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Reynolds numbers

Boulder Summer School 2011: Introduction to Low Reynolds Number Locomotion
(Notes from Peko Hosoi’s Lecture)

0.1 Reynolds Numbers in Biology

The Reynolds number is dimensionless group that characterizes the ratio of inertial to viscous
forces. It is defined as

Re =
⇥UL

µ
=

UL

�

where ⇥ is the density of the medium the organism is moving through; µ is the dynamic viscosity
of the medium; � is the kinematic viscosity; U is a characteristic velocity of the organism; and L
is a characteristic length scale. When we discuss swimming biological organisms, we are usually
referring to creatures that are moving through water (or through a fluid with material properties
very close to those of water). This means that the material properties µ and ⇥ are fixed1 and the
Reynolds number is roughly determined by the size of the organism.

In general, the characteristic size of the organism and the characteristic swimming velocity are
related. As a rule-of-thumb, the characteristic locomotion velocity, U , in biological organisms is
related to L by U � L/second e.g. for people L � 1 m and we move at U � 1 m/s; bugs are about
L � 1 mm, and they move at about U � 1 mm/s; for microorganisms L � 100 µm and U � 100
µm/s. Obviously this is a very very very very rough estimate and one does not have to think very
hard to come up with exceptions (as is always the case in biology!). However, it serves as a good
starting point to estimate the Reynolds numbers for various biological organisms as illustrated in
the sketch in Figure ??. Note that even for organisms as small as ants, the Reynolds number is
still on the order of 1 (which is not very low). In this lecture we will focus on Re ⇥ 1 which is
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Figure 1: Typical Reynolds numbers for various biological organisms. Reynolds numbers are esti-
mated using the length scales indicated, the “rule-of-thumb” in the text, and material properties
of water.

relevant for single-cell organisms and bacteria.
1For water, � � 10�2cm2/s and ⇥ � 1 g/cm3.
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Swimming at low Reynolds number

2

where � the first coe⌅cient of viscosity (related to bulk
viscosity), and µ is the second coe⌅cient of viscosity
(shear viscosity).

For an incompressible, Newtonian fluid the NSE (3)
simplify to

⇤ [⇧tu + (u ·⌥)u] = �⌥p + µ⌥2u + f , (8)

complemented by the condition (5).

C. Stokes equations

Consider an object of characteristic length L, moving
at absolute velocity U = |U | through (relative to) an in-
compressible, homogeneous Newtonian fluid of constant
viscosity µ and constant density ⇤. The object can be
imagined as a moving boundary (condition), which in-
duces a flow field u(t, x) in the fluid. The ratio of the in-
ertial (dynamic) pressure ⇤U2 and viscous shearing stress
µU/L can be characterized by the Reynolds number4

R ⌅ UL⇤/µ = UL/⇥. (9)

Example: Swimming in water with ⇥ = 10�6 m2/s

• fish/human: L ⌅ 1 m, U ⌅ 1 m/s ⇧ R ⌅ 106.

• bacteria: L ⌅ 1 µm, U ⌅ 10 µm/s ⇧ R ⌅ 10�5.

If the Reynolds number is very small, R ⇥ 1, the
NSE (8) can be approximated by the Stokes equations5

0 = µ⌥2u�⌥p + f , (10a)
0 = ⌥ · u. (10b)

These equations must still be endowed with appropriate
initial and boundary conditions, such as ,e.g.,6

�
u(t, x) = 0,

p(t, x) = p⇥,
as |x|⇤⌃ . (11)

4 Actually, the (local) Reynolds number is defined in terms of the
fluid velocity u relative to an ”appropriately” chosen reference
frame (e.g., the restframe of a confining body); Eq. (9) implicitly
assumes that u ⇤ U on the surface of the object. Moreover,
the value of the Reynolds number depends on the choice of a –
somewhat arbitrary – characteristic length scale L (sometimes
expressed through the notation RL). Specifically, one uses the
approximations |(u·⌅)u| ⇤| U·U/L| and, similarly, |⇤tu| ⇤ U/�
with a characteristic timescale � = L/|U|, yielding |(u ·⌅)u| ⇤
|⇤tu| ⇤ U2/L.

5 More precisely, by replacing Eq. (8) with Eq. (10), it is as-
sumed that for small Reynolds numbers R̃(t, x) := |⇥(u ·
⌅)u|/(µ⌅2u) ⇤ UL(⇥/µ)⇥ 1 one can approximate

⇥ [⇤tu + (u ·⌅)u]� µ⌅2u⇤ �µ⌅2u

The consistency of this approximation can be checked a posteri-
ori by inserting the solution for u into the lhs. of Eq. (8) .

6 The Stokes equations (10) may lead to unphysical results (para-
doxes) in d = 2 space dimensions (cf. discussion in Section 2-7
of (4)), e.g., in the case of a spatially unconfined system.

With the explicitly time-dependent inertial being ne-
glected, the time-dependence of the flow is instante-
neously determined by the motion of the boundaries
and/or time-dependent forces as generated by the swim-
ming objects.

