Topological Defects

18.354 L24

Order Parameters, Broken Symmetry, and Topology

James P. Sethna

Laboratory of Applied Physics, Technical University of Denmark, DK-2800 Lyngby, DENMARK, and NORDITA, DK-2100 Copenhagen Ø, DENMARK and Laboratory of Atomic and Solid State Physics (LASSP), Clark Hall, Cornell University, Ithaca, NY 14853-2501, USA (Dated: May 27, 2003, 10:27 pm)

Topological defects are discontinuities in order-parameter fields

- optical effects
- work hardening, etc

order = symmetry = invariance

(under certain group actions)

symmetry groups can be discrete, continous, Lie-groups,

More or less symmetric?

More or less symmetric?

More or less symmetric?

broken continuous translation/rotation symmetry (invariance)

Order parameters: 2D crystal

$$\vec{u} \equiv \vec{u} + a\hat{x} = \vec{u} + ma\hat{x} + na\hat{y}.$$

$$\mathcal{E} = \int dx \, (\kappa/2) (du/dx)^2.$$

Order parameters: magnets

Order parameters: nematic liquid crystals

"projective plane" =
half-sphere
with opposite points on
equator identified

Topological defects

Work hardening

Disclinations

$$\|\mathbf{b}\| = (a/2)\sqrt{h^2 + k^2 + l^2}$$

Disclineations

Bacterial vortices

Active nematics

Dogic lab (Brandeis) Nature 2012

Active nematics

Giomi et al PRL 2012

Defects in nematics

winding number

Defects in nematics

winding number

Two-Dimensional Nematic Colloidal Crystals Self-Assembled by **Topological Defects**

Igor Musevic *et al. Science* **313**, 954 (2006);

DOI: 10.1126/science.1129660

Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects

Igor Musevic et al.

Science 313, 954 (2006);

DOI: 10.1126/science.1129660

Reconfigurable Knots and Links in Chiral Nematic Colloids Uros Tkalec *et al.*

Science **333**, 62 (2011); DOI: 10.1126/science.1205705

