy remains constant during a change of conformation, dE = 0.
Hence,

dS =
f

T
· dr (2.24)

and the stretch force components are obtained as

fi = T

(
∂S

∂ri

)
= −3kBT

DN
ri. (2.25)

Thus far, our calculations implicitly assumed a microcanonical setting, since we focussed on
an isolated polymer. In most experiments, polymers are surrounded by liquid molecules
that may act as a canonical bath. If the polymer is sufficiently long (thermodynamic
limit) and if the coupling between polymer and bath is sufficiently weak, then one can
safely assume that microcanonical and canonical ensembles become equivalent. In this
case, −f is the force needed to stretch a polymer in a solvent bath of temperature T .

Furthermore, it is also instructive to compute the corresponding free-energy

F := E − TS = E − TS0 + kBT
3r2

2DN
. (2.26)

This is essentially a thermodynamic version of Hooke’s law

F = F0 +
K

2
r2 , K =

3kBT

DN
. (2.27)

For long stiff polymers we have DN ' 2λNLP = 2LLP , we find for the spring-constant

K =
3kBT

2LLP
. (2.28)

This means, for example, that the persistence length Lp can be inferred from force mea-
surements if temperature T and polymer length L are known.
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Self-avoidance (Flory’s scaling argument)

The simplest way of accounting for self-avoidance is to include in Eq. (2.27) a free-energy
contribution Fe that accounts for excluded volume effects. Consider a polymer consisting of
N � 1 monomers of volume vd with fixed end-to-end distance r. Flory’s scaling argument
assumes that for a fixed |r|, the N monomers may (very roughly) explore a volume of |r|d,
where d is the space dimension. The overlap probability for a single monomer is given by
the volume filling fraction φ = vdN/|r|d. Assuming short-range repulsion, so that F is
extensive, we have for N particles

Fe ' NkBT φ = NkBT
vdN

|r|d
, (2.29)

where kBT accounts for the thermal kinetic energy. Adding Fe to Eq. (2.27), we find in d
dimensions

F = F0 +NkBT

(
vdN

|r|d
+
|r|2d

2DdN2

)
. (2.30)

To obtain the equilibrium distance r∗, we must minimize this expression with respect to
r = |r|, which gives

0 =
dF

d|r|
= −dvdN

rd+1
∗

+
d

DdN2
r∗ (2.31)

and therefore

r∗ = (Ddvd)
1/d+2N3/(d+2). (2.32)

Thus, explicitly

d = 1 : r∗ ∝ N (2.33a)

d = 2 : r∗ ∝ N3/4, (2.33b)

d = 3 : r∗ ∝ N3/5. (2.33c)

The result is trivial for d = 1, seems to be exact for d = 2 when compared to simulations,
and is very close to best numerical results N0.589... for d = 3.
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2.2 Bead-spring model

To obtain a simple dynamical model for the motion of a polymer in a solvent fluid, we
can consider a chain consisting of α = 1, . . . , N beads, representing monomers at posi-
tions Xα(t). Neglecting inertial effects and hydrodynamic interactions, we may assume
that the dynamics of a single bead is governed by the over-damped Langevin equation

dXα(t) = −∇xαU({Xα}) dt+
√

2D ∗ dBα(t), (2.34)

where D is the thermal diffusion constant of a bead. The potential U contains contributions
from elastic nearest neighbor interactions Ue, from bending Ub and, to implement self-
avoidance, steric short-range repulsion U :

U = Ue + Ub + Us (2.35)

Defining (N − 1) chain link vectors Rα and their orientations µα by

Rα = Xα+1 −Xα , µα =
Rα

||Rα||
(2.36)

the potentials can be written as sums over 2-body and 3-body interactions

Ue =
N−1∑
α=1

u(||Rα||), (2.37a)

Ub =
N−2∑
α=1

b(µα · µα+1), (2.37b)

Us =
N∑
α=1

N∑
β=1,β 6=α

s(||Xα −Xβ||). (2.37c)

Specifically, the elastic spring potential u(r) and the steric repulsion potential s(r) en-
code 2-body interactions, whereas the bending potential b(q) involves 3-body interactions.2

Plausible choices are

u(r) =
K

2
(r − λ)2 , b(q) =

B

2
(q − 1)2 , s(r) =

S e−r/σ

rν
(2.38)

for some ν > 1. Although (2.34) can only be solved numerically, we know that the associ-
ated stationary equilibrium distribution is given by

pN({xα}) =
1

ZN
exp

[
−U({Xα})

D

]
, (2.39)

where

ZN =

∫ ( N∏
α=1

d3xα

)
exp

[
−U({xα})

D

]
. (2.40)

2In principle, one could still include a potential contribution Ut that penalizes twisting, which would
have to involve 4-bead interactions, for defining ‘twist’ requires three subsequent vectors {µα−1,µα,µα+1}.
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2.3 Continuum description

2.3.1 Differential geometry of curves

Consider a continuous curve r(t) ∈ R3, where t ∈ [0, T ]. Assume that the first three
derivatives ṙ(t), r̈(t),

...
r (t) are linearly independent. The length of the curve is given by

L =

∫ T

0

dt ||ṙ(t)|| (2.41)

where ṙ(t) = dr/dt and || · || denotes the Euclidean norm. The local unit tangent vector
is defined by

t =
ṙ

||ṙ||
. (2.42)

The unit normal vector, or unit curvature vector, is

n =
(I − tt) · r̈
||(I − tt) · r̈||

. (2.43)

Unit tangent vector t̂(t) and unit normal vector n̂(t) span the osculating (‘kissing’) plane
at point t. The unit binormal vector is defined by

b =
(I − tt) · (I − nn) · ...r
||(I − tt) · (I − nn) · ...r ||

. (2.44)

The orthonormal basis {t(t),n(t), b(t)} spans the local Frenet frame. For plane curves,
...
r (t) is not linearly independent of ṙ and r̈. In this case, we set b = t ∧ n.

The local curvature κ(t) and the associated radius of curvature ρ(t) = 1/κ are defined
by

κ(t) =
ṫ · n
||ṙ||

, (2.45)

and the local torsion τ(t) by

τ(t) =
ṅ · b
||ṙ||

. (2.46)

For plane curves with constant b, we have τ = 0.
Given ||ṙ||, κ(t), τ(t) and the initial values {t(0),n(0), b(0)}, the Frenet frames along

the curve can be obtained by solving the Frenet-Serret system

1

||ṙ||

 ṫṅ
ḃ

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 tn
b

 . (2.47a)

The above formulas simplify if t is the arc length, for in this case ||ṙ|| = 1.
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2.3.2 Stretchable polymers: Minimal model and equipartition

As a simple example, consider a polymer confined in a plane. Assume the polymer’s end-
points are fixed at (x, y) = (0, 0) and (x, y) = (0, L), respectively, and that the ground-
state configuration corresponds to a straight line connecting these two points. Denoting
the tension3 by γ, adopting the parameterization y = h(x) for the polymer and assuming
that the bending energy is negligible, the energy relative to the ground-state is given by

E = γ

[∫ L

0

dx
√

1 + h2
x − L

]
, (2.48)

where hx = h′(x). Restricting ourselves to small deformations, |hx| � 1, we may approxi-
mate

E ' γ

2

∫ L

0

dx h2
x. (2.49)

Taking into account that h(0) = h(L) = 0, we may represent h(x) and its derivative
through the Fourier-sine series

h(x) =
∞∑
n=1

An sin

(
nπx

L

)
(2.50a)

hx(x) =
∞∑
n=1

An
nπ

L
cos

(
nπx

L

)
. (2.50b)

Exploiting orthogonality∫ L

0

dx sin

(
nπx

L

)
sin

(
mπx

L

)
=
L

2
δnm (2.51)

we may rewrite the energy (2.49) as

E ' γ

2

∑
n

∑
m

∫ L

0

dxAnAm

(nπ
L

)(mπ
L

)
cos

(
nπx

L

)
cos

(
mπx

L

)
=

γ

2

∑
n

∑
m

AnAm

(nπ
L

)(mπ
L

) L
2
δnm

=
∞∑
n=1

En, (2.52a)

where the energy En stored in Fourier mode n is

En = A2
n

(
γn2π2

4L

)
. (2.52b)

3γ carries units of energy/length.
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Now assume the polymer is coupled to a bath and the stationary distribution is canonical

p({An}) =
1

Z
exp(−βE)

=
1

Z
exp

[
−β

∞∑
n=1

A2
n

(
γn2π2

4L

)]
(2.53)

with β = (kBT )−1. The PDF factorizes and, therefore, also the normalization constant

Z =
∞∏
i=1

Zn, (2.54a)

where

Zn =

∫ ∞
∞

dAn exp

[
−βA2

n

(
γn2π2

4L

)]
=

(
4πL

βγn2π2

)1/2

. (2.54b)

We thus find for the first to moments of An

E[An] = 0 (2.55a)

E[A2
n] =

2kBTL

γn2π2
, (2.55b)

and from this for the mean energy per mode

E[En] =

(
γn2π2

4L

)
E[A2

n] =
1

2
kBT. (2.56)

That is, each mode absorbs the same amount of thermal energy, which is just a manifestion
of the canonical equipartion theorem for harmonic degrees of freedom.

We may use the equipartition result to compute the variance of the polymer at the
position x ∈ [0, L]

E[h(x)2] :=
∞∑
n=1

∞∑
m=1

E[AnAm] sin

(
nπx

L

)
sin

(
mπx

L

)
=

∞∑
n=1

∞∑
m=1

E[A2
n]δnm sin

(
nπx

L

)
sin

(
mπx

L

)
=

(
2kBTL

γπ2

) ∞∑
n=1

sin2
(
nπx/L

)
n2

. (2.57)

If we additionally average along x

〈E[h(x)2]〉 =

(
kBTL

γπ2

) ∞∑
n=1

1

n2
=

(
kBTL

γπ2

)
π2

6
=
kBTL

6γ
. (2.58)

Thus, by measuring fluctuations along the polymer we may infer γ.
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2.3.3 Rigid polymers: Euler-Bernoulli equation

Consider a rigid polymer whose motion is confined to the (x, y)-plane, with one end fixed
at (x, y) = (0, 0) and the other moving freely. As before, we adopt the parameterization
h(x) and assume that the energy is can be expressed in terms of fundamental geometric
properties. At zero-temperature and in the absence of other forces, the groundstate of the
polymer is a straight configuration along the positive the x-axis, i.e., h0(x) = 0, x ∈ [0, L].

Since one end of the polymer can move freely, tension is negligible, and the main
contribution to the polymers energy comes from curvature κ,

E ' A

2

∫ L

0

dx κ2, (2.59)

where A is the bending modulus (units energy×length). For plane curves h(x), the curva-
ture can be expressed as

κ =
hxx

(1 + h2
x)

3/2
. (2.60)

Focussing on the limit of weak deformations, hx � 1, we may approximate κ ' hxx, and
the energy simplifies to

E ' A

2

∫ L

0

dx (hxx)
2. (2.61)

The exact form of the boundary conditions depend on how the polymer is attached to the
plane x = 0. Assuming that polymer is rigidly anchored at an angle 90◦, the boundary
conditions at the fixed end at x = 0 are

h(0) = 0 , hx(0) = 0. (2.62a)

At the free end, we will consider flux conditions

hxx(L) = 0 , hxxx(L) = 0. (2.62b)

Intuitively, because of κ = hxx, these last two conditions mean that the polymer tries to
maintain minimal absolute curvature at the free end. By means of the BCs (2.62) and two
partial integrations, we may rewrite (2.61) as

E ' A

2

[
hxhxx

∣∣∣∣L
0

−
∫ L

0

dx hxhxxx

]

=
A

2

[
−
∫ L

0

dx hxhxxx

]
=

A

2

[
−hhxxx

∣∣∣∣L
0

+

∫ L

0

dx hhxxxx

]
=
A

2

[∫ L

0

dx hhxxxx

]
. (2.63)
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If the polymer is surrounded by a viscous solvent, an initial perturbation h(0, x) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, x) will be of the over-damped form4

ηht = −δE
δh
, (2.64)

where η is a damping constant, and the variational derivative is defined by

δE[h(x)]

δh(y)
:= lim

ε→0

E[h(x) + εδ(x− y)]− E[h(x)]

ε
. (2.65)

Keeping terms up to order ε, we find for the energy functional (2.61)

E[h(x) + εδ(x− y)]− E[h(x)] =
A

2

∫ L

0

dx [(h+ εδ)xx(h+ εδ)xx − (hxx)
2]

=
A

2

∫ L

0

dx [2εhxxδxx + O(ε2)]

Using the integral identity

g(x) ∂nxδ(x− y) = (−1)nδ(x− y) ∂nxg(x) (2.66)

for any smooth function g, one obtains

δE[h(x)]

δh(y)
= A

∫ L

0

dx hxxxx(x) δ(x− y) = Ahxxxx(y), (2.67)

so that Eq. (2.64) becomes a linear fourth-order equation

ht = −αhxxxx , α =
A

η
. (2.68)

Inserting the ansatz

h = e−t/τφ(x) , ht = −1

τ
e−t/τφ , hxxxx = e−t/τφxxxx, (2.69)

gives the eigenvalue problem

1

τα
φ = φxxxx. (2.70)

for the one-dimensional biharmonic operator (∂2
x)

2, which has the general solution

φ(x) = B1 cosh(x/λ) +B2 sinh(x/λ) +B3 cos(x/λ) +B4 sin(x/λ) (2.71a)

4If inertia is important then one would need to term of the form µhtt on the lhs. of Eq. (2.64).
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where

λ = (ατ)1/4. (2.71b)

From the boundary conditions (2.62), we have

0 = B1 +B3

0 = B2 +B4

0 = B1 cosh(L/λ) +B2 sinh(L/λ)−B3 cos(L/λ)−B4 sin(L/λ)

0 = B1 sinh(L/λ) +B2 cosh(L/λ) +B3 sin(L/λ)−B4 cos(L/λ)

Inserting the first two conditions into the last two, we obtain the linear system

0 = B1[cosh(L/λ) + cos(L/λ)] +B2[sinh(L/λ) + sin(L/λ)] (2.73a)

0 = B1[sinh(L/λ)− sin(L/λ)] +B2[cosh(L/λ) + cos(L/λ)]. (2.73b)

For nontrivial solutions to exist, we must have

0 = det

(
[cosh(L/λ) + cos(L/λ)] [sinh(L/λ) + sin(L/λ)]
[sinh(L/λ)− sin(L/λ)] [cosh(L/λ) + cos(L/λ)]

)
(2.74)

which gives us the eigenvalue condition

0 = cosh(L/λ) cos(L/λ) + 1. (2.75)

This equation has solutions for discrete values λn > 0 that can be computed numerically,
and one finds for the first few eigenvalues

L

2λn
= {0.94, 2.35, 3.93, 5.50, . . .} . (2.76)

For comparison, for purely sinusoidal excitations of a harmonic string one would expect
that L/λn ∝ n. The full time-dependent solution can thus be written as

h(t, x) =
∞∑
n=1

B1n e
−t/τn

{
cosh(x/λn)− cos(x/λn) +

cos(L/λn) + cosh(L/λn)

sin(L/λn) + sinh(L/λn)
[sin(x/λn)− sinh(x/λn)]

}
, (2.77)

where τn = λ4
n/α = λ4

nη/A, and the coefficients B1n are determined by the initial condition.
To obtain an estimate for the energy per mode, let us consider the quasi-stationary

limit, which can be formally defined by η →∞. In this case, we have the mode-expansion

h(x) =
∞∑
n=1

B1n

{
cosh(x/λn)− cos(x/λn) +

cos(L/λn) + cosh(L/λn)

sin(L/λn) + sinh(L/λn)
[sin(x/λn)− sinh(x/λn)]

}
. (2.78)
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This expression can be inserted into (2.63), and after exploiting orthogonality of the bi-
harmonic eigenfunctions

E '
∑
n=1

En , En =
A

2

L

λ4
n

B2
n, (2.79)

i.e., the energy per mode is proportional to the square of the amplitude, just as in the
stretching case discussed in Sec. 2.3.2. It is therefore possible to compute thermal expec-
tation values exactly from Gaussian integrals. In particular, from equipartition

E[En] =
A

2

L

λ4
n

E[B2
n] =

1

2
kBT. (2.80)

If we combine this with the (crude) harmonic approximation λn ∝ n, then

E[B2
n] ∝ kBT

n4
, (2.81)

whereas in the stretching case we had found that E[B2
n] ∝ kBT/n

2.

2.4 Problems

1. Implement the torsion-free bead-spring model from Sec. 2.2 in MATLAB.

(a) Explain your choice of the discretization time-step.

(b) Compute, for suitable parameter choices/combinations, the orientation correla-
tion functions and the mean squared end-to-end distance.

(c) How do your results compare with the theoretical predictions (2.33)?

50



Chapter 3

Membranes

The discussion in this section builds on the review article [Sei97] and the textbook [OLXY99].

