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Following Acheson, let’s write the flow velocity as u = (u
I

, v

I

, w

I

) and ⌦=(0,0,⌦). The
steady, inviscid flow satisfies
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The third equation says that the pressure is independent of z. Hence, the first two equations
say that u

I

and v

I

are independent of z. Then the last equation says that w
I

is independent
of z. Thus, the entire fluid velocity is independent of z ! This result, which is remarkable,
is called the Taylor-Proudman theorem. Proudman discovered the theorem, but Taylor
discovered what is perhaps its most remarkable consequence.

22.3 Taylor Columns

In his paper “Experiments on the motion of solid bodies in rotating fluids”, Taylor posed
the simple question: given the above fact that slow steady motions of a rotating liquid must
be two-dimensional, what happens if one attempts to make a three dimensional motion
by, for example, pushing a three dimensional object through the flow with a small uniform
velocity? At the beginning of his paper he points out three possibilities:

1. The motion in the liquid is never steady.

2. The motion is steady, but our assumption that u

I

is small relative to the rotation
velocity breaks down near the object.

3. The motion is steady and two dimensional.

He remarks that the first possibility is unlikely, since it must settle down eventually ! The
realistic possibilities are (2) and (3). His paper, which can be downloaded from the course
page, demonstrates that actually what happens is possibility (3). This is really rather
remarkable (as Taylor notes) because there is only one way that it can really happen: An
entire column of fluid must move atop the object.

22.4 More on rotating flows

Above, we wrote the equations of a rotating fluid assuming that the rotation frequency
dominated the characteristic hydrodynamic flows in the problem. In other words, if ⌦
is the characteristic rotation frequency, L is a horizontal lengthscale, and U is a typical
velocity in the rotating frame, we assumed that

Ro =
U

⌦L
⌧ 1. (5)
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A viscous force between the Ekman layer and the stationary fluid causes fluid adjacent to the 
boundary layer to accelerate and a Coriolis force propels it outward.  !
The result is a flow circulating along the boundary layers and downward along the center of 
the cylinder.

http://go.owu.edu/~physics/StudentResearch/2003/CoryCasto/glossary.html#coriolis


without viscosity it is impossible to solve this problem because the Taylor-Proudman theo-
rem states that inviscid flow is two dimensional (and so no gradient in ⌦ across the cylinder
axis is possible). We therefore anticipate that even though the Rossby number is small,
there will be boundary layers. Let’s divide the flow into three regions: (1) A boundary
layer at the top plate; (2) a boundary layer at the bottom plate; and (3) a central inviscid
region.

In the inviscid region we would expect that the solution is (u
I

, v
I

, w
I

), where
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In the same way as before, we expect the pressure gradient of the outer flow to force the
boundary layer at the rotating wall. Let’s consider the structure of the boundary layer at
the bottom wall, z = 0. There the equations are
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r · u = 0. (527d)

Here we have made the boundary layer approximation that @/@z � @/@x, @/@y.
From the continuity equation we deduce that w is much smaller than the velocity com-

ponents parallel to the boundary so that @p
I

/@z = 0, and the equations become
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These are the equations we must solve. Acheson has a good trick. Multiplying the second
equation by i and adding the two yields

⌫
@2f

@z2
= 2⌦if, (529a)

where

f = u� u
I

+ i(v � v
I

). (529b)

The solution is obtained by guessing f ⇠e↵z, which yields ↵2 = 2⌦i/⌫. Hence,

f = Ae(1+i)z⇤ +Be�(1+i)z⇤ , z⇤ = z
p

⌦/⌫. (530)
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This dimensionless number is called the Ekman number. The flow is then strictly two-
dimensional, and the Navier-Stokes equation simplifies to

�1

⇢
rp = 2⌦⇥ u. (523)

Taking the curl of both sides, we find

r⇥ (⌦⇥ u) = ⌦r · u� ur ·⌦+ u ·r⌦�⌦ ·ru = �⌦
@u

@z
. (524)

Here, we have used the fact that the fluid velocity is divergence free. Hence we have that
@u/@z=0, or that the fluid velocity is independent of z. A major consequence of this (Taylor
columns) was discussed above.