Example: Assume that the local force density f can be
written as

f = �⌥⇥; (12)

e.g., gravitational e⇤ects in homogeneous fluid of con-
stant density ⇤ described by f = �⇤⌥⌅, where ⌅ is the
gravitational potential and ⇥ = ⇤⌅. In this case, we may
define a total stress tensor

�̂ = �(p + ⇥)1̂ + T̂ (13a)

with an e⇤ective total pressure

p̄ := p + ⇥, (13b)

so that the Stokes equations (10) simplify to

0 = µ⌥2u�⌥p̄, (14a)
0 = ⌥ · u. (14b)

The four equations (14) are to be used to determine
the four unknown functions (u, p), respectively. Equa-
tion (14a) is an elliptic PDE.

1. Dynamics of a single sphere

Consider the motion of a rigid body S in a quasi-infinite
fluid. The dynamics of the body (mass M) is character-
ized by its centre-of-mass position X(t), its centre-of-
mass velocity U(t) = Ẋ, and its angular velocity �(t),
defined with respect to some axis that goes through the
centre-of-mass.

a. Translation In the presence of an external force F ,
the translational centre-of-mass motion is governed by

MU̇ = F . (15a)

For example, given the stress tensor �̂ from (13a), the
force F contains a contribution

F [�̂] =
⇥

�S
dS� · �̂, (15b)

where the integral is taken over the surface ⇧S of the body
with an inward-directed surface normal element dS�.

+  time-dependent BCs

Edward Purcell

Geoffrey Ingram Taylor James Lighthill
R � UL⇥/� ⇥ 1
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+  time-dependent BCs
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flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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Jülicher, J. Exp. Biol. 213, 1226 (2010).

[3] M. Polin et al., Science 325, 487 (2009).
[4] C. Brennen and H. Winet, Annu. Rev. Fluid Mech. 9, 339

(1977); E. Lauga, T. R. Powers, Rep. Prog. Phys. 72,
096601 (2009).

[5] C. Dombrowski et al., Phys. Rev. Lett. 93, 098103
(2004).

[6] P. T. Underhill, J. P. Hernandez-Ortiz, and M.D. Graham,
Phys. Rev. Lett. 100, 248101 (2008).

[7] K. Leptos et al., Phys. Rev. Lett. 103, 198103 (2009).
[8] Y. Hatwalne et al., Phys. Rev. Lett. 92, 118101 (2004); T.

Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 399 (2007);
A.W.C. Lau and T. C. Lubensky, Phys. Rev. E 80, 011917
(2009); A. Sokolov and I. S. Aranson, Phys. Rev. Lett.
103, 148101 (2009).

[9] A. P. Berke et al., Phys. Rev. Lett. 101, 038102 (2008).
[10] G. Li and J. X. Tang, Phys. Rev. Lett. 103, 078101 (2009);

D. G. Crowdy and Y. Or, Phys. Rev. E 81, 036313
(2010).

[11] C. Pozrikidis, Boundary Integral and Singularity Methods
for Linearized Viscous Flow (Cambridge University Press,
Cambridge, 1992).

[12] G. K. Batchelor, J. Fluid Mech. 41, 545 (1970).
[13] R. A. Simha and S. Ramaswamy, Phys. Rev. Lett. 89,

058101 (2002); J. P. Hernandez-Ortiz, C. G. Stoltz, and
M.D. Graham, Phys. Rev. Lett. 95, 204501 (2005); D.
Saintillan and M. J. Shelley, Phys. Fluids 20, 123304
(2008); T. J. Pedley, J. Fluid Mech. 647, 335 (2010).

[14] T. J. Pedley and J. O. Kessler, Annu. Rev. Fluid Mech. 24,
313 (1992).

[15] C. Brennen, J. Fluid Mech. 65, 799 (1974).
[16] T. Ishikawa, M. P. Simmonds, and T. J. Pedley, J. Fluid

Mech. 568, 119 (2006); C.M. Pooley, G. P. Alexander, and
J.M. Yeomans, Phys. Rev. Lett. 99, 228103 (2007).

[17] E. H. Harris, The Chlamydomonas Sourcebook (Academic
Press, Oxford, 2009), Vol. 1.

[18] D. L. Kirk, Volvox (Cambridge University Press,
Cambridge, 1998).

[19] D. L. Kirk and M.M. Kirk, Dev. Biol. 96, 493 (1983).
[20] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.105.168101 for mov-
ies.

[21] K. Drescher et al., Phys. Rev. Lett. 102, 168101 (2009).
[22] K. Drescher et al., Proc. Natl. Acad. Sci. U.S.A. 107,

11 171 (2010).
[23] M. B. Short et al., Proc. Natl. Acad. Sci. U.S.A. 103, 8315

(2006).
[24] J. R. Blake, J. Fluid Mech. 46, 199 (1971).
[25] C. A. Solari et al., Am. Nat. 167, 537 (2006).
[26] C.W. Oseen, Hydrodynamik (Akadem. Verlagsgesellsch,

Leipzig, 1927).
[27] R. E. Caflisch and J. H. C. Luke, Phys. Fluids 28, 759

(1985).
[28] I. Rushkin et al. (to be published).
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FIG. 4 (color online). Time- and azimuthally-averaged flow field of C. reinhardtii. (a) Streamlines (red [medium gray]) computed
from velocity vectors (blue [dark gray]). The spiraling near elliptic points is an artifact of the direct integration of a noisy experimental
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separate colors in the inset, compared to results from the three-Stokeslet model (dashed lines).
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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E.coli  (non-tumbling HCB 437)

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNASFig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNASFig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both

2 www.pnas.org — — Footline Author