3.1 Reminder: 2D differential geometry

We consider an orientable surface in R3. Possible local parameterizations are

F (s1, s2) ∈ R3 (3.1)

where (s1, s2) ∈ U ⊆ R2. Alternatively, if one chooses Cartesian coordinates (s1, s2) =
(x, y), then it suffices to specify

z = f(x, y) (3.2a)

or, equivalently, the implicit representation

Φ(x, y, z) = z − f(x, y). (3.2b)

The vector representation (3.1) can be related to the ‘height’ representation (3.2a) by

F (x, y) =

 x
y

f(x, y)

 (3.3)

Denoting derivatives by F i = ∂siF , we introduce the surface metric tensor g = (gij) by

gij = F i · F j, (3.4a)

abbreviate its determinant by

|g| := det g, (3.4b)

and define the associated Laplace-Beltrami operator ∇2 by

∇2h =
1√
|g|
∂i(g

−1
ij

√
|g|∂jh), (3.4c)
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for some function h(s1, s2). For the Cartesian parameterization (3.3), one finds explicitly

F x(x, y) =

 1
0
fx

 , F y(x, y) =

 0
1
fy

 (3.5)

and, hence, the metric tensor

g = (gij) =

(
F x · F x F x · F y

F y · F x F y · F y

)
=

(
1 + f 2

x fxfy
fyfx 1 + f 2

y

)
(3.6a)

and its determinant

|g| = 1 + f 2
x + f 2

y , (3.6b)

where fx = ∂xf and fy = ∂yf . For later use, we still note that the inverse of the metric
tensor is given by

g−1 = (g−1
ij ) =

1

1 + f 2
x + f 2

y

(
1 + f 2

y −fxfy
−fyfx 1 + f 2

x

)
. (3.6c)

Assuming the surface is regular at (s1, s2), which just means that the tangent vectors F 1

and F 2 are linearly independent, the local unit normal vector is defined by

N =
F 1 ∧ F 2

||F 1 ∧ F 2||
. (3.7)

In terms of the Cartesian parameterization, this can also be rewritten as

N =
∇Φ

||∇Φ||
=

1√
1 + f 2

x + f 2
y

−fx−fy
1

 . (3.8)

Here, we have adopted the convention that {F 1,F 2,N} form a right-handed system.
To formulate ‘geometric’ energy functionals for membranes, we still require the concept

of curvature, which quantifies the local bending of the membrane. We define a 2 × 2-
curvature tensor R = (Rij) by

Rij = N · (F ij) (3.9)

and local mean curvature H and local Gauss curvature K by

H =
1

2
tr (g−1 ·R) , K = det(g−1 ·R). (3.10)

Adopting the Cartesian representation (3.2a), we have

F xx =

 0
0
fxx

 , F xy = F yx =

 0
0
fxy

 , F yy =

 0
0
fyy

 (3.11a)
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yielding the curvature tensor

(Rij) =

(
N · F xx N · F xy

N · F yx N · F yy

)
=

1√
1 + f 2

x + f 2
y

(
fxx fxy
fyx fyy

)
(3.11b)

Denoting the eigenvalues of the matrix g−1 · R by κ1 and κ2, we obtain for the mean
curvature

H =
1

2
(κ1 + κ2) =

(1 + f 2
y )fxx − 2fxfyfxy + (1 + f 2

x)fyy

2(1 + f 2
x + f 2

y )3/2
(3.12)

and for the Gauss curvature

K = κ1 · κ2 =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2
. (3.13)

An important result that relates curvature and topology is the Gauss-Bonnet theorem,
which states that any compact two-dimensional Riemannian manifold M with smooth
boundary ∂M , Gauss curvature K and geodesic curvature kg of ∂M satisfies the integral
equation ∫

M

K dA+

∮
∂M

kg ds = 2π χ(M). (3.14)

Here, dA is the area element on M , ds the line element along ∂M , and χ(M) the Euler
characteristic of M . The latter is given by χ(M) = 2−2g, where g is the genus (number of
handles) of M . For example, the 2-sphere M = S2 has g = 0 handles and hence χ(S2) = 2,
whereas a two-dimensional torus M = T2 has g = 1 handle and therefore χ(T2) = 0.

Equation (3.14) implies that, for any closed surface, the integral over K is always a
constant. That is, for closed membranes, the first integral in Eq. (3.14) represents just a
trivial (constant) energetic contribution.

3.2 Minimal surfaces

Minimal surfaces are surfaces that minimize the area within a given contour ∂M ,

A(M |∂M) =

∫
M

dA = min! (3.15)

Assuming a Cartesian parameterization z = f(x, y) and abbreviating fi = ∂if as before,
we have

dA =
√
|g| dxdy =

√
1 + f 2

x + f 2
y dxdy =: L dxdy, (3.16)

and the minimum condition (3.15) can be expressed in terms of the Euler-Lagrange equa-
tions

0 =
δA

δf
= −∂i

∂L

∂fi
. (3.17)
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Inserting the Lagrangian L =
√
|g|, one finds

0 = −

[
∂x

(
fx√

1 + f 2
x + f 2

y

)
+ ∂y

(
fy√

1 + f 2
x + f 2

y

)]
(3.18)

which may be recast in the form

0 =
(1 + f 2

y )fxx − 2fxfyfxy + (1 + f 2
x)fyy

(1 + f 2
x + f 2

y )3/2
= −2H. (3.19)

Thus, minimal surfaces satisfy

H = 0 ⇔ κ1 = −κ2, (3.20)

implying that each point of a minimal surface is a saddle point.

3.3 Thermal excitations of almost flat membranes

Assuming that a quasi-infinite membrane prefers a flat configuration, we postulate the
energy functional

E =

∫
dA fc , fc =

kc
2

(2H)2. (3.21a)

The constant kc is the bending rigidity and carries dimensions of energy. For an almost
planar membrane with |fx|, |fy| � 1, we may approximate

2H ' fxx + fyy, (3.22)

which gives to leading order for the energy

E ' kc
2

∫
dxdy (fxx + fyy)

2. (3.23)

Similar to our earlier discussion of polymers, we would like to express the energy in terms
of contributions from elementary excitations. To this end, we abbreviate x = (x, y) and
consider the Fourier ansatz

f(x) =

∫
d2q

(2π)2
f̂q exp(iq · x), (3.24)
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demanding f̂−q = f̂ ∗q to ensure real-valued solutions. Inserting the Fourier expansion
into (3.23) gives

E ' kc
2

∫
d2q

(2π)2

∫
d2q′

(2π)2

∫
dxdy (iq)2(iq′)2f̂qf̂q′ exp[i(q + q′) · x]

=
kc
2

∫
d2q

(2π)2

∫
d2q′(q2)(q′

2
)f̂qf̂q′ δ(q + q′)

=
kc
2

∫
d2q

(2π)2
|q|4f̂qf̂−q

=
kc
2

∫
d2q

(2π)2
|q|4f̂qf̂ ∗q . (3.25)

We see that each bending mode contributes an energy E(q) ∝ |q|4 to the total bending
energy, in agreement with our results for the bending of rigid polymers. Using standard
Gaussian path integral formulas, we can compute the thermal correlation function1

〈f̂qf̂ ∗q′〉 =

∫
Df̂ f̂qf̂

∗
q′
e−βE

Z

=
1

Z

∫
Df̂ f̂qf̂

∗
q′ e
−β kc

2(2π)2

∫
d2qd2q′ δ(q−q′)|q|4f̂q f̂∗q′

=
kBT

kc|q|4
(2π)2δ(q − q′). (3.27)

This result can be used to calculate the thermal mean squared deviations of the derivatives

〈f 2
x + f 2

y 〉 = −
∫

d2q

(2π)2

∫
d2q′

(2π)2
(q · q′)〈f̂qf̂ ∗q′〉

= −
∫

d2q

(2π)2

∫
d2q′

(2π)2
(q · q′) kBT

kc|q|4
(2π)2δ(q − q′)

=

∫
d2q

(2π)2

kBT

kc|q|2

=

∫
d|q|
2π

kBT

kc|q|
, (3.28)

1Recall that for a d-dimensional Gaussian integral with positive-definite diagonal matrix A =
diag(A11, . . . , Add) = (Aiiδij) ∫

ddx

(
detA

2π

)1/2

e−
1
2x·A·x = 1 (3.26a)∫

ddx

(
detA

2π

)1/2

e−
1
2x·A·x xixj =

δij
Aii

. (3.26b)

Eq. (3.27) is the infinite-dimensional generalization of this relation, obtained by rewriting the complex
path integral in terms of real and imaginary part and by noting that

∫
dq′ δ(q− q′) δ(q′− q′′) = δ(q− q′′),

hence δ−1 = δ in this sense.
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where we have transformed to polar coordinates in the last step. To obtain a meaningful
result, we need to specific upper and lower bounds for the |q|-range. These bounds are
provided naturally by the molecular length scale a and the linear extension L � a of the
membrane, yielding

〈f 2
x + f 2

y 〉 =
kBT

2πkc

∫ (2π)/a

(2π)/L

d|q|
|q|

=
kBT

2πkc
ln(L/a). (3.29)

Recalling our initial assumption |fx|, |fy| � 1, we see that the notion of planar membrane
is only meaningful as long as 〈f 2

x + f 2
y 〉 � 1, or equivalently if

L� LP = ae2πkc/(kBT ), (3.30)

where LP is the persistence length, defined by the condition 〈f 2
x + f 2

y 〉 = 1.

3.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich [Hel73] proposed in 1973 the following geometric curvature energy per unit area for
a closed membrane

fc =
kc
2

(2H − c0)2 + kGK, (3.31)

where constants kc, kG are bending rigidities and c0 is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Fc =

∫
dA fc + σ

∫
dA+ ∆p

∫
dV, (3.32)

where σ is the surface tension and ∆p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

∆p− 2σH + kc(2H − c0)(2H2 + c0H − 2K) + kc∇2(2H − c0) = 0, (3.33)

where ∇2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (3.33)
uses our earlier result

δA

δf
= −2H, (3.34)

and the fact that the volume integral may be rewritten as3

V =

∫
dV =

∫
dA

1

3
F ·N , (3.35)

2The full derivation can be found in Chapter 3 of Ref. [OLXY99].
3Here, we made use of the volume formula dV = 1

3h dA for a cone or pyramid of height h = F ·N .
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which gives

δV

δf
= 1. (3.36)

For open membranes with boundary ∂M , a plausible energy functional is given by

Fo =

∫
dA fc + σ

∫
dA+ γ

∮
∂M

ds, (3.37)

where γ is the line tension of the boundary. In this case, variation yields not only the
corresponding shape equation but also a non-trivial set of boundary conditions.
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Chapter 4

Pattern formation

4.1 Warm-up

Consider a scalar density ρ(t, x), governed by the simple diffusion equation

ρt = Dρxx (4.1a)

with reflecting boundary conditions on [0, L],

ρx(t, 0) = ρx(t, L) = 0. (4.1b)

This dynamics defined by Eqs. (4.1) conserves the total ‘mass’

M(t) =

∫ L

0

dx ρ(t, x) ≡M0, (4.2)

and a spatially homogeneous stationary solution is given by

ρ0 = M0/L. (4.3)

To evaluate its stability, we can consider wave-like perturbations

ρ(t, x) = ρ0 + δρ(t, x) , δρ = ε eσt−ikx. (4.4)

Inserting this perturbation ansatz into (4.1) gives

σ(k) = −Dk2 ≥ 0 (4.5)

signaling that ρ0 is a stable solution, because all modes with |k| > 0 become exponentially
damped.
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4.2 Swift-Hohenberg model

As a simple generalization of (4.1), we consider the simplest isotropic fourth-order model [DHBG13]
for a non-conserved scalar or pseudo-scalar order-parameter ψ(t,x), given by

∂tψ = F (ψ) + γ0∆ψ − γ2∆2ψ, (4.6)

where ∂t = ∂/∂t denotes the time derivative, and 4 = ∇2 is the d-dimensional Laplacian.
The force F is derived from a Landau-potental U(ψ)

F = −∂U
∂ψ

, U(ψ) =
a

2
ψ2 +

b

3
ψ3 +

c

4
ψ4, (4.7)

where c > 0 to ensure stability.
The derivative terms on the rhs. of (4.6) can also be obtained by variational methods

from a suitably defined energy functional,1

∂tψ = −δF
δψ
, (4.10)

where

F[ψ] =

∫
ddx

[
1

2
γ0(∇ψ) · (∇ψ) +

1

2
γ2(4ψ)(4ψ) + U(ψ)

]
. (4.11)

In the context of active suspensions, ψ could, for example, quantify local energy fluctua-
tions, local alignment, phase differences, or vorticity. In this case, the transport coefficients
(a, b, c, γ1, γ2) in Equations (4.6) and (4.7) will contain passive contributions due to steric or
other physical interactions as well as active motility-related contributions. In general, it is
very challenging to derive the exact functional dependence between macroscopic transport
coefficients and microscopic interaction and motility parameters for active non-equilibrium
systems. With regard to practical applications, however, it is often sufficient to view
transport coefficients as purely phenomenological parameters that can be determined by
matching the solutions of continuum models, such as the one defined by Equations (4.6)

1To see this, consider a functional F that depends on some real-valued fields φk(x1, . . . , xd), k =
1, . . . , N , and their first and second derivatives, and can be written as

F[φ] =

∫
ddxF (φk, ∂iφk, ∂ijφk), (4.8)

where φ = (φk) and ∂i = ∂/∂xi, ∂ij = ∂2/∂xi∂xj . Assuming F (ηk, ξik, ζijk) is a quadratic polynomial in
ξik and ζijk, the functional derivative of F with respect to φk is given by

δF

δφk
=

∂F

∂φk
− ∂i

∂F

∂(∂iφk)
+ ∂ij

∂F

∂(∂ijφk)
, (4.9)

with a summation convention for identical indices i, j = 1, . . . , d.
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and (4.7), to experimental data. This is analogous to treating the viscosity in the clas-
sical Navier-Stokes equations as a phenomenological fit parameter. The actual predictive
strength of a continuum model lies in the fact that, once the parameter values have been
determined for a given set-up, the theory can be used to obtain predictions for how the
system should behave in different geometries or under changes of the boundary conditions
(externally imposed shear, etc.). In some cases, it may also be possible to deduce qualita-
tive parameter dependencies from physical or biological considerations. For instance, if ψ
describes vorticity or local angular momentum in an isolated active fluid, say a bacterial
suspension, then transitions from a > 0 to a < 0 or γ0 > 0 to γ0 < 0, which both lead to
non-zero flow patterns, must be connected to the microscopic self-swimming speed v0 of
the bacteria. Assuming a linear relation, this suggests that, to leading order, a0 = δ−αv0

where δ > 0 is a passive damping contribution and αv0 > 0 the active part, and similarly
for γ0. It may be worthwhile to stress at this point that higher-than-second-order spa-
tial derivatives can also be present in passive systems, but their effects on the dynamics
will usually be small as long as γ0 > 0. If, however, physical or biological mechanisms
can cause γ0 to become negative, then higher-order damping terms, such as the γ2-term
in (4.6), cannot be neglected any longer as they are essential for ensuring stability at large
wave-numbers.2

4.2.1 Linear stability analysis

The fixed points of (4.6) are determined by the zeros of the force F (ψ), corresponding to
the minima of the potential U , yielding

ψ0 = 0 (4.13a)

2For completeness, one should also note that in the case of a conserved order-parameter field % the
field equations would either have to take the current-form ∂t% = −∇ · J(%) or, alternatively, one can also
implement conservation laws globally by means of Lagrange multipliers. To illustrate this briefly, let us
consider a system that is confined to a finite spatial domain Ω ⊂ Rd of volume

|Ω| =
∫

Ω

ddx (4.12)

and described by a density % that is subject to a global ‘mass’ constraint

M =

∫
Ω

ddx % = const.

Assuming the dynamics of % is governed by an equation similar to (4.6), the Lagrange-multiplier approach
yields the non-local equation

∂t% = F (%) + γ0∆%− γ2∆2%− λ1,

λ1 =
1

|Ω|

∫
Ω

ddx
[
F (%) + γ0∆%− γ2∆2%

]
.
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and

ψ± = − b

2c
±
√

b2

4c2
− a

c
, if b2 > 4ac. (4.13b)

Linearization of (4.6) near ψ0 for small perturbations

δψ = ε0 exp(σ0t− ik · x) (4.14)

gives

σ0(k) = −(a+ γ0|k|2 + γ2|k|4). (4.15)

Similarly, one finds for

ψ = ψ± + ε± exp(σ±t− ik · x) (4.16)

the dispersion relation

σ±(k) = −
[
−(2a+ bψ±) + γ0|k|2 + γ2|k|4

]
. (4.17)

In both cases, k-modes with σ > 0 are unstable. From Eqs. (4.15) and (4.17), we see
immediately that γ2 > 0 is required to ensure small-wavelength stability of the theory and,
furthermore, that non-trivial dynamics can be expected if a and/or γ0 take negative values.
In particular, all three fixed points can become simultaneously unstable if γ0 < 0.

4.2.2 Symmetry breaking

With regard to microbial suspensions, the minimal model (4.6) is useful for illustrating how
microscopic symmetry-breaking mechanisms that affect the motion of individual organisms
or cells [DTM+05, LTT08, EKG10, DMCS12] can be implemented into macroscopic field
equations. To demonstrate this, we interpret ψ as a vorticity-like 2D pseudo-scalar field
that quantifies local angular momentum in a dense microbial suspension, assumed to be
confined to a thin quasi-2D layer of fluid. If the confinement mechanism is top-bottom
symmetric, as for example in a thin free-standing bacterial film [SAKG07], then one would
expect that vortices of either handedness are equally likely. In this case, (4.6) must be
invariant under ψ → −ψ, implying that U(ψ) = U(−ψ) and, therefore, b = 0 in (4.7).
Intuitively, the transformation ψ → −ψ corresponds to a reflection of the observer position
at the midplane of the film (watching the 2D layer from above vs. watching it from below).

The situation can be rather different, however, if we consider the dynamics of microor-
ganisms close to a liquid-solid interface, such as the motion of bacteria or sperms cells in
the vicinity of a glass slide (Fig. 4.2). In this case, it is known that the trajectory of a
swimming cell can exhibit a preferred handedness [DTM+05, LTT08, EKG10, DMCS12].
For example, the bacteria Escherichia coli [DTM+05] and Caulobacter [LTT08] have been
observed to swim in circles when confined near to a solid surface. More precisely, due to an
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Figure 4.1: Numerical illustration of structural transitions in the order-parameter ψ for
symmetric (a) mono-stable and (b) bi-stable potentials U(ψ) with b = 0; for details see
Ref. [DHBG13]. (c) Snapshots of the order-parameter field ψ at t = 500, scaled by the
maximum value ψm, for a mono-stable potential U(ψ) and homogeneous random initial
conditions. (b) Snapshots of the order-parameter at t = 500 for a bi-stable potential.
For γ0 � −(2π)2γ2/L

2, increasingly more complex quasi-stationary structures arise; see
References [AT06, POS97] for similar patterns in excited granular media and chemical
reaction systems.

intrinsic chirality in their swimming apparatus, these organisms move on circular orbits in
clockwise (anticlockwise) direction when viewed from inside the bulk fluid (glass surface).
Qualitatively similar behavior has also been reported for sea urchin sperm swimming close
to solid surfaces [Gib80].