Before leaving this topic, let’s make one more remark. Taking the dot product of the
equations of inviscid flow with u, we get

u ·rp = �⇢u · (2⌦⇥ u) = 0. (525)

This formula states that the velocity field moves perpendicular to the pressure gradient,
which is somewhat against one’s intuition. Hence, the fluid actually moves along lines
of constant pressure. Pressure work is not performed either on the fluid or by the fluid.
Geophysicists call this fact the geostrophic balance.

There is an entertaining fact that one can deduce about atmospheric flows. For an
atmospheric flow, the analogue of ⌦ is not the earth’s rotation speed !, but instead ⌦ =
! sin�, where � is the longitude. Now, this shows that the e↵ective ⌦ changes sign in
the northern and southern hemisphere. What does this imply for the dynamics? When
⌦ > 0 the velocity moves with the high pressure on the right. Conversely in the southern
hemisphere, the velocity moves with the high pressure on the left. It is also true that because
of this change in sign, Naval warships have to adjust their range finding when crossing over
the equator. However, the myth about the bathtub vortex does not hold because one
cannot throw out inertial and viscous terms in solving this problem. The Coriolis force is
only important on large scales.

22 The Ekman layer

We would now like to return to our co↵ee cup problem, to get the right answer. To do
so, we shall consider the e↵ect of walls on the inviscid flow we calculated in the previous
lecture. For starters, lets consider a jar with the top moving at angular velocity ⌦

T

and
the bottom moving at angular velocity ⌦

B

. Clearly, if ⌦
T

= ⌦
B

then our inviscid solution
applies. Let’s try and figure out what happens when ⌦

T

becomes di↵erent from ⌦
B

.

22.1 A small deviation

Suppose ⌦
T

=⌦ and ⌦
B

= ⌦ + ✏. Now there is no way to satisfy the no slip condition on
both the top and bottom while having the whole flow spin at angular velocity ⌦. Let’s move
first to the rotating frame, and try to compute the secondary flow that is induced. Clearly,
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without viscosity it is impossible to solve this problem because the Taylor-Proudman theo-
rem states that inviscid flow is two dimensional (and so no gradient in ⌦ across the cylinder
axis is possible). We therefore anticipate that even though the Rossby number is small,
there will be boundary layers. Let’s divide the flow into three regions: (1) A boundary
layer at the top plate; (2) a boundary layer at the bottom plate; and (3) a central inviscid
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In the same way as before, we expect the pressure gradient of the outer flow to force the
boundary layer at the rotating wall. Let’s consider the structure of the boundary layer at
the bottom wall, z = 0. There the equations are
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Here we have made the boundary layer approximation that @/@z � @/@x, @/@y.
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These are the equations we must solve. Acheson has a good trick. Multiplying the second
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Boundary

without viscosity it is impossible to solve this problem because the Taylor-Proudman theo-
rem states that inviscid flow is two dimensional (and so no gradient in ⌦ across the cylinder
axis is possible). We therefore anticipate that even though the Rossby number is small,
there will be boundary layers. Let’s divide the flow into three regions: (1) A boundary
layer at the top plate; (2) a boundary layer at the bottom plate; and (3) a central inviscid
region.
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In the same way as before, we expect the pressure gradient of the outer flow to force the
boundary layer at the rotating wall. Let’s consider the structure of the boundary layer at
the bottom wall, z = 0. There the equations are
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Here we have made the boundary layer approximation that @/@z � @/@x, @/@y.
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Solution

We require that as z⇤ ! 1, f ! 0. This implies that A = 0. We are in the frame
of reference moving with the bottom plate, so the no slip boundary condition at z = 0
requires that f(z = 0) = �u

I

� iv
I

. Splitting f into its real an imaginary parts implies
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⇤
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sin(z/�)), (531)

v = v
I
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⇤
(v
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cos(z/�)� u
I

sin(z/�)). (532)

This is the velocity profile in the boundary layer.
What about the z-component? From the divergence free condition, we have
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Integrating from z⇤ = 0 to 1 gives
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where !
I

is the vorticity in the inviscid flow. Thus, if !
I

> 0 (i.e., the bottom boundary is
moving slower than the main body of fluid) then there is flow from the boundary layer into
the fluid.

