From

Newton's law

to

hydrodynamic equations
18.354-L14

Goal: derive

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0 \\
& \frac{D \boldsymbol{u}}{D t}=\frac{-\nabla p}{\rho}+\boldsymbol{g} \\
& \frac{D}{D t}=\frac{\partial}{\partial t}+(\boldsymbol{u} \cdot \nabla)
\end{aligned}
$$

13.2 From Newton's laws to hydrodynamic equations

$$
\frac{d \boldsymbol{x}_{i}}{d t}=\boldsymbol{v}_{i}, \quad m \frac{d \boldsymbol{v}}{d t}=\boldsymbol{F}_{i}
$$

$$
\begin{gathered}
\boldsymbol{F}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)=\boldsymbol{G}\left(\boldsymbol{x}_{i}\right)+\sum_{j \neq i} \boldsymbol{H}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)=-\nabla_{\boldsymbol{x}_{i}} \Phi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \\
\boldsymbol{H}(\boldsymbol{r})=-\boldsymbol{H}(-\boldsymbol{r})
\end{gathered}
$$

We define the fine-grained phase-space density

$$
f(t, \boldsymbol{x}, \boldsymbol{v})=\sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}(t)\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}(t)\right)
$$

where $\delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)=\delta\left(x-x_{i}\right) \delta\left(y-y_{i}\right) \delta\left(z-z_{i}\right)$

We define the fine-grained phase-space density

$$
f(t, \boldsymbol{x}, \boldsymbol{v})=\sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}(t)\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}(t)\right)
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} f & =\sum_{i=1}^{N} \frac{d}{d t}\left[\delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right)\right] \\
& =\sum_{i}^{N}\left\{\delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \nabla_{\boldsymbol{x}_{i}} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \cdot \dot{\boldsymbol{x}}_{i}+\delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \nabla_{\boldsymbol{v}_{i}} \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \cdot \dot{\boldsymbol{v}}_{i}\right\} \\
& =-\nabla_{\boldsymbol{x}} \sum_{i=1}^{N} \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \cdot \boldsymbol{v}_{i}-\nabla_{\boldsymbol{v}} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \cdot \frac{\boldsymbol{F}_{i}}{m}
\end{aligned}
$$

where, in the last step, we inserted Newton's equations and used that

$$
\frac{\partial}{\partial x_{i}} \delta\left(x-x_{i}\right)=-\frac{\partial}{\partial x} \delta\left(x-x_{i}\right)
$$

$$
\begin{align*}
\frac{\partial}{\partial t} f & =-\boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} \sum_{i=1}^{N} \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)-\nabla_{\boldsymbol{v}} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \cdot \frac{\boldsymbol{F}_{i}}{m} \\
& =-\boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f-\frac{1}{m} \nabla_{\boldsymbol{v}} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \cdot \boldsymbol{F}_{i} \tag{313}
\end{align*}
$$

Writing $\nabla=\nabla_{\boldsymbol{x}}$ and inserting (309) for the forces, we may rewrite

$$
\begin{aligned}
m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right) f & =-\nabla_{\boldsymbol{v}} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \cdot\left[\boldsymbol{G}\left(\boldsymbol{x}_{i}\right)+\sum_{j \neq i} \boldsymbol{H}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\right] \\
& =-\nabla_{\boldsymbol{v}} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \delta\left(\boldsymbol{v}-\boldsymbol{v}_{i}\right) \cdot\left[\boldsymbol{G}(\boldsymbol{x})+\sum_{\boldsymbol{x}_{j} \neq \boldsymbol{x}} \boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)\right] \\
& =-\left[\boldsymbol{G}(\boldsymbol{x})+\sum_{\boldsymbol{x}_{j} \neq \boldsymbol{x}} \boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)\right] \cdot \nabla_{\boldsymbol{v}} f
\end{aligned}
$$

$$
\begin{equation*}
m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right) f=-\left[\boldsymbol{G}(\boldsymbol{x})+\sum_{\boldsymbol{x}_{j} \neq \boldsymbol{x}} \boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)\right] \cdot \nabla_{\boldsymbol{v}} f \tag{314}
\end{equation*}
$$

To obtain the hydrodynamic equations from (314), two additional reductions will be necessary:

- We need to replace the fine-grained density $f(t, \boldsymbol{x}, \boldsymbol{v})$, which still depends implicitly on the (unknown) solutions $\boldsymbol{x}_{j}(t)$, by a coarse-grained density $\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle$.
- We have to construct the relevant field variables, the mass density $\rho(t, \boldsymbol{r})$ and velocity field \boldsymbol{u}, from the coarse-grained density \bar{f}.

$$
\begin{gather*}
\left\{\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{N}(t)\right\} \\
\left\{\boldsymbol{x}_{1}(0), \ldots, \boldsymbol{x}_{N}(0) ; \boldsymbol{v}_{1}(0), \ldots, \boldsymbol{v}_{N}(0)\right\}=: \Gamma_{0} \\
\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle=\int \mathrm{d} \mathbb{P}\left(\Gamma_{0}\right) f(t, \boldsymbol{x}, \boldsymbol{v}) . \tag{315}
\end{gather*}
$$

$$
\begin{equation*}
m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right)\langle f\rangle=-\nabla_{\boldsymbol{v}} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] \tag{316}
\end{equation*}
$$

where the collision-term

$$
\begin{equation*}
C(t, \boldsymbol{x}, \boldsymbol{v}):=\sum_{\boldsymbol{x}_{j} \neq \boldsymbol{x}}\left\langle\boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right) f(t, \boldsymbol{x}, \boldsymbol{v})\right\rangle \tag{317}
\end{equation*}
$$

We now define the mass density ρ, the velocity field \boldsymbol{u}, and the specific kinetic energy tensor $\boldsymbol{\Sigma}$ by

$$
\begin{align*}
\rho(t, \boldsymbol{x}) & =m \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \tag{318a}\\
\rho(t, \boldsymbol{x}) \boldsymbol{u}(t, \boldsymbol{x}) & =m \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \boldsymbol{v} \tag{318b}\\
\rho(t, \boldsymbol{x}) \boldsymbol{\Sigma}(t, \boldsymbol{x}) & =m \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \boldsymbol{v} \boldsymbol{v} \tag{318c}
\end{align*}
$$

We now define the mass density ρ, the velocity field \boldsymbol{u}, and the specific kinetic energy tensor $\boldsymbol{\Sigma}$ by

$$
\begin{align*}
\rho(t, \boldsymbol{x}) & =m \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \tag{318a}\\
\rho(t, \boldsymbol{x}) \boldsymbol{u}(t, \boldsymbol{x}) & =m \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \boldsymbol{v} \tag{318b}\\
\rho(t, \boldsymbol{x}) \boldsymbol{\Sigma}(t, \boldsymbol{x}) & =m \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \boldsymbol{v} \boldsymbol{v} \tag{318c}
\end{align*}
$$

The tensor $\boldsymbol{\Sigma}$ is, by construction, symmetric as can be seen from the definition of its individual components

$$
\rho(t, \boldsymbol{x}) \Sigma_{i j}(t, \boldsymbol{x})=m \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle v_{i} v_{j}
$$

and the trace of $\boldsymbol{\Sigma}$ defines the local kinetic energy density

$$
\begin{equation*}
\epsilon(t, \boldsymbol{x}):=\frac{1}{2} \operatorname{Tr}(\rho \boldsymbol{\Sigma})=\frac{m}{2} \int d^{3} v\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle|\boldsymbol{v}|^{2} . \tag{319}
\end{equation*}
$$

Mass conservation

$$
\begin{equation*}
m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right)\langle f\rangle=-\nabla_{\boldsymbol{v}} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] \tag{316}
\end{equation*}
$$

Integrating Eq. (316) over \boldsymbol{v}, we get

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho+\nabla \cdot(\rho \boldsymbol{u})=-\int d v^{3} \nabla_{\boldsymbol{v}} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}], \tag{320}
\end{equation*}
$$

but the rhs. can be transformed into a surface integral (in velocity space) that vanishes since for physically reasonable interactions $[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] \rightarrow \mathbf{0}$ as $|\boldsymbol{v}| \rightarrow \infty$. We thus recover the mass conservation equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 . \tag{321}
\end{equation*}
$$

Momentum conservation

$$
\begin{equation*}
m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right)\langle f\rangle=-\nabla_{\boldsymbol{v}} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] \tag{316}
\end{equation*}
$$