Hence, for various types of swimming microorganisms, the presence of the near-by no-
slip boundary breaks the reflection symmetry, ψ 6→ −ψ. The simplest way of accounting
for this in a macroscopic continuum model is to adapt the potential U(ψ) by permitting
values b 6= 0 in (4.7). The result of a simulation with b > 0 is shown in Fig. 4.2a. In
contrast to the symmetric case b = 0 (compare Fig. 4.1c), an asymmetric potential favors
the formation of stable hexagonal patterns (Fig. 4.2a) – such self-assembled hexagonal
vortex lattices have indeed been observed experimentally by Riedel et al. [RKH05] for
highly concentrated spermatozoa of sea urchins (Strongylocentrotus droebachiensis) near a
glass surface (Fig. 4.2b). 3

3Note that although (4.6) can serve as a heuristic model for vortex formation it is not a conservation
law, implying that angular momentum must be exchanged with a background medium and/or with the
boundary.
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Figure 4.2: Effect of symmetry-breaking in the Swift-Hohenberg model. (a) Stationary
hexagonal lattice of the pseudo-scalar angular momentum order-parameter ψ, scaled by
the maximum value ψm, as obtained in simulations [DHBG13] of Eqs. (4.6) and (4.7) with
b > 0, corresponding to a broken reflection symmetry ψ 6→ −ψ. Blue regions correspond
to clockwise motions. (b) Hexagonal vortex lattice formed spermatozoa of sea urchins
(Strongylocentrotus droebachiensis) near a glass surface [RKH05]. At high densities, the
spermatozoa assemble into vortices that rotate in clockwise direction (inset) when viewed
from the bulk fluid.

4.3 Vector model for an incompressible active fluid

We now generalize the preceding considerations to identify a minimal vector-field model
for dense bacterial suspensions [WDH+12, DHD+13]. Popular continuum theories [Ram10,
TTR05, TT98, Wol08, BM09, Ped10, SR02, SS08] of microbial fluids typically distin-
guish solvent concentration, bacterial density, solvent velocity, bacterial velocity, and
various orientational order-parameter fields (polarization, Q-tensors, etc.). Aiming to
identify a minimal hydrodynamic model, we construct a simplified higher-order theory
by focussing exclusively on the dynamics of the mean bacterial4 velocity field v(t,x)
and restricting ourselves to the incompressible limit. By construction, the resulting v-
only theory, which is essentially a minimal Swift-Hohenberg-type [SH77] extension of the
Toner-Tu model [TTR05, TT98], may not be applicable to swarming or flocking regimes,
where density fluctuations are dominant, but it can provide a useful basis for quantita-
tive comparisons with experiments and simulations on highly concentrated active suspen-
sions [WDH+12, DHD+13]. Another assumption implicit to the vector model below is
that the energy input, required to maintain non-zero velocity patterns, is quasi-stationary.

4Whilst the joint momentum of a bacteria-solvent mixture is conserved, the dynamics of the active
(bacterial) component alone, as considered here, does not satisfy such a conservation law.
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Relaxation of this assumption would imply the need for additional energy balance equa-
tions that account for spatial and temporal variations in the conversion of chemical into
kinetic energy of motion. In other words, the v-only theory formulated below only applies
to situations where concentrations of nutrients, oxygen, etc. in a microbial suspension are
approximately constant during the observation period. In practice, v can be determined
applying suitable coarse-graining procedures (PIV algorithms, local averaging, etc.) to
discrete experimental or numerical velocity data [WDH+12, HGBH03].

4.3.1 Model equations

Postulating incompressibility, which is a good approximation for sufficiently dense suspen-
sions [WDH+12],5

∇ · v = ∂ivi = 0, (4.18)

we assume that the dynamics of the bacterial mean velocity-field v is governed by the
generalized Navier-Stokes equation

(∂t + v · ∇)v = −∇p− (A+ C|v|2)v +∇ · E. (4.19)

The pressure p(t,x) is the Lagrange multiplier for the incompressibility constraint. Similar
to the scalar case, (4.7) above, the (A,C)-terms in Equation (4.19) represent a quartic
Landau velocity potential [Ram10, TTR05, TT98]

U(v) =
A

2
|v|2 +

C

4
|v|4. (4.20)

Physically, the inclusion of a polar ordering potential accounts for the fact that microorgan-
isms typically exhibit head-tail asymmetries that may favor polar alignment, as manifested
in the ‘bionematic’ jets that form in bacterial suspensions [CCD+07, CKGG11]. For A > 0
and C > 0, the potential is mono-stable and the fluid is damped towards a disordered
state with v = 0. By contrast, for A < 0, (4.20) describes a d-dimensional mexican-hat
(sombrero) potential with fixed-points |v| =

√
−A/C corresponding to global polar order.

However, the fact that polar ordering appears only locally but not globally in suspen-
sions of swimming bacteria [DCC+04, CCD+07, CKGG11] suggests that other instability
mechanisms must be at work [SR02]. To capture this mathematically, one must either
introduce additional order parameters [Ram10, TTR05, TT98] or destabilize the theory by
identifying a suitable phenomenological ansatz for the effective stresses [SH77].

Adopting the latter approach, we postulate that the components of the symmetric and
traceless rate-of-strain E tensor are given by

Eij = Γ0(∂ivj + ∂jvi)− Γ24 (∂ivj + ∂jvi) + S qij, (4.21)

5We adopt a summation convention for equal indices throughout.
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where

qij = vivj −
δij
d
|v|2 (4.22)

is a d × d-dimensional mean-field approximation to the Q-tensor, representing active ne-
matic stresses [SR02, BM08] due to swimming (δij is the Kronecker tensor). Although
the S-term does not affect the linear stability of the model, general hydrodynamic argu-
ments [Ped10] imply that S < 0 for pusher-swimmers like E. coli [DDC+11] or B. subtilis,
whereas S > 0 for puller-type microswimmers such as Chlamydomonas algae [DGM+10].
The Γ0-term in (4.21) is dictated by the requirement that the model contains the Navier-
Stokes equations as a limit case, and the Γ2-damping term is motivated by generic stability
considerations, as recent experiments [WDH+12, DHD+13] suggest that Γ0 can become
negative in dense bacterial suspensions. Inserting Equations (4.21) and (4.22) into (4.19),
and defining

λ0 = 1− S, λ1 = −S/d, (4.23)

we obtain

(∂t + λ0v · ∇)v = −∇p+ λ1∇v2 − (A+ C|v|2)v + Γ04v − Γ242v. (4.24)

The standard Navier-Stokes equations for a passive fluid are recovered for S = A = C =
Γ2 = 0 and Γ0 > 0.

For Γ0 > 0 and Γ2 = 0, (4.24) reduces to an incompressible version of the classical
Toner-Tu model [Ram10, TTR05, TT98]. It is, however, the combination of the two Γ-
terms with the non-variational convective derivative that turns out to be crucial for the
formation of self-sustained quasi-chaotic flow patterns. The linear Γ-terms are reminis-
cent of the higher-order spatial derivatives in the classical Swift-Hohenberg theory [SH77],
see (4.6), and (4.24) with Γ0 < 0 and Γ2 > 0 yields a simple – if not the simplest – generic
continuum description of turbulent meso-scale instabilities observed in dense bacterial sus-
pensions [WDH+12]. More generally, (4.24) can provide a satisfactory phenomenological
model whenever interaction terms in more complex field theories, that lead to instabili-
ties in the v-field, can be effectively approximated by a fourth-order Taylor expansion in
Fourier space. This is likely to be the case for a wide range of active systems. Phrased
differently, the last two terms in (4.24) may be regarded as the Fourier-space analogue of
the Toner-Tu driving terms, which correspond to a series expansion in terms of the order-
parameter. Hence, similar to the higher-order gradient terms in the scalar theory from
(4.6), the (Γ0,Γ2)-terms in (4.24) describe intermediate-range interactions, and their role
in Fourier-space is similar to that of the Landau potential in velocity space.

4.3.2 Linear stability analysis

To support the qualitative statements in the preceding paragraph, we now perform a
stability analysis for the 2D case, assuming Γ0 < 0 and C > 0, Γ2 > 0.
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The fixed points of Equations (4.18) and (4.24) are given by the extrema of the quartic
velocity potential U(v). For arbitrary values of A, Equations (4.18) and (4.24) have a
fixed point that corresponds to a disordered isotropic state (v, p) = (0, p0) where p0 is a
constant pressure. For A < 0, an additional class of fixed points arises, corresponding to
a manifold of globally ordered polar states (v, p) = (v0, p0), where v0 is constant vector
with arbitrary orientation and fixed swimming speed |v0| =

√
−A/C =: v0.

Linearizing Equations (4.18) and (4.24) for small velocity and pressure perturbations
around the isotropic state, v = ε and p = p0 + η with |η| � |p0|, and considering pertur-
bations of the form

(η, ε) = (η̂, ε̂) exp(σ0t− ik · x), (4.25)

we find

0 = k · ε̂, (4.26)

σ0ε̂ = iη̂k− (A+ Γ0|k|2 + Γ2|k|4)ε̂. (4.27)

Multiplying the second equation by k and using the incompressibility condition implies
that η̂ = 0 and, therefore,

σ0(k) = −
(
A+ Γ0|k|2 + Γ2|k|4

)
. (4.28)

Assuming Γ0 < 0 and Γ2 > 0, and provided that 4A < |Γ0|2/Γ2, we find an unstable band
of modes with σ0(k) > 0 for k2

− < |k|2 < k2
+, where

k2
± =

|Γ0|
Γ2

(
1

2
±

√
1

4
− AΓ2

|Γ0|2

)
. (4.29)

For A < 0 the isotropic state is generally unstable with respect to long-wavelength (i.e.,
small-|k|) perturbations.

We next perform a similar analysis for the polar state (v0, p0), which is energetically
preferred for A < 0 and corresponds to all active particles swimming in the same direction
(‘global order’). In this case, when considering small deviations

v = v0 + ε, p = p0 + η, (4.30)

it is useful to distinguish perturbations perpendicular and parallel to v0, by writing ε =
ε|| + ε⊥ where v0 · ε⊥ = 0 and v0 · ε|| = v0ε||. Without loss of generality, we may choose v0

to point along the x-axis, v0 = v0ex. Adopting this convention, we have ε|| = (ε||, 0) and
ε⊥ = (0, ε⊥), and to leading order

|v|2 ' v2
0 + 2v0ε||. (4.31)

Linearization for exponential perturbations of the form

(η, ε||, ε⊥) = (η̂, ε̂||, ε̂⊥) exp(σt− ik · x) (4.32)
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yields

0 = k · ε̂, (4.33a)

σ ε̂ = i(η̂ − 2v0λ1ε̂||)k + Mε̂, (4.33b)

where

M =

(
2A 0
0 0

)
− (Γ0|k|2 + Γ2|k|4 − iλ0kxv0)I (4.34)

with I = (δij) denoting the identity matrix. Multiplying Equation (4.33b) with ik, and
using the incompressibility condition (4.33a), gives

η̂ = 2v0λ1ε|| + i
k · (Mε̂)

|k|2
. (4.35)

Inserting this into Equation (4.33b) and defining M⊥ = Π(k)M, where

Πij(k) = δij −
kikj
|k|2

(4.36)

is the orthogonal projector of k, we obtain

σ ε̂ = M⊥ ε̂. (4.37)

The eigenvalue spectrum of the matrix M⊥ is given by

σ(k) ∈
{

0, iλ0v0kx −
(

Γ0|k|2 + Γ2|k|4 − 2A
k2
x

|k|2

)}
. (4.38)

The zero eigenvalues correspond to the Goldstone modes. The non-zero eigenvalues have
eigenvectors (−ky, kx), implying that, for Γ0 < 0, there will be a range of exponentially
growing modes in the direction perpendicular to k.

Equations (4.28) and (4.38) predict that, when A < 0 and Γ0 < 0, isotropic and polar
fixed points become simultaneously unstable, thereby signaling the existence of spatially
inhomogeneous dynamic attractors. More generally, within the class of standard PDEs,
the two Γ-terms in (4.24) appear to provide the simplest ‘linear way’ of obtaining a v-
only theory that exhibits non-trivial stationary dynamics. In principle, one could also try
to model instabilities by combining odd or fractional powers of |k| in Equations (4.28)
and (4.38); this would be analogous to replacing the quartic Landau potential by a more
general function of |v|. However, when considering eigenvalue spectra based on odd or non-
integer powers of |k|, the underlying dynamical equations in position space would become
fractional PDEs. Such fractional models could potentially be useful for describing active
suspensions with long-range or other types of more complex interactions.
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4.4 Reaction-diffusion systems (RDSs)

RDSs constitute a class of generic mathematical models of structure formation, which can
represented in the form

∂tq(t,x) = D∇2q +R(q), (4.39)

where

• q(t,x) as an n-dimensional vector field describing the concentrations of n chemical
substances, species etc.

• D is a diagonal n× n-diffusion matrix, and

• the n-dimensional vector R(q) accounts for all local reactions.

4.4.1 One-dimensional examples

Assuming q(t,x) = u(t, x), the class of one-dimensional RDSs

ut = Duxx +R(u), (4.40)

includes the following well-known models:

(i) Fisher’s equation [Fis30]

R(u) = αu(u0 − u) , α > 0, u0 > 0 (4.41a)

originally proposed to describe the spreading of biological species.

(ii) The Newell-Whitehead-Segel equation

R(u) = β u(u2
0 − u2) , β > 0, (4.41b)

which provides an effective description of Rayleigh-Benard convection.

(iii) The Zeldovich equation

R(u) = β u(u0 − u)(u− a) , β > 0, u0 > a > 0, (4.41c)

which arises in combustion theory.

A rather generic feature of RDSs is that they admit wave-like solutions when complemented
with suitable boundary conditions. As an example, consider the Fisher equation (4.41a),
which after rescaling of (t, x, u), can be rewritten as

ut = uxx + u(1− u). (4.42)
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Looking for travelling wave solutions

u(t, x) = w(z) , z = x− ct, (4.43a)

and using

ut =
dw

dz

dz

dt
= −cw′ , ux =

dw

dz

dz

dx
= w′ , uxx = w′′ (4.43b)

we may rewrite (4.42) as

w′′ + cw′ + w(1− w) = 0. (4.44a)

One can show [AZ79] that, for every wave-speed c ≥ 2, Eq. (4.44a) possesses solutions
w(z) that satisfy

lim
z→−∞

w(z) = 1 , lim
z→+∞

w(z) = 0. (4.44b)

Note that these solutions interpolate between the two fixed points u = 1 and u = 0. No
such solution exists for c < 2, and for c ≥ 2 the exact shape of the wave depends on the
value of c. Closed analytical solutions can be found for the particular value c = 5/

√
6; in

this case [AZ79]

w(z) =
1[

1 + r exp(z/
√

6)
]2 (4.44c)

for all r > 0.

4.4.2 Two species in one space dimension

As a slightly more complex case, let us now consider q(t,x) = (u(t, x), v(t, x)), D =
diag(Du, Dv) and R = (F (u, v), G(u, v)), then

ut = Duuxx + F (u, v) (4.45a)

vt = Dvvxx +G(u, v) (4.45b)

In general, (F,G) can be derived from the reaction/reproduction kinetics, and conservation
laws may impose restrictions on permissible functions (F,G). The fixed points (u∗, v∗)
of (4.45) are determined by the condition

R(u∗, v∗) =

(
F (u∗, v∗)
G(u∗, v∗)

)
= 0. (4.46)

Expanding (4.45) for small plane-wave perturbations(
u(t, x)
v(t, x)

)
=

(
u∗
v∗

)
+ ε(t, x) (4.47a)
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with

ε = ε̂ eσt−ikx =

(
ε̂
η̂

)
eσt−ikx, (4.47b)

we find the linear equation

σε̂ = −
(
k2Du 0

0 k2Dv

)
ε̂+

(
F ∗u F ∗v
G∗u G∗v

)
ε̂ ≡M ε̂, (4.48)

where

F ∗u = ∂uF (u∗, v∗) , F ∗v = ∂vF (u∗, v∗) , G∗u = ∂uG(u∗, v∗) , G∗v = ∂vG(u∗, v∗).

Solving this eigenvalue equation for σ, we obtain

σ± =
1

2

{
−(Du +Dv)k

2 + (F ∗u +G∗v)±
√

4F ∗vG
∗
u + [F ∗u −G∗v + (Dv −Du)k2]2

}
, (4.49)

which gives

detM = σ+σ− = (F ∗u −Duk
2)(G∗v −Dvk

2)− F ∗vG∗u, (4.50a)

trM = σ+ + σ− = F ∗u +G∗v − (Du +Dv)k
2. (4.50b)

In order to have an instability for some finite value k, at least one of the two eigenvalues
must have a positive real part. If the eigenvalues are real, this means that either the
condition

detM < 0, (4.51a)

or the conditions

detM > 0 ∧ trM > 0 (4.51b)

must be satisfied. These criteria can be easily tested for a given reaction kinetics (F,G).
We briefly summarize two popular examples.

Lotka-Volterra model This model describes a simple predator-prey dynamics, defined
by

F (u, v) = Au−Buv, (4.52a)

G(u, v) = −Cv + Euv (4.52b)

with positive rate parameters A,B,C,E > 0. The field u(t, x) measures the concentration
of prey and v(t, x) that of the predators. The model has two fixed points

(u0, v0) = (0, 0) , (u∗, v∗) = (C/E,A/B), (4.53)
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with Jacobians (
Fu(u0, v0) Fv(u0, v0)
Gu(u0, v0) Gv(u0, v0)

)
=

(
A 0
0 −C

)
(4.54a)

and (
Fu(u∗, v∗) Fv(u∗, v∗)
Gu(u∗, v∗) Gv(u∗, v∗)

)
=

(
A− BC

E
−A

C −C + AE
B

)
. (4.54b)

It is straightforward to verify that, for suitable choices of A,B,C,D, the model exhibits a
range of unstable k-modes.