22.2 Matching

Now we have these Ekman layers at the top and the bottom. What we just assumed was
that the boundary is moving at frequency ⌦. If it is not, but instead moving at an angular
frequency ⌦

B

relative to the rotating frame, then we need to change the boundary conditions
a little in the rotating frame. In this case

w =
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We could derive this, but it is intuitive since (!
I

� 2⌦
B

) is the vorticity of the interior flow
relative to the moving lower boundary. Similarly, if ⌦

T

denotes the angular velocity of the
rigid upper boundary relative to the rotating frame, then there is a small z-component of
velocity up into the boundary layer
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Now in our container both are happening. Since u
I

, v
I

and w
I

are all independent of z
then so is !

I

. Thus, the only way the experiment could work is if the induced value of !
I

from both cases matches. This implies that

!
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+ ⌦
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. (536)

With ⌦
B

= 0 and ⌦
T

= ✏ we have that !
I

= ✏. Thus, the flow in the inner region has a
velocity which is entirely set by the boundary layers. Note that there is no viscosity in this
formula, but viscosity plays a role in determining the flow. We have completely di↵erent
behaviour for ⌫ = 0 and in the limit ⌫ ! 0.
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where !̂
I

is the vorticity in the inviscid flow. Thus, if !̂
I

> 0 (i.e., the bottom boundary is
moving slower than the main body of fluid) then there is flow from the boundary layer into
the fluid.

22.2 Matching

Now we have these Ekman layers at the top and the bottom. What we just assumed was
that the boundary is moving at frequency ⌦. If it is not, but instead moving at an angular
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Now in our container both are happening. Since u
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are all independent of z
then so is !̂
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With ⌦
B

= 0 and ⌦
T

= ✏ we have that !̂
I

= ✏. Thus, the flow in the inner region has a
velocity which is entirely set by the boundary layers. Note that there is no viscosity in this
formula, but viscosity plays a role in determining the flow. We have completely di↵erent
behaviour for ⌫ = 0 and in the limit ⌫ ! 0.
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where !
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behaviour for ⌫ = 0 and in the limit ⌫ ! 0.
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We require that as z⇤ ! 1, f ! 0. This implies that A = 0. We are in the frame
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Integrating from z⇤ = 0 to 1 gives

w =
1

2

✓
⌦

⌫

◆�1/2✓@v
I

@x
� @u

I

@y

◆
=

!̂
I

2

r
⌫

⌦
, (534)

where !̂
I

is the vorticity in the inviscid flow. Thus, if !̂
I

> 0 (i.e., the bottom boundary is
moving slower than the main body of fluid) then there is flow from the boundary layer into
the fluid.

22.2 Matching

Now we have these Ekman layers at the top and the bottom. What we just assumed was
that the boundary is moving at frequency ⌦. If it is not, but instead moving at an angular
frequency ⌦

B

relative to the rotating frame, then we need to change the boundary conditions
a little in the rotating frame. In this case
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We could derive this, but it is intuitive since (!̂
I

� 2⌦
B

) is the vorticity of the interior flow
relative to the moving lower boundary. Similarly, if ⌦

T

denotes the angular velocity of the
rigid upper boundary relative to the rotating frame, then there is a small z-component of
velocity up into the boundary layer
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Now in our container both are happening. Since u
I

, v
I

and w
I

are all independent of z
then so is !̂

I

. Thus, the only way the experiment could work is if the induced value of !̂
I

from both cases matches. This implies that
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With ⌦
B

= 0 and ⌦
T

= ✏ we have that !̂
I

= ✏. Thus, the flow in the inner region has a
velocity which is entirely set by the boundary layers. Note that there is no viscosity in this
formula, but viscosity plays a role in determining the flow. We have completely di↵erent
behaviour for ⌫ = 0 and in the limit ⌫ ! 0.
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22.3 Spin-down of this apparatus

We now want to finally solve the spin-down of our co↵ee cup. To do so we assume the co↵ee
cup to be a cylinder with a top and a bottom both rotating with angular velocity ⌦ + ✏.
At t = 0 the angular velocity of the boundaries is reduced to ⌦. How long does it take to
reach a steady state?

We use the time-dependent formula
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Then di↵erentiate the first equation with respect to y and the second with respect to x.
Subtracting the latter from the former, and using the continuity equation, we obtain the
vorticity equation
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is independent of z, so
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The velocity is equal and opposite at the two boundaries (flow is leaving both boundary
layers), and has magnitude (⌫/⌦)1/2!

I

/2. Thus
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implying that vorticity is decreasing in the interior with a characteristic decay time L/2
p
⌦⌫.

