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Expervments on the Motvwon of Solid Bodies in Rotating Fluids.
By G. I TavLor, F.R.S.

(Received July 17, 1923.)

Sir Geoffrey Ingram Taylor
(7 March 1886 — 27 June 1975) one. On the other hand, if an attempt is made to produce a slow steady

motion by moving a three-diménsional bodyt with a small uniform velocity
(relative to axes which rotate with the fluid) three possibilities present them-
— ~elves :—
%ﬁmm; (a) The motion in the liquid may never become steady, however long the
ody goes on moving.
(b) The motion may be steady but it may not be small in the neighbourhood
f the body. |
(¢) The motion may be steady and two-dimensional.
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G _—;::::F‘:::—: f‘—-—mg g—‘;—j:_f: There remains the third possibility (¢). In this case the motion would be
’;ﬂi‘: :M—~_-—*-r—"_~—'~—“~ “ a very remarkable one. If the liquid were contained between parallel planes
5o 2 perpendicular to the axis of rotation, the only possible two-dimensional motion
LL G __JJ Fig. 1. satisfying the required cpnditions is one in which a cylinder of fluid moves as
if fixed to the body. The boundary of such a cylinder would act as a solid
o body, and the liquid outside would behave as though a solid cylindrical body

were being moved through it. No fluid would cross this boundary, and the
liquid inside it would, in general, be at rest relative the solid body. This idea
appears fantastic, but the experiments now to be described show that the
“true motion does, in fact, approximate to this curious type.
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A viscous force between the Ekman layer and the stationary fluid causes fluid adjacent to the
boundary layer to accelerate and a Coriolis force propels it outward.

The result is a flow circulating along the boundary layers and downward along the center of
the cylinder.
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22 The Ekman layer

Inner Boundary
1 Op; 0%u
10 _ _ -
—2Q0ur = ——%, 24k p8w+yﬁz2’
p ox 2
1(9]9] 0“v
N0 = -2 20
20u; = _l%’ (7 p8y+y(922’
- o — Lop 0w
0 — 1% - p Oz 022"’

p 0z V-u = 0.

Here we have made the boundary layer approximation that 0/0z > 0/0x,0/0y.
From the continuity equation we deduce that w is much smaller than the velocity com-
ponents parallel to the boundary so that dp;/0z = 0, and the equations become
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—20(v — vy = ua—;, (528a)
2

2Q(u —uy) = 1/@. (528b)



Solution

2

—2Q(v —vy) = V%, (528a)
2

2Q(u — uy) = V%. (528b)

These are the equations we must solve. Acheson has a good trick. Multiplying the second
equation by ¢ and adding the two yields

(92f ,
V@ = QQ'lf, (529&)
where
f=u—ur+i(v—oug). (529b)

The solution is obtained by guessing f ~e®*, which yields o = 22i/v. Hence,
f=AeUTD7 L ge=(+iz" o — 2 Q). (530)

We require that as z* — oo, f — 0. This implies that A = 0. We are in the frame
of reference moving with the bottom plate, so the no slip boundary condition at z = 0

requires that f(z =0) = —uj — dv;. Splitting f into its real an imaginary parts implies
w=ur—e ~ (uycos(z/8) + vy sin(z/9)), (531)
v=uvr—e ~ (vrcos(z/8) — ursin(z/5)). (532)

This is the velocity profile in the boundary layer.



What about the z-component? From the divergence free condition, we have

Q 1/2 ow o ow . _@ B @ . (%1 B 8u1 _* sin 2* (533)
v 0z 0z  Ox Oy \O0x Oy c °

Integrating from z* = 0 to oo gives

1 /0\ Y2 ovr  Oug wr v
w—i(;) (aJaﬂ‘?\E’ (534)

where @y is the vorticity in the inviscid flow. Thus, if @; > 0 (i.e., the bottom boundary is

moving slower than the main body of fluid) then there is flow from the boundary layer into
the fluid.
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22.2 Matching

Now we have these Ekman layers at the top and the bottom. What we just assumed was
that the boundary is moving at frequency ). If it is not, but instead moving at an angular
frequency (2p relative to the rotating frame, then we need to change the boundary conditions
a little in the rotating frame. In this case

w = (63)1/2 (% _ QB) . (535a)

We could derive this, but it is intuitive since (w; — 2€2p) is the vorticity of the interior flow
relative to the moving lower boundary. Similarly, if {27 denotes the angular velocity of the
rigid upper boundary relative to the rotating frame, then there is a small z-component of
velocity up into the boundary layer

w = (%T)m <QT _ %) | (535b)

Now in our container both are happening. Since u;,v; and w; are all independent of z
then so is wy. Thus, the only way the experiment could work is if the induced value of wy
from both cases matches. This implies that

wr = Qpr + Qp. (536)

With Qp = 0 and 27 = ¢ we have that w;y = e¢. Thus, the flow in the inner region has a
velocity which is entirely set by the boundary layers. Note that there is no viscosity in this
formula, but viscosity plays a role in determining the flow. We have completely different
behaviour for ¥ = 0 and in the limit v — 0.