FitzHugh-Nagumo model This model aims to describe the propagation of an action
potential through nerve cells, and is defined by

F (u, v) = λu− µu3 − ηv + κ, (4.55a)

G(u, v) =
1

τ
(u− βv) (4.55b)

with positive parameters λ, µ, τ, η, β. The field u(t, x) measures the membrane voltage, and
v(t, x) is a slower gate voltage that controls relaxation of u. The parameter κ represents
external currents that cause an increase of u. Similar to the Lotka-Volterra model, the
FitzHugh-Nagumo model exhibits a range of unstable k-modes for biologically relevant
parameters choices.
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Chapter 5

Microbial locomotion

Microswimmers are tiny devices (e.g., bacteria or eukaryotic cells) that achieve locomotion
in a fluid through a self-induced change of shape. Biological examples are manifold: Some
bacteria like Escherichia coli propel themselves by rotating helically shaped bundle of
flagella, much like a corkscrew penetrating into a cork. Sperm cells move by inducing a
wave-like deformation in a thin flagellum or cilium, whereas organisms move by beating
two or more cilia in a synchronized manner (Fig. 5.1).

Because of their tiny size, the microswimmers operate at low Reynolds number, i.e.,
inertial and turbulent effects are negligible1. In this regime, swimming mechanisms are
very different from employed by humans and other animals. In particular, any microbial
swimming strategy must involve time-irreversible motion. Whilst moving through the
liquid, a swimmer modifies the flow of the surrounding liquid. This can lead to an effective
hydrodynamic interactions between nearby organisms, which can be attractive or repulsive
depending on the details of the swimming mechanism. However, such deterministic forces
are usually perturbed by a considerable amount of thermal or intrinsic noise.

Figure 5.1: (left) Chlamydomonas alga with two cilia. (middle) A multicellular Volvox
colony swims by beating several hundreds of cilia on their surface in synchronized manner.
(right) Flow field created by a Volvox when held fixed with a pipette (photos: Knut
Drescher).

1This is equivalent to larger animals swimming through a bath of treacle.
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5.1 Navier-Stokes equations

Consider a fluid of conserved mass density %(t,x), governed by continuity equation

∂t%+∇ · (%u) = 0, (5.1)

where u(t,x) is local flow velocity. According to standard hydrodynamic theory, the
dynamics of u is described by the Navier-Stokes equations (NSEs)

% [∂tu+ (u · ∇)u] = f −∇p+∇ · T̂ , (5.2)

where p(t,x) the pressure in the fluid, T̂ (t,x) the deviatoric2 stress-energy tensor of the
fluid, and f(t,x) an external force-density field. A typical example of an external force f ,
that is also relevant in the biological context, is the gravitational force

f = %g, (5.3)

where g(t,x) is the gravitational acceleration field.
Considering a Cartesian coordinate frame, Eqs. (5.1) and (5.2) can also be rewritten in

the component form

∂t%+∇i(%ui) = 0, (5.4a)

% (∂tui + uj∂jui) = Fi − ∂ip+ ∂jT̂ji. (5.4b)

To close the system of equations (5.4), one still needs to

(i) fix the equation of state
p = p[%, . . .],

(ii) choose an ansatz the symmetric stress-energy tensor

T̂ = (T̂ij[%,u, . . .]),

(iii) specify an appropriate set of initial and boundary conditions.

2‘deviatoric’:= without hydrostatic stress (pressure); a ‘full’ stress-energy tensor σ̂ may be defined by

σ̂ij := −p δij + T̂ij .
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Simplifications In the case of a homogeneous fluid with 3

∂t% = 0 and ∇% = 0, (5.5)

the associated flow is incompressible (isochoric)

∇ · u = 0. (5.6)

A Newtonian fluid is a fluid that can, by definition, be described by

T̂ij := λ (∇ · u) δij + µ (∂iuj + ∂jui). (5.7)

where λ the first coefficient of viscosity (related to bulk viscosity), and µ is the second
coefficient of viscosity (shear viscosity). Thus, for an incompressible Newtonian fluid, the
Navier-Stokes system (5.4) simplifies to

0 = ∇ · u, (5.8a)

% [∂tu+ (u · ∇)u] = −∇p+ µ∇2u+ f . (5.8b)

Dynamic viscosity The SI physical unit of dynamic viscosity µ is the Pascal×second

[µ] = 1 Pa · s = 1 kg/(m · s) (5.9)

If a fluid with a viscosity µ = 1 Pa · s is placed between two plates, and one plate is pushed
sideways with a shear stress of one pascal, it moves a distance equal to the thickness of
the layer between the plates in one second. The dynamic viscosity of water (T = 20 ◦C) is
µ = 1.0020× 10−3 Pa · s.

Kinematic viscosity Below we will be interested in comparing viscous and inertial
forces. Their ratio is characterized by the kinematic viscosity ν, defined as

ν =
µ

%
, [ν] = m2/s (5.10)

The kinematic viscosity of water with mass density % = 1 g/cm3 is ν = 10−6 m2/s =
1 mm2/s = 1 cSt.

3By virtue of the conservation law (5.1), a homogeneous material is always incompressible, but in
general the converse is not true.
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5.2 Stokes equations

5.2.1 Motivation

Consider an object of characteristic length L, moving at absolute velocity U = |U | through
(relative to) an incompressible, homogeneous Newtonian fluid of constant viscosity µ and
constant density %. The object can be imagined as a moving boundary (condition), which
induces a flow field u(t,x) in the fluid. The ratio of the inertial (dynamic) pressure %U2

and viscous shearing stress µU/L can be characterized by the Reynolds number4

R =
|%(∂tu+ (u ·∇)u)|

|µ∇2u|
' %U2/L

µU/L2
=
UL%

µ
=
UL

ν
. (5.11)

For example, when considering swimming in water (ν = 10−6 m2/s), one finds for fish or
humans:

L ' 1 m, U ' 1 m/s ⇒ R ' 106,

whereas for bacteria:

L ' 1µm, U ' 10 µm/s ⇒ R ' 10−5.

If the Reynolds number is very small, R� 1, the nonlinear NSEs (5.8) can be approx-
imated by the linear Stokes equations5

0 = ∇ · u, (5.12a)

0 = µ∇2u−∇p+ f . (5.12b)

The four equations (5.12) determine the four unknown functions (u, p). However, to
uniquely identify such solutions, these equations must still be endowed with appropriate
initial and boundary conditions, such as for example{

u(t,x) = 0,

p(t,x) = p∞,
as |x| → ∞. (5.13)

Note that, by neglecting the explicit time-dependent inertial terms in NSEs, the time-
dependence of the flow is determined exclusively and instanteneously by the motion of the
boundaries and/or time-dependent forces as generated by the swimming objects.

4Actually, the (local) Reynolds number is defined in terms of the fluid velocity u relative to an ‘appro-
priately’ chosen reference frame (e.g., the restframe of a confining body). Eq. (5.11) implicitly assumes
that u ' U on the surface of the object. Moreover, the value of the Reynolds number depends on the
choice of a – somewhat arbitrary – characteristic length scale L, sometimes expressed through the notation
RL. Specifically, one uses the approximations |(u · ∇)u| ' |U · U/L| and, similarly, |∂tu| ' U/τ with a
characteristic timescale τ = L/|U |, yielding |(u · ∇)u| ' |∂tu| ' U2/L.

5More precisely, by replacing Eq. (5.8) with Eq. (5.12), it is assumed that for small Reynolds numbers
R̃(t,x) := |%(u · ∇)u|/(µ∇2u) ' UL(%/µ)� 1 one can approximate

% [∂tu+ (u · ∇)u]− µ∇2u ' −µ∇2u

The consistency of this approximation can be checked a posteriori by inserting the solution for u into the
lhs. of Eq. (5.8) .
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5.2.2 Special solutions

Oseen solution Consider the Stokes equations (5.12) for a point-force

f(x) = F δ(x). (5.14)

In this case, the solution with standard boundary conditions (5.13) reads6

ui(x) = Gij(x) Fj , p(x) =
Fjxj

4π|x|3
+ p∞, (5.15a)

where the Greens function Gij is given by the Oseen tensor

Gij(x) =
1

8πµ |x|

(
δij +

xixj
|x|2

)
, (5.15b)

which has the inverse

G−1
jk (x) = 8πµ|x|

(
δjk −

xjxk
2|x|2

)
, (5.16)

as can be seen from

GijG
−1
jk =

(
δij +

xixj
|x|2

)(
δjk −

xjxk
2|x|2

)
= δik −

xixk
2|x|2

+
xixk
|x|2

− xixj
|x|2

xjxk
2|x|2

= δik −
xixk
2|x|2

+
xixk
2|x|2

= δik. (5.17)

Stokes solution (1851) Consider a sphere of radius a, which at time t is located at the
origin, X(t) = 0, and moves at velocity U(t). The corresponding solution of the Stokes
equation with standard boundary conditions (5.13) reads7

ui(t,x) = Uj

[
3

4

a

|x|

(
δji +

xjxi
|x|2

)
+

1

4

a3

|x|3

(
δji − 3

xjxi
|x|2

)]
, (5.18a)

p(t,x) =
3

2
µa
Ujxj
|x|3

+ p∞. (5.18b)

If the particle is located at X(t), one has to replace xi by xi − Xi(t) on the rhs. of
Eqs. (5.18). Parameterizing the surface of the sphere by

a = a sin θ cosφ ex + a sin θ sinφ ey + a cos θ ez = aiei

6Proof by insertion.
7Proof by insertion.
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where θ ∈ [0, π], φ ∈ [0, 2π), one finds that on this boundary

u(t,a(θ, φ)) = U , (5.19a)

p(t,a(θ, φ)) =
3

2

µ

a2
Uj aj(θ, φ) + p∞, (5.19b)

corresponding to a no-slip boundary condition on the sphere’s surface. The O(a/|x|)-
contribution in (5.18a) coincides with the Oseen result (5.15), if we identify

F = 6π µaU . (5.20)

The prefactor γ = 6π µa is the well-known Stokes drag coefficient for a sphere.
The O[(a/|x|)3]-part in (5.18a) corresponds to the finite-size correction, and defining

the Stokes tensor by

Sij = Gij +
1

24πµ

a2

|x|3

(
δji − 3

xjxi
|x|2

)
, (5.21)

we may rewrite (5.18a) as8

ui(t,x) = SijFj. (5.22)

5.3 Golestanian’s swimmer model

This part is copied (with very minor adaptations) from the article of Golestanian and
Ajdari [GA07], for their excellent discussion is difficult, if not impossible, to improve.

5.3.1 Three-sphere swimmer: simplified analysis

As a minimal model of a low Reynolds number swimmer, consider three spheres of radii
ai (i = 1, 2, 3) that are separated by two arms of lengths L1 and L2. Each sphere exerts
a force Fi on, and experiences a force −Fi from, the fluid that we assume to be along the
swimmer axis. In the limit ai/Lj � 1, we can use the Oseen tensor (5.15) to relate the
forces and the velocities as

v1 =
F1

6πµa1

+
F2

4πµL1

+
F3

4πµ(L1 + L2)
, (5.23a)

v2 =
F1

4πµL1

+
F2

6πµa2

+
F3

4πµL2

, (5.23b)

v3 =
F1

4πµ(L1 + L2)
+

F2

4πµL2

+
F3

6πµa3

. (5.23c)

8For arbitrary sphere positions X(t), replace x→ x−X(t).
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Note that in this simple one dimensional case, the tensorial structure of the hydrodynamic
Green’s function (Oseen tensor) does not enter the calculations as all the forces and veloc-
ities are parallel to each other and to the position vectors. The swimming velocity of the
whole object is the mean translational velocity, namely

V0 =
1

3
(v1 + v2 + v3). (5.24)

We are seeking to study autonomous net swimming, which requires the whole system to
be force-free (i.e. there are no external forces acting on the spheres). This means that the
above equations are subject to the constraint

F1 + F2 + F3 = 0. (5.25)

Eliminating F2 using Eq. (5.25), we can calculate the swimming velocity from Eqs. (5.23a),
(5.23b), (5.23c), and (5.24) as

V0 =
1

3

[(
1

a1

− 1

a2

)
+

3

2

(
1

L1 + L2

− 1

L2

)](
F1

6πµ

)
+

1

3

[(
1

a3

− 1

a2

)
+

3

2

(
1

L1 + L2

− 1

L1

)](
F3

6πµ

)
, (5.26)

where the subscript 0 denotes the force-free condition. To close the system of equations,
we should either prescribe the forces (stresses) acting across each linker, or alternatively
the opening and closing motion of each arm as a function of time. We choose to prescribe
the motion of the arms connecting the three spheres, and assume that the velocities

L̇1 = v2 − v1, (5.27a)

L̇2 = v3 − v2, (5.27b)

are known functions. We then use Eqs. (5.23a), (5.23b), (5.23c), and (5.25) to solve for F1

and F3 as a function of L̇1 and L̇2. Putting the resulting expressions for F1 and F3 back
in Eq. (5.26), and keeping only terms in the leading order in ai/Lj consistent with our
original scheme, we find the average swimming velocity to the leading order.

5.3.2 Swimming velocity

The above calculations yield a lengthy expression summarized in Eq. (B.1) of the Appendix.
This result (B.1) is suitable for numerical studies of swimming cycles with arbitrarily large
deformations. For the simple case where all the spheres have the same radii, namely
a = a1 = a2 = a3, Eq. (5.26) simplifies to

V0 =
a

6

[(
L̇2 − L̇1

L1 + L2

)
+ 2

(
L̇1

L2

− L̇2

L1

)]
, (5.28)
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plus terms that average to zero over a full swimming cycle. Equation (5.28) is also valid
for arbitrarily large deformations.

We can also consider relatively small deformations and perform an expansion of the
swimming velocity to the leading order. Using

L1 = `1 + u1(t), (5.29)

L2 = `2 + u2(t), (5.30)

in Eq. (B.1), and expanding to the leading order in ui/`j, we find the average swimming
velocity as

V0 =
K

2
(u1u̇2 − u̇1u2), (5.31)

where

K =
3 a1a2a3

(a1 + a2 + a3)2

[
1

`2
1

+
1

`2
2

− 1

(`1 + `2)2

]
. (5.32)

In the above result, the averaging is performed by time integration over a full cycle. Note
that terms proportional to u1u̇1, u2u̇2, and u1u̇2 + u̇1u2 are eliminated because they are full
time derivatives and they average out to zero in a cycle. Equation (5.31) shows that the
average swimming velocity is proportional to the enclosed area that is swept in a full cycle
in the configuration space [i.e. in the (u1, u2) space]. This result, which is valid within
the perturbation theory, is inherently related to the geometrical structure of theory the
low Reynolds number swimming studied by Shapere and Wilczek [SW87]. Naturally, the
swimmer can achieve higher velocities if it can maximize this area by introducing sufficient
phase difference between the two deformation cycles (see below).

5.3.3 Harmonic deformations

As a simple explicit example, consider harmonic deformations of the two arms, with iden-
tical frequencies ω and a mismatch in phases,

u1(t) = d1 cos(ωt+ ϕ1), (5.33)

u2(t) = d2 cos(ωt+ ϕ2). (5.34)

The average swimming velocity from Eq. (5.31) reads

V0 =
K

2
d1d2ω sin(ϕ1 − ϕ2). (5.35)

This result shows that the maximum velocity is obtained when the phase difference is
π/2, which supports the picture of maximizing the area covered by the trajectory of the
swimming cycle in the parameter space of the deformations. A phase difference of 0 or π,
for example, will create closed trajectories with zero area, or just lines.
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5.3.4 Force-velocity relation and stall force

The effect of an external force or load on the efficiency of the swimmer can be easily studied
within the linear theory of Stokes hydrodynamics. When the swimmer is under the effect
of an applied external force F , Eq. (5.25) should be changed as

F1 + F2 + F3 = F. (5.36)

Following through the calculations of Sec. 5.3.1 above, we find that the following changes
take place in Eqs. (5.23a), (5.23b), (5.23c), and (5.24):

v1 7→ v1 −
F

4πµL1

, (5.37)

v2 7→ v2 −
F

6πµa2

, (5.38)

v3 7→ v3 −
F

4πµL2

, (5.39)

V 7→ V − 1

3

(
1

6πµa2

+
1

4πµL1

+
1

4πµL2

)
F. (5.40)

These lead to the changes

L̇1 7→ L̇1 −
(

1

6πµa2

− 1

4πµL1

)
F, (5.41)

L̇2 7→ L̇2 −
(

1

4πµL2

− 1

6πµa2

)
F, (5.42)

in Eq. (B.1), which together with correction coming from Eq. (5.40) leads to the average
swimming velocity

V (F ) = V0 +
F

18πµaR
, (5.43)

to the leading order, where aR is an effective (renormalized) hydrodynamic radius for the
three-sphere swimmer. To the zeroth order, we have aR = 1

3
(a1 + a2 + a3) for the general

case and there are a large number of correction terms at higher orders that we should
keep in order to be consistent in our perturbation theory. Instead of reporting the lengthy
expression for the general case, we provide the expression for a1 = a2 = a3 = a, which
reads

1

aR
=

1

a
+

1

L1

+
1

L2

+
1

L1 + L2

− a

2

(
1

L1

− 1

L2

)2

− a

2

1

(L1 + L2)2
. (5.44)

The force-velocity relation given in Eq. (5.43), which could have been expected based
on linearity of hydrodynamics, yields a stall force

Fs = −18πµaRV0. (5.45)

Using the zeroth order expression for the hydrodynamic radius, one can see that this is
equal to the Stokes force exerted on the three spheres moving with a velocity V0.
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5.3.5 Power consumption and efficiency

Because we know the instantaneous values for the velocities and the forces, we can easily
calculate the power consumption in the motion of the spheres through the viscous fluid.
The rate of power consumption at any time is given as

P = F1v1 + F2v2 + F3v3 = F1(−L̇1) + F3(L̇2), (5.46)

where the second expression is the result of enforcing the force-free constrain of Eq. (5.25).
Using the expressions for F1 and F3 as a function of L̇1 and L̇2, one finds for a1 = a2 =
a3 = a

P = 4πµa

[
1 +

a

L1

− 1

2

a

L2

+
a

L1 + L2

]
L̇2

1 +

4πµa

[
1− 1

2

a

L1

+
a

L2

+
a

L1 + L2

]
L̇2

2 +

4πµa

[
1− 1

2

a

L1

− 1

2

a

L2

+
5

2

a

L1 + L2

]
L̇1L̇2. (5.47)

We can now define a Lighthill hydrodynamic efficiency as

µL ≡
18πµaRV0

2

P
, (5.48)

for which we find to the leading order

µL =
9

8

aR
a

K2 (u1u̇2 − u̇1u2)
2

C1 u̇2
1 + C2 u̇2

2 + C3 u̇1u̇2

, (5.49a)

where

C1 = 1 +
a

`1

− 1

2

a

`2

+
a

`1 + `2

, (5.49b)

C2 = 1− 1

2

a

`1

+
a

`2

+
a

`1 + `2

, (5.49c)

C3 = 1− 1

2

a

`1

− 1

2

a

`2

+
5

2

a

`1 + `2

. (5.49d)

It is interesting to note that for harmonic deformations with a single frequency, Eq. (5.49a)
is independent of the frequency and scales like a2d2/`4, which reflects the generally low
hydrodynamic efficiency of low Reynolds number swimmers. In this case, it is possible to
find an optimal value for the phase difference that maximizes the efficiency.
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5.4 Dimensionality

We saw above that, in 3D, the fundamental solution to the Stokes equations for a point
force at the origin is given by the Oseen solution

ui(x) = Gij(x) Fj , p(x) =
Fjxj

4π|x|3
+ p∞, (5.50a)

where

Gij(x) =
1

8πµ |x|

(
δij +

xixj
|x|2

)
, (5.50b)

It is interesting to compare this result with corresponding 2D solution

ui(x) = Jij(x)Fj , p =
Fjxj

2π|x|2
+ ∂∞ , x = (x, y) (5.51a)

where

Jij(x) =
1

4πµ

[
−δij ln

(
|x|
a

)
+
xixj
|x|2

]
(5.51b)

with a being an arbitrary constant fixed by some intermediate flow normalization condi-
tion. Note that (5.51) decays much more slowly than (5.50), implying that hydrodynamic
interactions in 2D freestanding films are much stronger than in 3D bulk solutions.