For the co↵ee cup this gives us a much more realistic spin down time compared to our
experiments. In real life we should note that di↵usion of the no-slip condition also will play
a role, and there will be competition between the two depending on the particular shape
of your co↵ee cup. If you go look at the corresponding flow in Acheson, you can now also
understand the deep reason why co↵ee grounds end up at the centre of your cup.

23 Water waves

If you look out onto the River Charles, the waves that are immediately apparent are surface
waves on the water. However, there are many di↵erent types of waves in the rivers and
oceans, which have profound e↵ects on our surroundings. The most dramatic example is a
Tsunami, which is a wave train generated by earthquakes and volcanoes. Before considering
these, however, let’s begin by considering the motion of a disturbance on the surface of water.
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We require that as z⇤ ! 1, f ! 0. This implies that A = 0. We are in the frame
of reference moving with the bottom plate, so the no slip boundary condition at z = 0
requires that f(z = 0) = �u
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This is the velocity profile in the boundary layer.
What about the z-component? From the divergence free condition, we have
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22.3 Spin-down of this apparatus

We now want to finally solve the spin-down of our co↵ee cup. To do so we assume the co↵ee
cup to be a cylinder with a top and a bottom both rotating with angular velocity ⌦ + ✏.
At t = 0 the angular velocity of the boundaries is reduced to ⌦. How long does it take to
reach a steady state?

We use the time-dependent formula
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Then di↵erentiate the first equation with respect to y and the second with respect to x.
Subtracting the latter from the former, and using the continuity equation, we obtain the
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implying that vorticity is decreasing in the interior with a characteristic decay time L/2
p
⌦⌫.

For the co↵ee cup this gives us a much more realistic spin down time compared to our
experiments. In real life we should note that di↵usion of the no-slip condition also will play
a role, and there will be competition between the two depending on the particular shape
of your co↵ee cup. If you go look at the corresponding flow in Acheson, you can now also
understand the deep reason why co↵ee grounds end up at the centre of your cup.

23 Water waves

If you look out onto the River Charles, the waves that are immediately apparent are surface
waves on the water. However, there are many di↵erent types of waves in the rivers and
oceans, which have profound e↵ects on our surroundings. The most dramatic example is a
Tsunami, which is a wave train generated by earthquakes and volcanoes. Before considering
these, however, let’s begin by considering the motion of a disturbance on the surface of water.
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23.1 Deep water waves

The flow is assumed to be inviscid, and as it is initially irrotational it must remain so. Fluid
motion is therefore described by the velocity potential (u, v) = r�, and satisfies Laplace’s
equation (incompressibility condition)

r2� = 0. (541a)

The momentum equation becomes
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+

1

2
r(r�)2 = �1

⇢
rp�r�, (541b)

where � is the gravitational potential such that g = �r�. This can be integrated to give
the unsteady Bernoulli relation
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Here, C(t) is a time dependent constant that does not a↵ect the flow, which is related to �
only through spatial gradients. The surface is h(x, t) and we have the kinematic condition
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+ u

@h

@x
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on y = h(x, t). This simply states that if you choose an element of fluid on the surface, the
rate at which that part of the surface rises or falls is, by definition, the vertical velocity.
Finally, we require that the pressure be atmospheric, p0 at the surface. From the unsteady
Bernoulli relation we get

@�

@t
+

1

2
(u2 + v2) + gh = 0 (544)

on h(x, t), where we have chosen the constant C(t) appropriately to simplify things.
The equations we have derived so far take account of the e↵ect of gravity on the free

surface. We have ignored one important factor, however, which is surface tension. It costs
energy to create waves, as they have greater surface area than a flat surface. From our
earlier work we know that a pressure jump exists across a distorted interface. If p0 is
atmospheric pressure, then the pressure at the fluid surface is

p = p0 � �
@2h(x, t)

@x2
. (545)

Including surface tension in our pressure condition at the surface, we have that
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at y = h(x, t).
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We now follow the same procedure as in the last lecture and assume all the variables to
be small, so that we can linearise the equations. The linearised system of equations consists
of Laplace’s equation and the boundary conditions at y = 0:

r2� = 0 (547a)
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@y
(x, 0, t), (547b)
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These conditions arise because we have Taylor expanded terms such as

v(x, h, t) = v(x, 0, t) + hv
y

(x, 0, t), (548)

and then ignored nonlinear terms. We guess solutions of the form

� = Aeky sin(kx� !t) , h = ✏eky cos(kx� !t), (549)

knowing that these satisfy Laplace’s equation (we have ignored terms of the form e�ky, as
the surface is at y = 0 and we need all terms to disappear as y ! �1). Putting these into
the surface boundary conditions (8) and (9) gives