22.3 Spin-down of this apparatus

We now want to finally solve the spin-down of our coffee cup. To do so we assume the coffee
cup to be a cylinder with a top and a bottom both rotating with angular velocity €2 + €.
At t = 0 the angular velocity of the boundaries is reduced to ). How long does it take to
reach a steady state?

We use the time-dependent formula
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Now in our container both are happening. Since uj,v; and wy are all independent of z
then so is wy. Thus, the only way the experiment could work is if the induced value of @w;

from both cases matches. This implies that
wr = Qp + Op. (536)

With Qp = 0 and 7 = € we have that w; = €. Thus, the flow in the inner region has a
velocity which is entirely set by the boundary layers. Note that there is no viscosity in this
formula, but viscosity plays a role in determining the flow. We have completely different
behaviour for ¥ = 0 and in the limit v — 0.



Atmospheric general circulation
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23 Water waves

The flow is assumed to be inviscid, and as it is initially irrotational it must remain so. Fluid
motion is therefore described by the velocity potential (u,v) = V¢, and satisfies Laplace’s
equation (incompressibility condition)

V¢ = 0. (541a)
The momentum equation becomes
Gng 1
= ——Vp— 541b
—; T3 V(Ve)? pr VX, (541D)

where y is the gravitational potential such that g = —Vy. This can be integrated to give
the unsteady Bernoulli relation

9

0+ (V) + S+ X =00), (542)

Here, C'(t) is a time dependent constant that does not affect the flow, which is related to ¢
only through spatial gradients. The surface is h(x,t) and we have the kinematic condition

Oh Oh

on y = h(x,t). This simply states that if you choose an element of fluid on the surface, the
rate at which that part of the surface rises or falls is, by definition, the vertical velocity.

Finally, we require that the pressure be atmospheric, pg at the surface. From the unsteady
Bernoulli relation we get



0p 1, 9 9 _
5 +2(u +v°)+gh=0 (544)

on h(x,t), where we have chosen the constant C(t) appropriately to simplify things.

Include surface tension

O%h(x,t)
P—PO—Vw- (545)

Including surface tension in our pressure condition at the surface, we have that

op 1, 5 v0%h
8t+2(u +v7) 4+ gh p8x2_0 (546)

at y = h(x,t).



LInearize

We now follow the same procedure as in the last lecture and assume all the variables to
be small, so that we can linearise the equations. The linearised system of equations consists
of Laplace’s equation and the boundary conditions at y = 0:

Vip = 0 (547a)
Oh O

- T 4
5 = a0 (547D)
do v 0%h
o = I e (547¢)

These conditions arise because we have Taylor expanded terms such as
v(@,hyt) = v(x, 0,1) + hvy(2,0,8), (548)

and then ignored nonlinear terms. We guess solutions of the form

¢ = Ae® sin(kx — wt) | h = ee™ cos(kx — wt), (549)

knowing that these satisfy Laplace’s equation (we have ignored terms of the form e~*Y, as
the surface is at y = 0 and we need all terms to disappear as y — —o0). Putting these into
the surface boundary conditions (8) and (9) gives



Insert

we = Ak, (550a)

wA = ge—+

Eliminating A we get the dispersion relation

k?’
w? :gk+L.
0

What are the consequences of this relation? On the simplest level we know that the phase
speed, ¢, of a disturbance is given by the relation ¢ = w/k. Thus
k
2=24 0 (552)
ko p
The relative importance of surface tension and gravity in determining wave motion is given
by the Bond number B, = ~k?/pg. If B, < 1 then we have gravity waves, for which
longer wavelengths travel faster. If B, > 1 then we have capillary waves, for which shorter
wavelengths travel faster. For water, the Bond number becomes unity for wavelengths of

about 2 cm, and this accounts for the different ring patterns you can observe when a stone
and a raindrop fall into water.

(550D )

(551)



23.2.1 The wake of an airplane

From our previous work with sound waves we know that the equation governing the prop-
agation of a 2D disturbance in air is the wave equation

¢ a0 2 (079 D%
W:CV¢IC (ax2+ay2)7 (555)

where ¢ is some scalar quantity representing the disturbance (e.g., the velocity potential,
the density or the pressure). For an airplane moving through the air we anticipate a solution
that is constant in the frame of reference of the plane. Thus

~

qb(%, Y, t) — gb(CIZ‘ o Uta y)? (556)

and we have

02 0%¢p  9%¢
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Defining the Mach number M = U?/c?, the above equation becomes

9%¢ 9%

M? -1
( )8332 o2 Oy?

— 0. (558)

If M <1 we can make a simple change of variables X = x/v/1 — M? and regain Laplace’s
equation. Thus everything can be solved using our conformal mapping techniques. However,
if M > 1 then the original equation now looks like a wave equation, with y replacing t,
yielding solutions of the form

o(x,y) = D(x —yv'M (559)

Thus disturbances are confined to a wake whose half angle is given by

tan 6 = . (560)
M2 — 1

Only a narrow region behind the plane knows it exists, and the air ahead doesn’t know
what’s coming!



Solitons
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