To verify that (5.51) is indeed a solution of the 2D Stokes equations, we first note that
generally

∂j|x| = ∂j(xixi)
1/2 = xj(xixi)

−1/2 =
xj
|x|

(5.52a)

∂j|x|−n = ∂j(xixi)
−n/2 = −nxj(xixi)−(n+2)/2 = −n xj

|x|n+2
. (5.52b)

From this, we find

∂ip =
Fi

2π|x|2
− 2

Fjxjxi
2π|x|4

=
Fj

2π|x|2

(
δij − 2

xjxi
|x|2

)
(5.53)

and

∂kJij =
1

4πµ
∂k

[
−δij ln

(
|x|
a

)
+
xixj
|x|2

]
=

1

4πµ

[
−δij

1

|x|
∂k|x|+ ∂k

(
xixj
|x|2

)]
=

1

4πµ

[
−δij

xk
|x|2

+

(
δik

xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|x|4

)]
. (5.54)
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To check the incompressibility condition, note that

∂iJij =
1

4πµ

[
−δij

xi
|x|2

+

(
δii

xj
|x|2

+ δji
xi
|x|2
− xixjxi

2|x|4

)]
=

1

4πµ

(
− xj
|x|2

+ 2
xj
|x|2

+
xj
|x|2
− 2

xj
|x|2

)
= 0, (5.55)

which confirms that the solution (5.51) satisfies the incompressibility condition ∇ · u = 0.
Moreover, we find for the Laplacian

∂k∂kJij =
∂k

4πµ

[
−δij

xk
|x|2

+ δik
xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|x|4

]
=

1

4πµ

[
−δij∂k

(
xk
|x|2

)
+ δik∂k

(
xj
|x|2

)
+ δjk∂k

(
xi
|x|2

)
− 2∂k

(
xixjxk
|x|4

)]
=

1

4πµ

[
−δij

(
δkk
|x|2
− 2

xkxk
|x|4

)
+ δik

(
δjk
|x|2
− 2

xjxk
|x|4

)
+ δjk

(
δik
|x|2
− 2

xixk
|x|4

)
−

2

(
δikxjxk
|x|4

+
xiδjkxk
|x|4

+
xixjδkk
|x|4

− 4
xixjxkxk
|x|6

)]
=

1

4πµ

[
−δij

(
2

|x|2
− 2

1

|x|2

)
+

(
δij
|x|2
− 2

xjxi
|x|4

)
+

(
δij
|x|2
− 2

xixj
|x|4

)
−

2

(
xjxi
|x|4

+
xixj
|x|4

+ 2
xixj
|x|4

− 4
xixj
|x|4

)]
=

1

2πµ

(
δij
|x|2
− 2

xjxi
|x|4

)
(5.56)

Hence, by comparing with (5.53), we see that indeed

−∂ip+ µ∂k∂kui = −∂ip+ µ∂k∂kJijFj = 0. (5.57)

The difference between 3D and 2D hydrodynamics has been confirmed experimentally
for Chlamydomonas algae [GJG10, DGM+10].

5.5 Force dipole and dimensionality

In the absence of external forces, microswimmers must satisfy the force-free constraint.
This simplest realization is a force-dipole flow, which provides a very good approximation
for the mean flow field generated by an individual bacterium [DDC+11] but not so much
for an alga [DGM+10].

To construct a force dipole, consider two opposite point-forces F+ = −F− = Fex
located at positions x+ = ±`ex. Due to linearity of the Stokes equations the total flow at
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some point x is given by

ui(x) = Γij(x− x+)F+
j + Γij(x− x−)F−j

=
[
Γij(x− x+)− Γij(x− x−)

]
F+
j

= [Γij(x− `ex) − Γij(x+ `ex)]F
+
j (5.58)

where Γij = Jij in 2D and Γij = Gij in 3D. If |x| � `, we can Taylor expand Γij near
` = 0, and find to leading order

ui(x) '
{

[Γij(x) − Γij(x)]−
[
x+
k ∂kΓij(x) − x−k ∂kΓij(x)

]}
F+
j

= −2x+
k [∂kΓij(x)]F+

j (5.59)

2D case Using our above result for ∂kJij, and writing x+ = `n and F+ = Fn with
|n| = 1, we find in 2D

ui(x) = − x+
k

2πµ

[
−δij

xk
|x|2

+

(
δik

xj
|x|2

+ δjk
xi
|x|2
− 2

xixjxk
|x|4

)]
F+
j

= − F`

2πµ

(
−ni

xknk
|x|2

+ ni
xjnj
|x|2

+ nknk
xi
|x|2
− 2

nkxixjxknj
|x|4

)
and, hence,

u(x) =
F`

2πµ|x|
[
2(n · x̂)2 − 1

]
x̂ (5.60)

where x̂ = x/|x|.

3D case To compute the dipole flow field in 3D, we need to compute the partial deriva-
tives of the Oseen tensor

Gij(x) =
1

8πµ|x|
(1 + x̂ix̂j) , x̂k =

xk
|x|

. (5.61)

Defining the orthogonal projector (Πik) for x̂k by

Πik := δik − x̂ix̂k, (5.62)

we have

∂k|x| =
xk
|x|

= x̂k, (5.63a)

∂kx̂i =
δik
|x|
− xkxi
|x|3

=
Πik

|x|
, (5.63b)

∂nΠik = − 1

|x|
(x̂iΠnk + x̂kΠni) , (5.63c)
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and from this we find

∂kGij = − x̂k
|x|

Gij +
κ

|x|2
(Πikx̂j + Πjkx̂i)

=
κ

|x|2
(
−x̂kδij + x̂jδik + x̂iδjk − 3x̂kx̂ix̂j

)
. (5.64)

Inserting this expression into (5.59), we obtain the far-field dipole flow in 3D

u(x) =
F`

4πµ|x|2
[
3(n · x̂)2 − 1

]
x̂. (5.65)

As shown in Ref. [DDC+11], Eq. (5.65) agrees well with the mean flow-field of a bacterium.
Upon comparing Eqs. (5.60) and (5.65), it becomes evident that hydrodynamic inter-

actions between bacteria in a free-standing 2D film are much longer-ranged than in a 3D
bulk solution. This is a nice illustration of the fact that the number of available space
dimensions can have profound effects on physical processes and interactions in biological
systems.

5.6 Boundary effects

5.6.1 Hagen-Poiseuille flow

Many swimming cells and microorganisms operate in the vicinity of solid boundaries that
can substantially affect the self-propulsion and the hydrodynamic interactions of the or-
ganisms. To illustrate the effects of no-slip boundaries on the fluid motion, let us consider
pressure driven flow along a cylindrical pipe of radius R pointing along the x-axis. As-
sume that the flow is rotationally symmetric about the x-axis and constant in x-direction,
u = ux(r)ex, where r =

√
y2 + z2 is the distance from the center. For such a flow, the

incompressibility condition ∇·u = 0 is automatically satisfied, and the Stokes equation in
cylindrical coordinates (r, φ, x) reduces to

0 = −∂xp+
µ

r
∂r(r∂rux). (5.66)

Integrating twice over x, the general solution ux of this equation can be written as

ux(r) =
1

4µ
(∂xp)r

2 + c1 ln r + c2, (5.67)

where c1 and c2 are constants to be determined by the boundary conditions. For a no-slip
boundary with ux(R) = 0 and finite flow speed at r = 0, one then finds

ux(r) = − 1

4µ
(∂xp)(R

2 − r2). (5.68)
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If we assume a linear pressure difference ∆P = P (L)− P (0) over a length L, then simply

p(x) = [P (L)− P (0)]
x

L
⇒ ∂xp = −P (0)− P (L)

L
. (5.69)

The flow speed is maximal at center of the pipe

u+
x =

P (0)− P (L)

4µL
R2 (5.70)

and the average transport velocity is

ux =
1

πR2

∫ R

0

ux(r) 2πrdr = 0.5u+
x . (5.71)

Note that, for fixed pressure difference and channel length, the transport velocity ux de-
creases quadratically with the channel radius, signaling that the presence of boundaries can
substantially suppress hydrodynamic flows. To illustrate this further, we next consider a
useful approximation that can help to speed up numerical simulations through an effective
reduction from 3D to 2D flow.

5.6.2 Hele-Shaw flow

Consider two quasi-infinite parallel walls located at z = 0 and z = H. This setting is
commonly encountered in experiments that study microbial swimming in flat microfluidic
chambers. Looking for a 2D approximation of the Stokes equation, we may assume constant
pressure along the z-direction, p = P (x, y), and neglect possible flow components in the
vertical direction, uz = 0. Furthermore, using the above results for Hagen-Poiseuille flow
as guidance, we can make the ansatz

u(x, y, z) =
6z(H − z)

H2
[Ux(x, y)ex + Ux(x, y)ey] ≡

6z(H − z)

H2
U(x, y), (5.72)

corresponding to a parabolic flow profile in the vertical direction that accounts for no-slip
boundaries at the walls; in particular, in the mid-plane

u(x, y, h/2) =
3

2
U(x, y). (5.73)

We would like to obtain an effective equation for the effective 2D flow U(x, y). This can be
achieved by inserting ansatz (5.72) into the Stokes equations and subsequently averaging
along the z-direction, yielding

0 = ∇ ·U , 0 = −∇P + µ∇2U − κU (5.74)

where κ = 12µ/H2 and ∇ is now the 2D gradient operator. Note that compared with
unconfined 2D flow in a free film, the appearance of the κ-term leads to an exponential
damping of hydrodynamic excitations. This is analogous to the exponential damping in the
Yakawa-potential (mediated by massive bosons) compared to a Columb potential (mediated
by massless photons). That ist, due to the presence of the no-slip boundaries, effective 2D
hydrodynamic excitations acquire an effective mass ∝ 1/H2.
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Figure 5.2: Sperm rheotaxis [KDBG14]. (A) Track of a sperm cell swimming upstream on
a helical trajectory against a Pouiseuille flow. (B) Schematic of shear flow and sperm close
to a planar surface. (C) Tracks of sperms cells swimming near a planar surface (flow in
negative y-direction).

5.7 Rheotaxis and resistive force theory

The results in Sec. 5.6.1 show that the presence of a boundary typically induces a flow
gradient. Many swimming cells, like sperm or bacteria, tend to accumulate at surfaces
due to their approximately conical or rod-like body geometry and, hence, can be strongly
affected by such flow gradients. In this section, we derive simplified 2D equations of motion
governing the reorientation sperm swimming under shear flow close to a solid surface. It is
useful to consider non-chiral particles first. Corrections due to chirality will be discussed
subsequently.

5.7.1 Non-chiral swimmer

We assume a geometry as depicted in Fig. 5.2B and shear-flow near the boundary given by

u =

 0
σγ̇z

0

 , (5.75)

where γ̇ > 0 is the shear rate and σ = ±1 depending on flow direction. The corresponding
vorticity pseudo-vector ω and rate-of-strain tensor E read

ω = ∇× u = −σγ̇

1
0
0

 , E =
1

2
(∇ᵀu+∇uᵀ) =

σγ̇

2

0 0 0
0 0 1
0 1 0

 . (5.76)
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We describe the orientation of the cells by the 3D orientation vector n = (nx, ny, nz) and
denote the associated orthogonal projector by

P(n) = I− nn, (5.77)

where I is the 3 × 3 unit matrix. According to Eq. (2.4) of Pedley and Kessler [PK92],
reorientation of elliptical (or rod-like) particles in shear flow u is governed to leading order
by

ṅ = aω × n+ 2bn · E · P(n), (5.78)

where a = 1/2 and b = 0 for spherical particles. Note that the structure of Eq. (5.80) is
such that it conserves the length of n.

Moreover, we may identify the cross-product ω×n with a matrix multiplication W ·n,
where the components of the antisymmetric matrix W are given by

2Wmn := −(ω×)mn

= −εmin(εijk∂juk) = εimn(εijk∂juk) = (δmjδnk − δmkδnj)∂juk
= ∂mun − ∂num, (5.79)

using a component notation with sum convention for repeated Latin indices i, j, . . . = 1, 2, 3.
This allows us to rewrite Eq. (5.78) as

ṅi = 2aWijnj + 2bnmEmj(δji − njni). (5.80)

For the flow field in (5.75) we find

ṅ = −aσγ̇

 0
−nz
ny

− bσγ̇
 2nxnynz

(2n2
y − 1)nz

(2n2
z − 1)ny

 , (5.81)

with a, b encoding information about the cell-shape.
Now assume that after a collision with the boundary and subsequent alignment, the

sperm points into the wall due to steric contact interactions between surface and flagellum,
so that nz = const < 0. This means that the wall must exert a balancing torque such that
(i) ṅz = 0 and (ii) n2

x + n2
y = (1− n2

z) is conserved. Assuming cylindrical symmetry of
the swimmer around its axis of swimming, the contact interaction leads to rotation of the
swimmer in the plane spanned by n and the wall normal ez = (0, 0, 1). The change in
orientation per unit time due to wall interactions can therefore be written as cn + dez,
which needs to be added to the rhs. of Eqs. (5.78), (5.80) and (5.81), if the sperm is
contact with the surface. The coefficient d can be fixed by condition (i), but is not relevant
for the motion in the (x, y)-plane parallel to the surface, which becomes governed by(

ṅx
ṅy

)
= −aσγ̇nz

(
0
−1

)
− bσγ̇nz

(
2nxny

2n2
y − 1

)
+ c

(
nx
ny

)
. (5.82)
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Condition (ii) then gives

c = σγ̇
nz[b(1− 2n2

z)− a]

1− n2
z

ny. (5.83)

Keeping in mind that nz and n2
x + n2

y are constant, we thus find the reduced 2D equations
of motion (

ṅx
ṅy

)
= −σγ̇(a+ b)

nz
n2
x + n2

y

(
nxny

n2
y − (1− n2

z).

)
(5.84)

The fixed point criterium (ṅx, ṅy) = 0 gives

nx = 0, ny = ±
√

1− n2
z, (5.85)

This result implies that, depending on the effective shape parameter

α = −(a+ b)nz, (5.86)

the combination of shear flow and wall interaction aligns the swimmer either parallel or
anti-parallel to the flow direction. This result also indicates that, to explain the transverse
velocity component observed in the experiments (Fig. 5.2A,C), we have to account for the
chirality of the flagellar beat, which has been neglected so far. Before discussing chiral
effects in the next section, let us still note that we may rewrite Eq. (5.84) in terms of the
2D unit vector

N =

(
Nx

Ny

)
=

1√
1− n2

z

(
nx
ny

)
(5.87)

as (
Ṅx

Ṅy

)
= σγ̇α

(
NxNy

N2
y − 1

)
, (5.88)

where σ = ±1 accounts for the flow direction and constant geometric prefactors have been
absorbed in the ‘shape’ coefficient

α = −(a+ b)nz. (5.89)

Note that α is positive for sperm-type swimmers that point into the surface, for in this
case one has nz < 0.

5.7.2 Chiral swimmers

To identify how chirality of the flagellar beat might affect the reorientation rate of sperm
in shear flow, we consider as a simplified sperm model a rigid 3D conical helix C(s) in
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Figure 5.3: Rigid conical helices, as defined in Eq. (5.90), for different handedness χ = ±1
and different ‘initial’ phases φ in their body-fixed frames, where the head rests at the origin.
Colors encode windings. Parameters: S = 4π, ε1 = ε2 = 0.1, λ = 5µm.

contact with a wall that defines the (x, y)-plane of the lab frame Σ = {ex, ey, ez}, which
is again chosen as in Fig. 5.2B.