!✏ = Ak, (550a)

!A = g✏+
�k2✏

⇢
. (550b)

Eliminating A we get the dispersion relation

!2 = gk +
�k3

⇢
. (551)

What are the consequences of this relation? On the simplest level we know that the phase
speed, c, of a disturbance is given by the relation c = !/k. Thus

c2 =
g

k
+

�k

⇢
. (552)

The relative importance of surface tension and gravity in determining wave motion is given
by the Bond number B

o

= �k2/⇢g. If B
o

< 1 then we have gravity waves, for which
longer wavelengths travel faster. If B

o

> 1 then we have capillary waves, for which shorter
wavelengths travel faster. For water, the Bond number becomes unity for wavelengths of
about 2 cm, and this accounts for the di↵erent ring patterns you can observe when a stone
and a raindrop fall into water.

23.2 Properties of the dispersion relation

In describing an arbitrary wave disturbance, we consider the integral

h(x, t) =

Z +1

�1
ĥ
k

(t)eikxdk, (553)
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We now follow the same procedure as in the last lecture and assume all the variables to
be small, so that we can linearise the equations. The linearised system of equations consists
of Laplace’s equation and the boundary conditions at y = 0:

r2� = 0 (547a)
@h

@t
=

@�
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These conditions arise because we have Taylor expanded terms such as

v(x, h, t) = v(x, 0, t) + hv
y

(x, 0, t), (548)

and then ignored nonlinear terms. We guess solutions of the form

� = Aeky sin(kx� !t) , h = ✏eky cos(kx� !t), (549)

knowing that these satisfy Laplace’s equation (we have ignored terms of the form e�ky, as
the surface is at y = 0 and we need all terms to disappear as y ! �1). Putting these into
the surface boundary conditions (8) and (9) gives

!✏ = Ak, (550a)

!A = g✏+
�k2✏

⇢
. (550b)

Eliminating A we get the dispersion relation

!2 = gk +
�k3

⇢
. (551)

What are the consequences of this relation? On the simplest level we know that the phase
speed, c, of a disturbance is given by the relation c = !/k. Thus
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. (552)
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where we have shown that ĥ
k

/ei!(k)t (i.e., the solutions are travelling waves). The nature
of the dispersion relation !(k) thus determines how a disturbance evolves. For example,
the dispersion relation for sound waves, ! = ck, tells us that

h(x, t) =

Z +1

�1
b
k

eik(x±ct)dk. (554)

So we start with an arbitrary disturbance, and this perturbation just moves without chang-
ing shape (although in three dimensions there would be a decay in amplitude due to power
conservation). This is not so for water waves, which have a di↵erent dispersion relation, and
we can highlight the di↵erence between these two cases by considering the wakes behind an
airplane and a boat.

23.2.1 The wake of an airplane

From our previous work with sound waves we know that the equation governing the prop-
agation of a 2D disturbance in air is the wave equation

@2�

@t2
= c2r2� = c2

✓
@2�

@x2
+

@2�

@y2

◆
, (555)

where � is some scalar quantity representing the disturbance (e.g., the velocity potential,
the density or the pressure). For an airplane moving through the air we anticipate a solution
that is constant in the frame of reference of the plane. Thus

�(x, y, t) = �̃(x� Ut, y), (556)

and we have

U2@
2�̃

@x2
= c2

 
@2�̃

@x2
+

@2�̃

@y2

!
. (557)

Defining the Mach number M = U2/c2, the above equation becomes

(M2 � 1)
@2�̃

@x2
+

@2�̃

@y2
= 0. (558)

If M < 1 we can make a simple change of variables X = x/
p
1�M2 and regain Laplace’s

equation. Thus everything can be solved using our conformal mapping techniques. However,
if M > 1 then the original equation now looks like a wave equation, with y replacing t,
yielding solutions of the form

�̃(x, y) = �(x� y
p
M2 � 1) (559)

Thus disturbances are confined to a wake whose half angle is given by

tan ✓ =
1p

M2 � 1
. (560)

Only a narrow region behind the plane knows it exists, and the air ahead doesn’t know
what’s coming!
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