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13.2 From Newton’s laws to hydrodynamic equations

We define the fine-grained phase—space density

f(t,x,v) Zdw—wz d(v — v;(t))

where d(x — x;) = 0(x — 2;)0(y — v:)0(2 — 2;)



We define the fine-grained phase—space density
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where, in the last step, we inserted Newton’s equations and used that
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vV f va(a: z;)3(v — v;) (313)
Writing V = V. and inserting (309) for the forces, we may rewrite
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m(%—HwV)f = — G(a:)+ZH(:L'—:Bj) -Vaof (314)
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To obtain the hydrodynamic equations from (314), two additional reductions will be
necessary:

e We need to replace the fine-grained density f(¢,x,v), which still depends implicitly
on the (unknown) solutions x;(t), by a coarse-grained density (f(t,x,v)).

e We have to construct the relevant field variables, the mass density p(t, r) and velocity
field u, from the coarse-grained density f.

{x1(t),...,xN(t)}

(F(t 2. v)) = / AP(Ty) f(t, 2, v). (315)



(g +09) () = VG +C (316)
where the collision-term

Ct,z,v) = Y (H(x—x;)f(t,z,v)) (317)

We now define the mass density p, the velocity field u, and the specific kinetic energy
tensor X by

p(t,x) = m/d3v (f(t,x,v)), (318a)
pt,x)u(t,x) = m/d?’v (f(t,x,v)) v. (318b)

p(t,x) X(t,x) = m/d3v (f(t,x,v)) vv. (318c)



We now define the mass density p, the velocity field u, and the specific kinetic energy
tensor X by

p(t,x) = m/d3v (f(t,x,v)), (318a)
pt,x)u(t,x) = m/d?’v (f(t,x,v)) v. (318b)
p(t,x) X(t,x) = m/d3v (f(t,x,v)) vv. (318c)

The tensor X is, by construction, symmetric as can be seen from the definition of its
individual components

o(t, @) Syt x) = m / v (f(t, 2, ) vivs,

and the trace of X defines the local kinetic energy density

(t,2) = %Tr(pE) -7 / o (f(tz.v)) [v]?. (319)



Mass conservation

m(%wv) (f) = —V,-[G@)(f)+C] (316)

Integrating Eq. (316) over v, we get

StV w) = — [0V, [G@)f) + O, (320)

but the rhs. can be transformed into a surface integral (in velocity space) that vanishes since

for physically reasonable interactions |G (x){f) + C] — 0 as |v| — oo. We thus recover the
mass conservation equation

0

5P+ V- (pu) =0. (321)



Momentum conservation

m(g%-fv-V) (f) = —Vu-|G(z)(f)+C] (316)

To obtain the momentum conservation law, lets multiply (316) by v and subsequently
integrate over v,

/dv3m(%+v-v> (Fo = —/dv3vvv-[G(:v)<f>—l—C]. (322)



/dvgm(%+v-v> (Flo = —/dv3vvv-[G(w)<f>+C]. (322)

The lhs. can be rewritten as

/d03m<%+’v-V) (fHlv = %(pu)%—v-/dv?’ m( fvv
= T(ow) V- (%)
= T (ow) + V- (o) + V- [o(S — )
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2D (gt—l—u V)u—l—V-[,o(Z—uu)] (323)

The rhs. of (322) can be computed by partial integration, yielding

_ / 0 vV, - [G(x)(f) + C] = / 2P - [G(z)(f) + C]
= pg+c(t, ), (324)

where g(x) := G(x)/m is the force per unit mass (acceleration) and the last term

c(t, x /dv3C /dv > (H(z—x))f(t,z,v)) (325)
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encodes the mean pair interactions. Combining (323) and (324), we find

p (% +u - V) u = —V-[p(Z—uu)]+ pg(x)+ c(t,x). (326)

The symmetric tensor

IT:=3 — uu (327)

measures the covariance of the local velocity fluctuations of the molecules

related to their temperature. To estimate ¢, let us assume that the pair interaction force
H can be derived from a pair potential ¢, which means that H(r) = —V,.(r). Assuming
further that H(0) = 0, we may write

clt.a) =~ [ a3 (Vaple — 2l (2, 0) (328)
;i (t)

Replacing for some function ((x) the sum over all particles by the integral

S Ce) = [y oty C(w) (320)



Replacing for some function ((x) the sum over all particles by the integral

> ¢ = o [y oty C(w) (320)

we have

ct,x) ~ — d*y p(t,y) ([Vap(x — y)f(t, 2, v))

k)
_ —%/dvg/d?’y p(t,y) ([=Vyo(z —y)|f(t, x,v))
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d*y [Vo(t,y)] (p(x —y) f(t,z, v)) (330)



cltw) ~ — / 0P / By Vot y)] (o(@ — )t 2, 0))

In general, it is impossible to simplify this further without some explicit assumptions about
initial distribution P that determines the average (-). There is however one exception,
namely, the case when interactions are very short-range so that we can approximate the
potential by a delta-function,

p(r) = doa’s(r), (331)

where g is the interaction energy and a® the effective particle volume. In this case,

cta) = £ / a0 / &y [Vp(t,y)] (5(z — ) f(t,z,v))

_pod” ) / a3 (f(t, 2, v))

__od” 5~ [Vo(t, )]p(t, z)

_ _‘poaz Vol(t, ) (332)
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Inserting this into (326), we have thus derived the following hydrodynamic equations

%p +V-(pu) = 0 (333a)
p(%—l—u-V)u = V- -E+ pg(x), (333b)

where
== [,0(2 ~uu) + S;OZS pQI] (333¢)

is the stress tensor with I denoting unit matrix.

Closure problem

a commonly adopted closure condition is the ideal isotropic gas approximation

kT
Y —wu=—1I, (334)
m

where 1" is the temperature and k& the Boltzmann constant. For this closure condition,
Eqgs. (333a) and (333b) become to a closed system for p and w.



Traditionally, and in most practical applications, one does not bother with microscopic
derivations of =; instead one merely postulates that

2
== —pI Hp(Viu+Vu) - ?“(v ‘), (335)

where p(t,x) is the pressure field and p the dynamic viscosity, which can be a function
of pressure, temperature etc. depending on the fluid. Equations (333a) and (333b) com-
bined with the empirical ansatz (335) are the famous Navier-Stokes equations. The second
summand in Eq. (335) contains the rate-of-strain tensor

1
E = 5(vTu +Vu') (336)
and (V - u) is the rate-of-expansion of the flow.
For incompressible flow, defined by p = const., the Navier-Stokes equations simplify to

Vu = 0 (337a)

P (% +u- V) u = —Vp+uViu+ pg. (337b)

In this case, one has to solve for (p,u).



14 The Navier-Stokes Equations
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When the fluid density doesn’t change very much we have seen that V - u = 0, and under
these conditions the Navier-Stokes equations for fluid motion are

Du



14.2 The Reynolds number

For an incompressible flow, we have established that the equations of motion are

ou

Por +pu-Vu=—-Vp+ uViu+f.., (348)

An important parameter that indicates the relative importance of viscous and inertial
forces in a given situation is the Reynolds number. Suppose we are looking at a problem
where the characteristic velocity scale is Uy, and the characteristic length scale for variation
of the velocity is L. Then the size of the terms in the equation are

ou Ug Ug 9 uUo
~J . V ~ — V ~ —., 349
The ratio of the inertial terms to the viscous term is
2/ UoL
Po/L _ Pl _ (350)
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