We denote by n = (nx, ny, nz) the orientation of the conical helix in the lab frame Σ.

The head position is identified with tip of the cone. In the body-fixed frame Σ̂ =
{êx, êy, êz}, the head rests at the origin and the tail points in the −êy-direction (Fig. 5.3).

Specifically, we assume that, in the body-fixed frame Σ̂, the helix is described by the curve

Ĉ(s) =

X̂(s)

Ŷ (s)

Ẑ(s)

 = λs

χε1 cos(s− φ)
−1

−ε2 sin(s− φ)

 , s ∈ [0, S]. (5.90)

The length parameter λ scales the size of the flagellum. The parameters ε1 > 0 and
ε2 > 0 determine the lateral shape of the helix, and they can also be used to interpolate
between helical and planar beat patterns. The phase angle φ sets the ‘initial’ direction
of the flagellum relative to the head. The chirality parameter χ = ±1 determines the
handedness, defined here such that χ = +1 corresponds to a right-handed spiral when
viewed from the head (Fig. 5.4).

Figure 5.4: Rigid conical helices from Fig. 5.3 as viewed from the head, using the same
color coding as in Fig. 5.3.
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Figure 5.5: Body-centered frame Σ̂ and tilted body-centered frame Σ̂ε are related by a
rotation about the x-axis. After alignment with the wall, which is assumed to lie in the
(z = 0)-plane of Σ̂ε, the orientation of the sperm in the lab frame Σ (not shown) is obtained
by an additional rotation of Σ̂ε about the vertical axis .

To simplify calculations, we henceforth focus on symmetric spirals with ε1 = ε2 = ε. In
this case, the enveloping cone is given by

Ĉ(s, φ) = λs

 ε cosφ
−1

−ε sinφ

 , s ∈ [0, S], φ ∈ [0, 2π) (5.91)

with half-opening angle

θε = arctan ε. (5.92)

Assume that the spiral is in contact with the surface along its envelope. By rotating
through −θ about the êx-axis, we obtain the tilted body-centered frame Σ̂ε (Fig. 5.5) which
is defined such that the channel surface is located at z = 0 in both Σ̂ε and the lab frame.
In Σ̂ε, the helix is given by

Ĉε(s) = Rx(θε) · Ĉ(s), Rx(θε) =

1 0 0
0 cos θε sin θε
0 − sin θε cos θε

 . (5.93)

Using χ2 = 1, the tangent vectors in the body-fixed frame Σ̂ are found as

t̂(s) :=
dĈ(s)/ds

||dĈ(s)/ds||

=
1√

1 + (1 + s2) ε2

εχ[cos(s− φ)− s sin(s− φ)]
−1

−ε[s cos(s− φ) + sin(s− φ)]

 . (5.94)

and, accordingly, after alignment with the wall in Σ̂ε as

t̂ε(s) = Rx(θε) · t̂(s). (5.95)
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Due to our chosen parameterisation (5.90), the tangent vectors point away from the head.
The length Λ of the curve C(s) is obtained as

Λ =

∫ S

0

ds

∣∣∣∣∣
∣∣∣∣∣dĈ(s)

ds

∣∣∣∣∣
∣∣∣∣∣

=

∫ S

0

ds

√
X̂ ′(s)2 + Ŷ ′(s)2 + Ẑ ′(s)2

= Sλ

[
1 +

ε2

6
(3 + S2)

]
+ O(ε4). (5.96)

Thus, to leading order, one can identify Λ ' Sλ with the length of a flagellum, and A = Λε
with the beat amplitude.

After averaging over all initial conditions φ, the mean geometric center of the helix in
the body-fixed frame Σ̂ε is found as

Ĉε :=
1

2π

∫ 2π

0

dφ

[
1

Λ

∫ S

0

ds

∣∣∣∣∣
∣∣∣∣∣dĈ(s)

ds

∣∣∣∣∣
∣∣∣∣∣ Ĉε(s)

]

=
Sλ

2

 0
−1
ε

+ O(ε2). (5.97)

The orientation n̂ε in the wall-aligned body-fixed frame Σ̂ε is defined by

n̂ε := − Ĉε∣∣∣∣Ĉε

∣∣∣∣ =

 0
1
−ε

+ O(ε2), (5.98)

which is normalised up to terms of order O(ε2). Recalling that the z-axes of Σ̂ε and lab-
frame Σ coincide, the negative z-component means that the swimming direction points
into the wall.

Let us assume, as before, that the shear fluid flow in the lab frame Σ is along the
ey-direction,

u = σγ̇zey, (5.99)

where γ̇ > 0 is the shear rate and σ = ±1 determines the flow direction. Measuring the
orientation angle ψ of the swimmer wrt. ey in counterclockwise direction, we obtain the
coordinates C(t, s) of the helix with head position R(t) = (X(t), Y (t), 0) in the lab frame
Σ by

C(t, s) = R(t) + R(ψ(t)) · Ĉε(s), (5.100)

where

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (5.101)
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represents a rotation about the ez-axis. By applying the rotation matrix R(ψ) to the
orientation vector n̂ε in Σ̂ε, we find that, to leading order in ε, the 3D orientation vector
n in the lab frame Σ is given by

n =

(
N
−ε

)
+ O(ε2), N =

(
Nx

Ny

)
=

(
− sinψ
cosψ

)
, (5.102)

where N is the normalised (projected) 2D orientation vector in the (x, y)-plane. This
allows us to rewrite the rotation matrix as

RN =

 Ny Nx 0
−Nx Ny 0

0 0 1

 . (5.103)

The tangent vectors of C in Σ are given by t(s) = RN · Rx(θε) · t̂(s) with t̂(s) from
Eq. (5.94).

Assuming that the head position R(t) of the helix performs a quasi-2D motion along
the surface, R(t) = X(t)ex + Y (t)ey, we are interested in obtaining simplified effective
equations for the mean drag velocity Ṙ = U(N ) and the change in the orientation Ṅ (t)
due to the action of the flow gradient on the rigid helical curve C. As we shall discuss
next, such equations can be derived from resistive force theory (RFT).

From Eq. (5.100), the velocity of some point s ∈ [0, S] on the helix can be decomposed
as9

Ċ(s) = Ṙ+ ṘN · Ĉε = U + ṘN · Ĉε. (5.104)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit
length) can be split as

f(s) = ζ||

{[
u(C(s))− Ċ(s)

]
· t(s)

}
t(s) +

ζ⊥

{[
u(C(s))− Ċ(s)

]
· [I − t(s)t(s)]

}
(5.105)

where ζ|| and ζ⊥ are tangential and perpendicular drag coefficients. The drag ratio

κ =
ζ⊥
ζ||
, (5.106)

which equals 2 for rigid rods, takes values κ ' 1.4 − 1.7 for realistic flagella. Combining
the RFT ansatz (5.105) with the zero-force and zero-torque conditions of the over-damped
Stokes-regime

0 = Fi =

∫ S

0

ds

∣∣∣∣∣
∣∣∣∣∣dĈ(s)

ds

∣∣∣∣∣
∣∣∣∣∣ fi(s), (5.107)

0 = τi =

∫ S

0

ds

∣∣∣∣∣
∣∣∣∣∣dĈ(s)

ds

∣∣∣∣∣
∣∣∣∣∣ εijk[Cj(s)−X∗j ]fk(s), (5.108)

9For quasi-2D motions along the surface, the contact angle θε remains constant and, hence, Ṙx = 0.
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with X∗ denoting the center of rotation, yields a 6×6-linear system which could be solved
to obtain exact RFT- results for U and Ṅ . However, the resulting expressions are very
complicated and do not offer much insight. Fortunately, it is possible to obtain simple
analytical formulas for U and Ṅ , that capture the essential parts of their dynamics,
by focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and
U � ṘNĈ (rotation-dominated regime).

To estimateU , note that steric interactions between flagellum and channel wall compen-
sate drag forces in vertical directions, so that only the (x, y)-components of the velocity are
non-zero. Considering the translation-dominated regime U � ṘN · Ĉ, the zero-force con-
ditions (5.108) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for U = (Ux, Uy).
After averaging over φ with a uniform angular distribution, we find for ε � 1 and κ ' 1
to leading order10

U ' 1

2
ε σγ̇λS

(
0
1

)
− χ

3
ε2 (κ− 1)σγ̇λS2

(
0

NxNy

)
, (5.109)

where Λ ' Sλ is the approximate length of the flagellum. The first term is the mean drag
on the geometric center of the conical helix, and the second is an orientation-dependent
drag contribution due to chirality χ. For passive chiral objects, such as dead bacterial
cells, both terms can be important, although the first term is likely more relevant for self-
swimming sperm cells. For completeness, we mention that the leading-order transverse-
drag term (not shown) appears at next order in (κ − 1) and is found to be proportional
to −χσ(κ− 1)2ε2S2γ̇λ.

Guided by Eq. (5.109), we simulate the position dynamics of sperm cells that swim
at self-swimming speed V in the direction of their 2D orientation N by implementing a
minimal dynamics of the form

Ṙ = VN +U = VN + σγ̇εη

(
0
1

)
, (5.110)

where η > 0 is a geometric prefactor with dimensions of length. Neglecting the translational
chirality-effects in Eq. (5.110) is indeed a reasonable approximation since, for sufficiently
fast sperm cells, the beat chirality acts predominantly through the rotation dynamics ofN ,
which becomes amplified by multiplication with V in Eq. (5.110).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of
|N |2 = 1, the dynamics of the components Ṅx and Ṅy are coupled by

0 = ˙|N |2 = 2(NxṄx +NyṄy). (5.111)

10The first term in Eq. (5.109) could also have been obtained by simply computing the mean drag
velocity

u =
1

2π

∫ 2π

0

dφ

[
1

Λ

∫ S

0

ds

∣∣∣∣∣
∣∣∣∣∣dĈ(s)

ds

∣∣∣∣∣
∣∣∣∣∣ u(C(s))

]
.
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Thus, only one of the three zero-torque conditions (5.108) is needed to determine both Ṅx

and Ṅy. For sperm swimming next to a solid surface, only rotations parallel to the surface
are possible and, therefore, the relevant condition is τ3 = 0. Whilst a passive helix would
rotate around its center of mass, the rotation axis is shifted towards the head position R
for real sperm cells due to the presence of the cell head, which has been omitted thus far
in our discussion of the rigid-spiral model. To account at least partially for the influence
of the head on the rotation dynamics, we approximate X∗ ' (R, 0) in Eq. (5.108) and
focus on the rotation dominated regime, U � ṘN · Ĉ. Adopting these simplifications and
averaging over φ, one finds for small ε� 1 from the vanishing τ3-component of Eq. (5.108)
the leading order result

ψ̇ = ε γ̇σ sinψ +
χ

4
ε2
κ− 1

κ
γ̇σ S cosψ. (5.112)

Recalling that N = (Nx, Ny) = (− sinψ, cosψ), this can be rewritten as

Ṅ = σγ̇ε

(
NxNy

N2
y − 1

)
+
χ

4
ε2
κ− 1

κ
γ̇σ S

(
N2
x − 1
NxNy

)
. (5.113)

The first term represents alignment against the flow due to the conical shape of the flagellar
envelope, in agreement with Eq. (5.88). The second term describes chirality-induced devia-
tions from exact anti-alignment, leading to a non-vanishing transversal velocity component,
as observed in the experiments.

We may now summarize the quasi-2D model. Assuming as before that the shear flow
is along the y-axis (Fig. 5.2B), Eqs. (5.110) and (5.113) imply the following minimal 2D
model for the quasi-2D motion of a sperm with position R(t) = (X(t), Y (t)) and orienta-
tion N (t) = (Nx(t), Ny(t)) in the vicinity of the surface

Ṙ = VN + σUey, (5.114a)

Ṅ = σγ̇α

(
NxNy

N2
y − 1

)
+ σγ̇χβ

(
N2
x − 1
NxNy

)
+ (2D)1/2(I −NN ) · ξ(t). (5.114b)

Here, V > 0 is the self-swimming speed, σ = ±1 defines the flow direction, γ̇ > 0 is the
shear rate, U > 0 the mean flow speed experienced by the cell, and χ ∈ {0,±1} the beat
chirality. The dimensionless geometry parameters α > 0, β > 0 encode details of the shape
of the flagellar beat, and the coefficient D determines the strength of the two-dimensional
Gaussian white noise ξ, interpreted here in the Stratonovich-sense and included to account
for variability in sperm swimming.

Clearly, the model of a rigid conical helix, as discussed here, is a relatively crude
approximation to the full swimming dynamics of a sperm cell, for it neglects dynamical
aspects of the flagellar beat (exact wave form, etc.) as well as hydrodynamic effects due
to translation and rotation of the cell’s head. Notwithstanding, on time scales larger
than the typical beat period, Eqs. (5.114) provides a useful coarse-grained description
of sperm swimming near a surface, as the model captures the main symmetries of the
problem [KDBG14].
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Chapter 6

Network models

6.1 Graphs

Many biological systems and their interactions can be represented through graphs. Ex-
ample include, but are not restricted to, gene regulatory networks, phylogenetic trees,
cytoskeletal networks, mucus, neuronal networks and hydrodynamic transport systems in
plants and mammals. In this part, we survey basic mathematical concepts to describe
and characterize graphs and transport on them. A main idea is to represent a network
through suitable matrices and to relate their spectral characteristics to the properties of
the underlying graph.1

6.1.1 Basic definitions

A graph is collection G = (V,E) of vertices V = {v1, v2} and edges E = {e1, e2, . . .}.
We denote by |V | and |E| the number of vertices and edges, respectively. Undirected
edges can be identified with disordered pairs of vertices, e.g., e1 = (v1, v2) = (v2, v1). A
simple graph is an undirected graph that has no loops and at most one edge between
any two vertices (Fig. 6.1a,b). A simple undirected graph with |V | vertices can have at
most |E| = |V |(|V | − 1)/2 edges; in this case the graph is called complete (Fig. 6.1b).

A directed graph or digraph is collection ~G = (V, ~E) of vertices V = {v1, v2} and ordered

edges ~E = {~e1, ~e2, . . .}, such that for example ~e1 = (v1, v2) 6= (v2, v1) (Fig. 6.1c).
A planar graph is a graph that can be embedded in the plane in such a way that its

edges intersect only at their endpoints. That is, a planar graph can be drawn in such a way
that no edges cross each other (Fig 6.2). The dual graph G∗ of a plane graph G is a graph
that has a vertex corresponding to each face of G, and an edge joining two neighboring
faces for each edge in G (Fig 6.2d). If G is connected and G∗ is dual to G, then G is also
dual to G∗, (G∗)∗ = G.

1For a more detailed introduction, we refer to Dan Spielman’s course on Spectral Graph The-
ory http://www.cs.yale.edu/homes/spielman/561/.
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(a) (b) (c)

Figure 6.1: (a) Graph with six vertices and 7 edges. (b) Complete undirected graph.
(c) Directed graph. Image source: wiki.

(a) (b) (c) (d)

Figure 6.2: Planar, non-planar and dual graphs. (a) Plane ‘butterfly’graph. (b, c) Non-
planar graphs. (d) The two red graphs are both dual to the blue graph but they are not
isomorphic. Image source: wiki.

Given a graph G, its line graph or derivative L[G] is a graph such that (i) each vertex
of L[G] represents an edge of G and (ii) two vertices of L[G] are adjacent if and only if
their corresponding edges share a common endpoint (‘are incident’) in G (Fig. ??). This
construction can be iterated to obtain higher-order line (or derivative) graphs.

6.1.2 Adjacency and incidence

Adjacency matrix Two vertices v1 and v2 of a graph are called adjacent, if they are
connected by an edge. The adjacency matrix A(G) = (Aij) is a |V | × |V |-matrix that lists
all the connections in a graph. If the graph is simple, then A is symmetric and has only
entries 0 or 1. For example, for the graph in Fig. 6.3a, we have

A =


0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 1 0

 (6.1)

If the graph is simple, then the diagonal elements of A are zero.
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The column (row) sum defines the degree (connectivity) of the vertex

deg (vi) =
∑
j

Aij (6.2)

and the volume of the graph is given by

vol(G) =
∑
V

deg (vi) =
∑
ij

Aij (6.3)

The degree matrix D(G) is defined as the diagonal matrix

D(G) = diag
(
deg(v1), . . . , deg(v|V |)

)
(6.4)

For the graph in Fig. 6.3a, one has

D =


3 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 2

 (6.5)

The degree distribution is an important characteristics of random graphs, and we will
return to this topic further below.

If the graph is directed, we may still define a signed adjacency matrix ~A with elements

~Aij =


−1, if edge goes from vi to vj

+1, if edge goes from vj to vi

0, otherwise

(6.6)

(a) (b) (c) (d)

Figure 6.3: Construction of a line graph. These figures show a graph (a, with blue vertices)
and its line graph (d, with green vertices). Each vertex of the line graph is shown labeled
with the pair of endpoints of the corresponding edge in the original graph. For instance,
the green vertex on the right labeled 1,3 corresponds to the edge on the left between the
blue vertices 1 and 3. Green vertex 1,3 is adjacent to three other green vertices: 1,4 and 1,2
(corresponding to edges sharing the endpoint 1 in the blue graph) and 4,3 (corresponding
to an edge sharing the endpoint 3 in the blue graph). Image and text source: wiki.
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The characteristic polynomial of a graph is defined as the characteristic polynomial of
the adjacency matrix

p(G;x) = det(A− xI) (6.7)

For the graph in Fig. 6.3a, we find

p(G;x) = −x(4− 2x− 6x2 + x4) (6.8)

Characteristic polynomials are not diagnostic for graph isomorphism, i.e., two noniso-
morphic graphs may share the same characteristic polynomial.

Incidence matrix The incidence matrix C of graph G is a|V |× |E|-matrix with Cis = 1
if edge vi is contained in edge es, and Cis = 0 otherwise. For the graph in Fig. 6.3a, with
i = 1, . . . , 5 vertices and s = 1, . . . , 6 edges, we have

C =


1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 1

 (6.9)

The incidence matrix C(G) of a graph G and the adjacency matrix A(L[G]) of its line
graph L[G] are related by

A(L[G]) = C(G)> ·C(G)− 2I ⇔ A(L[G])rs = CirCis − 2δrs (6.10)

For the example in Fig. 6.3, we thus find

A(L[G]) =


0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 1 1
1 0 0 0 0 1
0 1 1 0 0 1
0 0 1 1 1 0

 (6.11)

yielding the characteristic polynomial

p(L[G];x) = (x+ 2)
(
x2 + x− 1

)
[(x− 3)x2 − x+ 2] (6.12)

Directed incidence matrix In addition to the undirected incidence matrix C, we still
define a directed |V | × |E|-matrix ~C as follows

~Cis =


−1, if edge es departs from vi

+1, if edge es arrives at vi

0, otherwise

(6.13)

99



For undirected graphs, the assignment of the edge direction is arbitrary – we merely have
to ensure that the columns s = 1, . . . , |E| of ~C sum to 0. For the graph in Fig. 6.3a, one
finds

~C =


−1 −1 −1 0 0 0
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 1 −1
0 0 0 1 0 1

 (6.14)

6.1.3 Laplacian

The |V | × |V |-Laplacian matrix L(G) of a graph G, often also referred to as Kirchhoff
matrix, is defined as the difference between degree matrix and adjacency matrix

L = D −A (6.15a)

Hence

Lij =


deg(vi), if i = j

−1, if vi and vj are connected by edge

0, otherwise

(6.15b)

As we shall see below, this matrix provides an important characterization of the underlying
graph.

The |V |× |V |-Laplacian matrix can also be expressed in terms of the directed incidence

matrix ~C, as

L = ~C · ~C
>

⇔ Lij = ~Cir ~Cjr (6.16)

For the graph in Fig. 6.3a, one finds

L =


3 −1 −1 −1 0
−1 2 0 0 −1
−1 0 2 −1 0
−1 0 −1 3 −1
0 −1 0 −1 2

 (6.17)

Properties We denote the eigenvalues of L by

λ0 ≤ λ1 ≤ . . . ≤ λ|V | (6.18)

The following properties hold:

(i) L is symmetric.
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(ii) L is positive-semidefinite, that is λi ≥ 0 for all i.

(iii) Every row sum and column sum of L is zero.2

(iv) λ0 = 0 as the vector v0 = (1, 1, . . . , 1) satisfies L · v0 = 0.

(v) The multiplicity of the eigenvalue 0 of the Laplacian equals the number of connected
components in the graph.

(vi) The smallest non-zero eigenvalue of L is called the spectral gap.

(vii) For a graph with multiple connected components, L can written as a block diagonal
matrix, where each block is the respective Laplacian matrix for each component.

Normalized Laplacian The associated normalized Laplacian L(G) is defined as

L = D−1/2 ·L ·D−1/2 = I −D−1/2 ·A ·D−1/2 (6.19a)

with elements

Lij =


1, if i = j and deg(vi) 6= 0

−1/
√

deg(vi) deg(vj), if i 6= j and vi and vj are connected by edge

0, otherwise

(6.19b)

One can write L(G) as, cf. Eq. (6.16),

L(G) = ~B · ~B
>

(6.20a)

where ~B is an |V | × |E|-matrix where

~Bis =


−1/

√
deg(vi), if edge es departs from vi

+1/
√

deg(vi), if edge es arrives at vi

0, otherwise

(6.20b)

A ‘0-chain’ is a real-valued vertex function g : V → R, and a ‘1-chain’ is a real-valued
edge function E → R. Then ~B = ( ~Bis) can be viewed as boundary operator that maps

1-chains onto 0-chains, while the transposed matrix ~B
>

= ( ~Bsi) is a co-boundary operator
that maps 0-chains onto 1-chains. Accordingly L can be viewed as an operator that maps
a vertex functions g, which can be viewed as |V |-dimensional column vector, onto another
vertex function L · g, such that

(L · g)(vi) =
1√

deg(vi)

∑
vj∼vi

[
g(vi)√
deg(vi)

− g(vj)√
deg(vj)

]
(6.21)

2The degree of the vertex is summed with a -1 for each neighbor
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where vj ∼ vi denotes the set of adjacent nodes.
We denote the eigenvalues of L by

0 = λ0 ≤ λ1 ≤ . . . ≤ λ|V |−1 (6.22)

Abbreviating n = |V |, one can show that

(i)
∑

i λi ≤ n with equality iff G has no isolated vertices.

(ii) λ1 ≤ n/(n− 1) with equality iff G is the complete graph on n ≥ 2 vertices.

(iii) If n ≥ 2 and G has no isolated vertices, then λn−1 ≥ n/(n− 1).

(iv) If G is not complete, then λ1 ≤ 1.

(v) If G is connected, then λ1 > 0.

(vi) If λi = 0 and λi+1 > 0, then G has exactly i+ 1 connected components.

(vii) For all i ≤ n − 1, we have λi ≤ 2, with λn−1 = 2 iff a connected component of G is
bipartite and nontrivial.

(viii) The spectrum of a graph is the union of the spectra of its connected components.

See Chapter 1 in [Chu97] for proofs.

Examples:

• For a complete graph Kn on n ≥ 2 vertices, the eigenvalues are 0 (multiplicity 1) and
n/(n− 1) (multiplicity n− 1)

• For a complete bipartite graph Km,n on m + n vertices, the eigenvalues are 0 and 1
(multiplicity m+ n− 2) and 2.

• For the star Sn on n ≥ 2 vertices, the eigenvalues are 0 and 1 (multiplicity n − 2)
and 2.

• For the path Pn on n ≥ 2 vertices, the eigenvalues are λk = 1 − cos[πk/(n − 1)] for
k = 0, . . . , n− 1.

• For the cycle Cn on n ≥ 2 vertices, the eigenvalues are λk = 1 − cos[2πk/n] for
k = 0, . . . , n− 1.

• For the n-cube Qn on 2n vertices, the eigenvalues are λk = 2k/n, with multiplicity(
n
k

)
for k = 0, . . . , n.
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6.2 Trees and Kirchhoff’s theorem

Definitions and basic properties A tree is connected undirected simple graph without
cycles. Nodes with only one adjacent vertex are called leaves. A star graph is a tree which
consists of a single internal vertex (and n?1 leaves), i.e., a star graph is with as many leaves
as possible. A forest is a disjoint union of trees. A directed tree is a directed graph that
would be a tree if edge directions are dropped.

Cayley’s formula states that there are

t(n) = nn−2 (6.23)

trees on n labeled vertices. For n unlabeled vertices only asymptotic estimates exist

tu(n) = Cann−5/2 , n→∞ (6.24)

where C ' 0.5349 . . . and a ' 2.9557...
We summarize a few properties:

• Every tree is a bipartite graph.

• Every connected graph G admits a spanning tree, which is a tree that contains every
vertex of G and whose edges are edges of G.

• Every finite tree with n > 1 vertices has at least two terminal vertices (leaves).

• For any three vertices in a tree, the three paths between them have exactly one vertex
in common.

Kirchhoff’s theorem A spanning tree is a tree that contains every vertex of G and whose
edges are edges of G. That is, spanning trees are obtained by successively deleting edges
from a graph in such a manner that all cycles are resolved but the connectivity remains
intact. Kirchhoff’s theorem answers the question how many spanning trees a given graph
G permits. Specifically, the theorem states that, for a simple connected graph with n = |V |
vertices and non-zero Laplacian eigenvalues λ1, . . . , λn−1, the number t(n) of spanning trees
is given by the normalized product of those eigenvalues

t(n) =
1

n
λ1 · · ·λn−1. (6.25)

Finding an optimal spanning tree for a weighted network is a commonly encountered
optimization problem, e.g., if one wants to lay pipes or communication cables along a
preexisting road network such that all vertices are connected at a minimal cost. Note,
however, that trees are not robust as deleting a single edge disconnects the tree.
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6.3 Transport

6.3.1 Max-Flow Min-Cut

Capacity and flow Consider a directed network ~G = (V, ~E) with |V | = n + 2 vertices
labelled v0, . . . , vn. We identify the first node as a source, s = v0, and the last node as the
‘terminal’ sink t = vn.

The edge capacity is a map c : ~E → R+, corresponding to an |E|-dimensional vector

c = (cr) = (c(vi, vj)). Similarly, the flow is a map f : ~E → R+, corresponding to an
|E|-dimensional vector f = (fr) = (f(vi, vj)).

We assume that transport through the network satisfies the capacity constraint

fr ≤ cr , ∀r = 1, . . . , |E| (6.26a)

as well as the flow (‘mass’) conservation constraint∑
u:(u,v)∈ ~E

f(u, v) =
∑

u:(v,u)∈ ~E

f(v, u) , ∀v ∈ {v1, . . . , vn−1} (6.26b)

The value of flow is defined as the total input entering through the source

|f | =
∑

u:(s,u)∈ ~E

f(s, u) (6.27)

where s = v0 is the source.

Max-Flow problem Maximize |f | for a given a capacity c; that is, to route as much
flow as possible from source s to sink t.

Min-Cut An s-t cut C = (Vs, Vt) is a partition of V such that s ∈ Vs and t ∈ Vt. The
cut-set of C is the set of edges connecting from Vs to Vt

~EC = {(vi, vj) ∈ ~E : vi ∈ Vs, vj ∈ Vt} (6.28)

These are the edges that are deleted during the cutting procedure.
The capacity of the s-t cut is defined as

cs,t =
∑
~Ec

c(vi, vj) (6.29)

Min-Cut problem Minimize cs,t; that is, to determine Vs and Vt such that the capacity
of the cut is minimal.

Max-Flow Min-Cut Theorem The maximum value of an s-t flow is equal to the
minimum capacity over all s-t cuts.
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Appendix A

Stochastic integrals and calculus

This appendix summarizes the most commonly considered stochastic integral definitions
and the corresponding rules of stochastic calculus. For a more rigorous and comprehensive
introduction, we refer to, e.g., Refs. [KS91, Gri02, Gar02, RF96].

We consider a Wiener process (standard Brownian motion) B(t) as defined in Sec-
tion 1.2.1; i.e., the increments dB(t) := B(t + dt) − B(t) are stochastically indepen-
dent [KS91, Gri02] and characterized by the Gaussian distribution

P{dB(t) ∈ [y, y + dy]} = (2πdt)−1/2 exp
[
−y2/(2dt)

]
dy. (A.1)

We are interested in defining integrals of the form

I =

∫ t

0

f(Y (s))� dB(s), (A.2)

where f(y) is some real-valued function, Y (s) a real-valued time-dependent process, and
� signals different discretization rules to be discussed below. If B(s) were some ordinary
differentiable function of s ∈ [0, t], then the integral in Eq. (A.2) would simply be given
by1

I =

∫ t

0

f(Y (s)) Ḃ(s) ds, (A.3)

where Ḃ = dB/ds. Unfortunately, Ḃ(s) is not well-defined for the Wiener process [Gar02,
KS91], but it is possible to generalize the concept of integration to also include the Wiener
process as well as other stochastic processes [KS91, Gri02, Gar02]. However, in contrast
to the standard Riemann-Stieltjes integral (A.3), the integral with respect to a stochastic
process may depend on the choice of the discretization scheme � and, in particular, also
require modifications of differential calculus.

1By writing Eq. (A.3), it is implictly assumed that f(y), Y and Ḃ are sufficiently smooth functions so
that this integral exists in the sense of Riemann-Stieltjes; in this case, the value of the integral (A.3) is
independent of the underlying discretization scheme [Gri02].
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To illustrate these aspects for the most commonly considered stochastic integral defini-
tions, we will always consider the following equidistant partition {t0, t1 . . . , tN} of the time
interval [0, t]:

∆t = tk − tk−1 = t/N, k = 1, . . . , N, t0 = 0, tN = t. (A.4)

A.1 Ito integral

We first summarize the properties of Ito’s stochastic integral [Ito44, Ito51]. Its relationship
to other stochastic integrals is discussed in Section A.4.

A.1.1 One-dimensional case

The Ito stochastic integral of some real-valued function f(Y (t)) with respect to a standard
Brownian motion process B(t) over the time-interval [0, t] can be defined by∫ t

0

f(Y (s)) ∗ dB(s) := lim
N→∞

N−1∑
k=0

f(Y (tk)) [B(tk+1)−B(tk)] , (A.5)

where the partition {t0, . . . , tN} is given by (A.4). The peculiar, defining feature of this
integral is that, on the rhs. of Eq. (A.5), the argument of the function f must be evaluated
at the lower boundary points tk of the discrete intervals [tk, tk+1]; i.e., the definition of the
Ito integral is non-anticipatory. Accordingly, the Ito discretization scheme is also known
as the pre-point rule.

Now consider a stochastic process Y (t) which, for two given functions A(y) and C(y),
is defined by

Y (t) = Y (0) +

∫ t

0

A(Y (s)) ds+

∫ t

0

C(Y (s)) ∗ dB(s), (A.6)

and where the last term is interpreted as an Ito integral (A.5). Stochastic integral equations
like Eq. (A.6) are usually abbreviated by rewriting them as an Ito stochastic differential
equation (I-SDE)

dY (t) = A(Y ) dt+ C(Y ) ∗ dB(t), (A.7)

complemented by the initial condition Y (0). From the non-anticipatory definition (A.5) of
the Ito integral and the properties of the Wiener process it follows that [Gar02]2

E[C(Y ) ∗ dB(t) | Y (t) = y] = 0. (A.8)

2E[ · | Y (t) = y] denotes the conditional expectation with respect to the Gaussian measure of the
Wiener process B(t).
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The Fokker-Planck equation for the PDF f(t, y) of the stochastic process defined by
Eq. (A.7) reads

∂f

∂t
=

∂

∂y

[
−Af +

1

2

∂

∂y
(C2f)

]
, (A.9)

where A = A(y) and C = C(y). A deterministic initial condition Y (0) = y0 translates into
f(0, y) = δ(y − y0).

Finally, an important peculiarity arises when one considers nonlinear transformations
G of the stochastic process Y (t). More precisely, assuming that Y is defined by the I-
SDE (A.7), then the differential change of the process Z(t) := G(Y (t)) is given by (see,
e.g., Section 4.3.2 in [Gar02])

dZ(t) = G′(Y ) ∗ dY +
1

2
C(Y )2 G′′(Y ) dt

=

[
A(Y ) G′(Y ) +

1

2
C(Y )2 G′′(Y )

]
dt+ C(Y ) G′(Y ) ∗ dB(t),

where G′(y) = dG(y)/dy and G′′(y) = d2G(y)/dy2. Within ordinary differential calculus,
the term containing G′′ is absent. Equation (A.10) is usually referred to as Ito formula.

A.1.2 The n-dimensional case

Consider the n-dimensional stochastic process Y (t) = (Y 1(t), . . . , Y n(t)), defined by the
following n-dimensional generalization of Eq. (A.7):

dY i(t) = Ai(Y ) dt+ Ci
r(Y ) ∗ dBr(t), (A.10)

where i = 1, . . . , n and r = 1, . . . , K. In Eq. (A.10), the Wiener processes Br(t) represent
K independent noise sources, and each term Ci

r(Y ) ∗ dBr(t) symbolizes an Ito integral.
The Fokker-Planck equation for the PDF f(t, y1, . . . , yn) reads

∂f

∂t
=

∂

∂yi

[
−Aif +

1

2

∂

∂yj
(Ci

rC
j
rf)

]
. (A.11)

The generalized Ito-formula reads (see, e.g., Section 4.3.2 in [Gar02])

dG[Y (t)] =

[
Ai ∂iG+

1

2
Ci

rC
j
r ∂i∂jG

]
dt+ Ci

r ∂iG ∗ dBr(t), (A.12)

where ∂i := ∂/∂yi.

A.2 Stratonovich-Fisk integral

Next, we summarize the properties of an alternative stochastic integral definition pro-
posed by Stratonovich [Str64, Str66, Str68] and Fisk [Fis63, Fis65]. In contrast to the
non-anticipatory Ito integral, the Stratonovich-Fisk (SF) integral is semi-anticipatory, but
satisfies the rules of ordinary stochastic calculus.
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A.2.1 One-dimensional case

The SF stochastic integral of some real-valued function f(Y (t)) with respect to a standard
Brownian (Wiener) motion process B(t) over the time-interval [0, t] can be defined by∫ t

0

f(Y (s)) ◦ dB(s) := lim
N→∞

N−1∑
k=0

1

2
[f(Y (tk+1)) + f(Y (tk))]×

[B(tk+1)−B(tk)] , (A.13)

where the partition {t0, . . . , tN} is given by (A.4). In contrast to Ito’s integral (A.5), the
SF definition (A.13) uses the mean of the boundary values of f on the intervals [tk, tk+1];
i.e., the definition of the SF integral is semi-anticipatory. This discretization scheme is also
known as the mid-point rule.

Similar to Eq. (A.6), we may consider a stochastic process Y (t) defined by

Y (t) = Y (0) +

∫ t

0

A(Y (s)) ds+

∫ t

0

C(Y (s)) ◦ dB(s), (A.14)

where now the last term is interpreted as an SF integral (A.13). The integral equa-
tion (A.14) can be abbreviated in terms of the equivalent SF stochastic differential equation
(SF-SDE)

dY (t) = A(Y ) dt+ C(Y ) ◦ dB(t), (A.15)

with initial condition Y (0). From the semi-anticipatory definition (A.13) of the SF integral
and the properties of the Wiener process it follows that [Gar02]

E[C(Y ) ◦ dB(t) | Y (t) = y] =
1

2
C(y)C ′(y) dt, (A.16)

where C ′(y) = dC(y)/dy. The Fokker-Planck equation for the PDF f(t, y) of the stochastic
process (A.15) reads

∂f

∂t
=

∂

∂y

[
−Af +

1

2
C
∂

∂y
(Cf)

]
(A.17)

where A = A(y), and C = C(y). The deterministic initial condition Y (0) = y0 translates
into f(0, y) = δ(y − y0).

It can be shown [Gar02, Gri02] that the SF integral definition preserves the rules of
ordinary stochastic calculus; i.e., if Y (t) is defined by the SF-SDE (A.15), then the dif-
ferential change of the process Z(t) := G(Y (t)) is given by (see, e.g., Section 4.3.2 in
[Gar02])

dZ(t) = G′(Y ) ◦ dY
= A(Y ) G′(Y ) dt+ C(Y ) G′(Y ) ◦ dB(t), (A.18)
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where G′(y) = dG(y)/dy.
However, as will be discussed in Section A.4, for a given SF-SDE with sufficently smooth

coefficient functions A and C, one can always find an I-SDE that yields the same Fokker-
Planck equation. Hence, in order to describe a certain physical process, one may choose
that integral definition that is most convenient for the problem under consideration.

A.2.2 The n-dimensional case

Consider the n-dimensional stochastic process Y (t) = (Y 1(t), . . . , Y n(t)), defined by the
following n-dimensional generalization of Eq. (A.15):

dY i(t) = Ai(Y ) dt+ Ci
r(Y ) ◦ dBr(t), (A.19)

where i = 1, . . . , n and r = 1, . . . , K. In Eq. (A.19), the Wiener processes Br(t) represent
K independent noise sources, and each term Ci

r(Y ) ◦ dBr(t) symbolizes an SF integral.
The Fokker-Planck equation for the PDF f(t, y1, . . . , yn) reads

∂f

∂t
=

∂

∂yi

[
−
(
Ai +

1

2
Cj

r
∂

∂yj
Ci

r

)
f +

1

2

∂

∂yj
(Ci

rC
j
rf)

]
, (A.20)

and the transformation rules of ordinary differential calculus apply.

109



A.3 Backward Ito integral

We still consider a third stochastic integral definition which is also known as the backward
Ito (BI) integral [KS91, Jr.69]. Its relationship to the other stochastic integrals is discussed
in Section A.4.

A.3.1 One-dimensional case

The BI stochastic integral of some real-valued function f(Y (t)) with respect to B(t) over
the time-interval [0, t] can be defined by∫ t

0

f(Y (s)) • dB(s) := lim
N→∞

N−1∑
k=0

f(Y (tk+1)) [B(tk+1)−B(tk)] , (A.21)

where the partition {t0, . . . , tN} is given by (A.4). On the rhs. of Eq. (A.21), in contrast
to the Ito and SF integrals, the argument of the function f must be evaluated at the upper
boundary points tk+1 of the discrete intervals [tk, tk+1]; i.e., the definition of this integral
is anticipatory. This discretization scheme is also known as the post-point rule.

Similar to above, we may consider a stochastic process Y (t) which, for two given func-
tions A(y) and C(y), is defined by

Y (t) = Y (0) +

∫ t

0

A(Y (s)) ds+

∫ t

0

C(Y (s)) • dB(s), (A.22)

and where the last term is now interpreted as a BI integral (A.21). Equation (A.6) can be
abbreviated by rewriting it as a backward Ito stochastic differential equation (BI-SDE)

dY (t) = A(Y ) dt+ C(Y ) • dB(t), (A.23)

complemented by the deterministic initial condition Y (0). From the anticipatory defini-
tion (A.21) of the BI integral and the properties of the Wiener process it follows that [Gar02]

E[C(Y ) • dB(t) | Y (t) = y] = C(y)C ′(y) dt. (A.24)

The Fokker-Planck equation for the PDF f(t, y) of the stochastic process defined by
Eq. (A.23) reads

∂f

∂t
=

∂

∂y

[
−Af +

1

2
C2 ∂

∂y
f

]
, (A.25)

where A = A(y) and C = C(y). The deterministic initial condition Y (0) = y0 translates
into f(0, y) = δ(y − y0).
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It can be shown that, similar to the Ito integral, also the BI integral requires a mod-
ification of differential calculus. More precisely, assuming that Y is defined by the BI-
SDE (A.23), the differential change of the process Z(t) := G(Y (t)) is given by

dZ(t) = G′(Y ) • dY − 1

2
C(Y )2 G′′(Y ) dt

=

[
A(Y ) G′(Y )− 1

2
C(Y )2 G′′(Y )

]
dt+ C(Y ) G′(Y ) • dB(t),

(A.26)

where G′(y) = dG(y)/dy and G′′(y) = d2G(y)/dy2.

A.3.2 The n-dimensional case

Consider the n-dimensional stochastic process Y (t) = (Y 1(t), . . . , Y n(t)), defined by the
following n-dimensional generalization of Eq. (A.23):

dY i(t) = Ai(Y ) dt+ Ci
r(Y ) • dBr(t), (A.27)

where i = 1, . . . , n and r = 1, . . . , K. In Eq. (A.27), the Wiener processes Br(t) represent
K independent noise sources, and each term Ci

r(Y )•dBr(t) symbolizes a BI integral. The
Fokker-Planck equation for the associated PDF f(t, y1, . . . , yn) reads

∂f

∂t
=

∂

∂yi

[
−
(
Ai + Cj

r
∂

∂yj
Ci

r

)
f +

1

2

∂

∂yj
(Ci

rC
j
rf)

]
. (A.28)

The generalized backward Ito-formula reads

dG[Y (t)] =

[
Ai ∂iG−

1

2
Ci

rC
j
r ∂i∂jG

]
dt+ Ci

r ∂iG • dBr(t), (A.29)

where ∂i := ∂/∂yi.

A.4 Comparison of stochastic integrals

As anticipated in the preceding sections, the three different stochastic integrals/SDEs may
be transformed into each other. In particular, a given Fokker-Planck equation can usually
be realized by any of three SDE types, upon choosing the coefficient functions appropriately.
To illustrate this by example, we reconsider the n-dimensional SDEs from above, assuming
identical noise coefficients Ci

r but different drift coefficients Ai∗|◦|•(Y ), respectively, i.e.

dY i(t) = Ai∗(Y ) dt+ Ci
r(Y ) ∗ dBr(t), (A.30a)

dY i(t) = Ai◦(Y ) dt+ Ci
r(Y ) ◦ dBr(t), (A.30b)

dY i(t) = Ai•(Y ) dt+ Ci
r(Y ) • dBr(t), (A.30c)
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where i = 1, . . . , n and r = 1, . . . , K. We would like to determine the drift coefficients
such that these three different types of SDEs describe the same n-dimensional stochastic
process Y (t) = (Y 1(t), . . . , Y n(t)) on the level of the Fokker-Planck equations3, which can
be compactly summarized as follows

∂f�
∂t

= ∂i

[
−
(
Ai� + λ�C

j
r∂jC

i
r

)
f� +

1

2
∂j(C

i
rC

j
rf�)

]
, (A.31)

where ∂i := ∂/∂yi, and λ∗ = 0, λ◦ = 1/2, and λ• = 1. We distinguish three cases:

(i) Eq. (A.30a) is given. In this case, Eq. (A.31) implies that Eqs. (A.30b) and (A.30c)
describe the same process as Eq. (A.30a), if we fix

Ai◦ = Ai∗ −
1

2
Cj

r∂jC
i
r , Ai• = Ai∗ − Cj

r∂jC
i
r. (A.32)

(ii) Eq. (A.30b) is given. In this case, Eqs. (A.30a) and (A.30c) describe the same
process as Eq. (A.30b), if we fix

Ai∗ = Ai◦ +
1

2
Cj

r∂jC
i
r , Ai• = Ai◦ −

1

2
Cj

r∂jC
i
r. (A.33)

(iii) Eq. (A.30c) is given. In this case, Eqs. (A.30a) and (A.30b) describe the same
process as Eq. (A.30c), if we fix

Ai∗ = Ai• + Cj
r∂jC

i
r , Ai◦ = Ai• +

1

2
Cj

r∂jC
i
r. (A.34)

To summarize, by means of Eqs. (A.32), (A.33) and (A.34) one can change between the
different forms of stochastic integration and stochastic differential calculus, respectively.
Each SDE type has advantages and disadvantages: The Ito formalism is well suited for
numerical simulations [RF96, KP06, Gla04] and yields a vanishing noise contribution to
conditional expectations of the form (A.8). The Stratonovich-Fisk approach is more dif-
ficult to implement numerically, but preserves the rules of ordinary differential calculus
(in contrast to Ito/backward Ito integration). Finally, within the backward Ito scheme,
fluctuation dissipation relations may take a particularly elegant form (cf. Section 6.2 in
Ref. [HT82], and Ref. [Kli94]).

A.5 Numerical integration

A detailed introduction to the numerical simulation of SDEs can be found in [RF96, KP06,
Gla04]. A simple Monte-Carlo algorithm for numerically integrating Eqs. (A.30) follows

3For most practical purposes, two Markovian stochastic processes can be considered as physically
equivalent if their PDFs are governed by the same Fokker-Planck equation.
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directly from the definition of the stochastic integrals. The corresponding discretization
scheme, which works sufficiently well for many purposes, reads

Y i(t+ ∆t)− Y i(t) = Ai∗(Y (t)) ∆t+ Ci
r(Y (t)) ∆Br(t), (A.35a)

Y i(t+ ∆t)− Y i(t) = Ai◦(Y (t)) ∆t+ (A.35b)
1

2
[Ci

r(Y (t+ ∆t)) + Ci
r(Y (t))] ∆Br(t),

Y i(t+ ∆t)− Y i(t) = Ai•(Y (t)) ∆t+ Ci
r(Y (t+ ∆t)) ∆Br(t). (A.35c)

Here, the ∆Br(t) are random numbers, sampled from a Gaussian normal distribution with
density

P[∆Br(t)] =

(
1

2π∆t

)1/2

exp

{
− [∆Br(t)]2

2∆t

}
. (A.36)

As evident from Eqs. (A.35), for given functions Ai∗ and Ci
r, the discretized I-SDE (A.35a)

allows for calculating the values Y i(t + ∆t) directly from the preceding values Y i(t). By
contrast, the discretized SF-SDEs (A.35b) and BI-SDEs (A.35c) are implicit equations,
which must be solved for Y i(t+ ∆t). The latter difficulty can be avoided by transforming
a given SF/BI-SDE to the corresponding I-SDE by means of Eqs. (A.32), (A.33) and (A.34).
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Appendix B

Swimming Velocity for Arbitrary
Deformations

For the general case of a three-sphere swimmer based on the schematics in Fig. 1 of
Ref. [GA07], Golestanian and Ajdari obtain the average swimming velocity to the leading
order as

V0 =
(a1 − a2)(a2 + a3)

3a2(a1 + a2 + a3)

[
1 +

3

2

(
a1a2

a2 − a1

)(
1

L1 + L2

− 1

L2

)
− 3

(
a2a3

a2 + a3

)
1

L2

+
3

a1 + a2 + a3

(
a2a3

L2

+
a1a2

L1

+
a3a1

L1 + L2

)]
L̇1

+
a3(a1 − a2)

3a2(a1 + a2 + a3)

[
1 +

3

2

(
a1a2

a2 − a1

)(
1

L1 + L2

− 1

L2

)
− 3

2

(
a2

L1

+
a2

L2

− a2

L1 + L2

)
+

3

a1 + a2 + a3

(
a2a3

L2

+
a1a2

L1

+
a3a1

L1 + L2

)]
L̇2

+
a1(a2 − a3)

3a2(a1 + a2 + a3)

[
1 +

3

2

(
a2a3

a2 − a3

)(
1

L1 + L2

− 1

L1

)
− 3

2

(
a2

L1

+
a2

L2

− a2

L1 + L2

)
+

3

a1 + a2 + a3

(
a2a3

L2

+
a1a2

L1

+
a3a1

L1 + L2

)]
L̇1

+
(a2 − a3)(a1 + a2)

3a2(a1 + a2 + a3)

[
1 +

3

2

(
a2a3

a2 − a3

)(
1

L1 + L2

− 1

L1

)
− 3

(
a1a2

a1 + a2

)
1

L1

+
3

a1 + a2 + a3

(
a2a3

L2

+
a1a2

L1

+
a3a1

L1 + L2

)]
L̇2. (B.1)

This expression can be used in numerical studies of the swimming motion for arbitrarily
large deformations and geometric characteristics.

114



Bibliography

[AT06] Igor S. Aranson and Lev S. Tsimring. Patterns and collective behavior in
granular media: Theoretical concepts. Rev. Mod. Phys., 78:641–692, 2006.

[AZ79] M. J. Ablowitz and A. Zeppetella. Explicit solution of fisher’s equation for a
special wave speed. Bull. Math. Biol., 41, 1979.

[BM08] A. Baskaran and M. C. Marchetti. Hydrodynamics of self-propelled hard rods.
Phys. Rev. E, 77:011920, 2008.

[BM09] A. Baskaran and M. C. Marchetti. Statistical mechanics and hydrodynamics
of bacterial suspensions. Proc. Natl. Acad. Sci., 106(37):15567–15572, 2009.

[BPSV83] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. A theory of stochastic reso-
nance in climatic change. SIAM J. Appl. Math., 43:565–578, 1983.

[BSLS00] Carlos Bustamante, Steven B. Smith, Jan Liphardt, and Doug Smith. Single-
molecule studies of dna mechanics. Current opinion in structural biology,
10:279–285, 2000.

[BTBL08] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga. Hydrodynamic attraction of
swimming microorganisms by surfaces. Phys. Rev. Lett., 101(3):038102, 2008.

[CCD+07] L. H. Cisneros, R. Cortez, C. Dombrowski, R. E. Goldstein, and J. O. Kessler.
Fluid dynamics of self-propelled micro-organisms, from individuals to concen-
trated populations. Exp. Fluids, 43:737–753, 2007.

[Chu97] Fan R. K. Chung. Lectures on Spectral Graph Theory. CBMS Regional Con-
ference Series in Mathematics. AMS, 1997.

[CKGG11] L. H. Cisneros, J. O. Kessler, S. Ganguly, and R. E. Goldstein. Dynamics
of swimming bacteria: Transition to directional order at high concentration.
Phys. Rev. E, 83:061907, 2011.

[CPB08] E. A. Codling, M. J. Plank, and S. Benhamou. Random walk models in biology.
J. R. Soc. Interface, 5:813–834, 2008.

115



[DCC+04] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler.
Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev.
Lett., 93(9):098103, 2004.

[DDC+11] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein. Fluid
dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl.
Acad. Sci. USA, 108(27):10940–10945, 2011.

[DGM+10] K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval. Direct mea-
surement of the flow field around swimming microorganisms. Phys. Rev. Lett.,
105:168101, 2010.

[DH09] J. Dunkel and P. Hänggi. Relativistic Brownian motion. Physics Reports,
471(1):1–73, 2009.

[DHBG13] J. Dunkel, S. Heidenreich, M Bär, and R. E. Goldstein. Minimal continuum
theories of structure formation in dense active fluids. New J. Phys., 15:045016,
2013.

[DHD+13] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär, and
R. E. Goldstein. Fluid dynamics of bacterial turbulence. Phys. Rev. Lett.,
110:228102, 2013.

[DMCS12] J. Dunstan, G. Mino, E. Clement, and R. Soto. A two-sphere model for
bacteria swimming near solid surfaces. Phys. Fluids, 24:011901, 2012.

[DTM+05] Willow R. DiLuzio, Linda Turner, Michael Mayer, Piotr Garstecki, Douglas B.
Weibel, Howard C. Berg, and George M. Whitesides. Escherichia coli swim on
the right-hand side. Nature, 435:1271–1274, 2005.

[EKG10] J. Elgeti, U. B. Kaupp, and G Gompper. Hydrodynamics of sperm cells near
surfaces. Biophys. J., pages 1018–1026, 2010.

[Fis30] R. A. Fisher. The genetical theory of natural selection. Oxford University
Press, new edition 2000 edition, 1930.

[Fis63] D. Fisk. Quasi-martingales and stochastic integrals. PhD thesis, Michigan
State University, Dept. of Statistics, 1963.

[Fis64] M. E. Fisher. Magnetism in one-dimensional systems—the Heisenberg model
for infinite spin. Amer. J. Phys., 32(5):343–346, 1964.

[Fis65] D. Fisk. Quasimartingales. Trans. Amer. Math. Soc., 120:369–389, 1965.

[FSGB+02] J. A. Freund, L. Schimansky-Geier, B. Beisner, A. Neiman, D. F. Russell,
T. Yakusheva, and F. Moss. Behavioral stochastic resonance: How the noise
from a daphnia swarm enhances individual prey capture by juvenile paddlefish.
J. Theor. Biol., 214:71–83, 2002.

116



[GA07] R. Golestanian and A. Ajdari. Simple swimmer at low reynolds number: three
linked spheres. Phys. Rev. E, 69, 2007.

[Gar02] C. W. Gardiner. Handbook of Stochastic Methods. Springer Series in Syner-
getics. Springer, Berlin, 2 edition, 2002.

[GHJM98] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic resonance.
Rev. Mod. Phys., 70:223–288, 1998.

[Gib80] B. H. Gibbins. Intermittent swimming of sea urchin sperm. J. Cell Biol.,
84(1):1–12, 1980.

[GJG10] J. S. Guasto, K. A. Johnson, and J. P. Gollub. Oscillatory flows induced by
microorganisms swimming in two dimensions. Phys. Rev. Lett., 105:168102,
2010.

[Gla04] P. Glasserman. Monte Carlo Methods in Financial Engineering. Number 53
in Applications of Mathematics. Springer, New York, 2004.

[Gri02] M. Grigoriu. Stochastic Calculus: Applications in Science and Engineering.
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H. Löwen, and J. M. Yeomans. Meso-scale turbulence in living fluids. Proc.
Natl. Acad. Sci. USA, 109(36):14308–14313, 2012.

[Wol08] C. W. Wolgemuth. Collective swimming and the dynamics of bacterial turbu-
lence. Biophys. J., 95:1564–1574, 2008.

119