To obtain the momentum conservation law, lets multiply (316) by \boldsymbol{v} and subsequently integrate over \boldsymbol{v},

$$
\begin{equation*}
\int d v^{3} m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right)\langle f\rangle \boldsymbol{v}=-\int d v^{3} \boldsymbol{v} \nabla_{\boldsymbol{v}} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] . \tag{322}
\end{equation*}
$$

$$
\begin{equation*}
\int d v^{3} m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right)\langle f\rangle \boldsymbol{v}=-\int d v^{3} \boldsymbol{v} \nabla_{\boldsymbol{v}} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] . \tag{322}
\end{equation*}
$$

The lhs. can be rewritten as

$$
\begin{align*}
\int d v^{3} m\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right)\langle f\rangle \boldsymbol{v} & =\frac{\partial}{\partial t}(\rho \boldsymbol{u})+\nabla \cdot \int d v^{3} m\langle f\rangle \boldsymbol{v} \boldsymbol{v} \\
& =\frac{\partial}{\partial t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{\Sigma}) \\
& =\frac{\partial}{\partial t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u u})+\nabla \cdot[\rho(\boldsymbol{\Sigma}-\boldsymbol{u u})] \\
& =\rho \frac{\partial}{\partial t} \boldsymbol{u}+\boldsymbol{u} \frac{\partial}{\partial t} \rho+\boldsymbol{u} \nabla \cdot(\rho \boldsymbol{u})+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla \cdot[\rho(\boldsymbol{\Sigma}-\boldsymbol{u} \boldsymbol{u})] \\
& \stackrel{(321)}{=} \rho\left(\frac{\partial}{\partial t}+\boldsymbol{u} \cdot \nabla\right) \boldsymbol{u}+\nabla \cdot[\rho(\boldsymbol{\Sigma}-\boldsymbol{u} \boldsymbol{u})] \tag{323}
\end{align*}
$$

The rhs. of (322) can be computed by partial integration, yielding

$$
\begin{align*}
-\int d v^{3} \boldsymbol{v} \nabla_{\boldsymbol{v}} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] & =\int d v^{3} \cdot[\boldsymbol{G}(\boldsymbol{x})\langle f\rangle+\boldsymbol{C}] \\
& =\rho \boldsymbol{g}+\boldsymbol{c}(t, \boldsymbol{x}), \tag{324}
\end{align*}
$$

where $\boldsymbol{g}(\boldsymbol{x}):=\boldsymbol{G}(\boldsymbol{x}) / m$ is the force per unit mass (acceleration) and the last term

$$
\begin{equation*}
\boldsymbol{c}(t, \boldsymbol{x})=\int d v^{3} \boldsymbol{C}=\int d v^{3} \sum_{\boldsymbol{x}_{j} \neq \boldsymbol{x}}\left\langle\boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right) f(t, \boldsymbol{x}, \boldsymbol{v})\right\rangle \tag{325}
\end{equation*}
$$

encodes the mean pair interactions. Combining (323) and (324), we find

$$
\begin{equation*}
\rho\left(\frac{\partial}{\partial t}+\boldsymbol{u} \cdot \nabla\right) \boldsymbol{u}=-\nabla \cdot[\rho(\boldsymbol{\Sigma}-\boldsymbol{u} \boldsymbol{u})]+\rho \boldsymbol{g}(\boldsymbol{x})+\boldsymbol{c}(t, \boldsymbol{x}) . \tag{326}
\end{equation*}
$$

The symmetric tensor

$$
\begin{equation*}
\Pi:=\Sigma-u \boldsymbol{u} \tag{327}
\end{equation*}
$$

measures the covariance of the local velocity fluctuations of the molecules
related to their temperature. To estimate \boldsymbol{c}, let us assume that the pair interaction force \boldsymbol{H} can be derived from a pair potential φ, which means that $\boldsymbol{H}(\boldsymbol{r})=-\nabla_{\boldsymbol{r}} \varphi(\boldsymbol{r})$. Assuming further that $\boldsymbol{H}(\mathbf{0})=\mathbf{0}$, we may write

$$
\begin{equation*}
\boldsymbol{c}(t, \boldsymbol{x})=-\int d v^{3} \sum_{\boldsymbol{x}_{j}(t)}\left\langle\left[\nabla_{\boldsymbol{x}} \varphi\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)\right] f(t, \boldsymbol{x}, \boldsymbol{v})\right\rangle \tag{328}
\end{equation*}
$$

Replacing for some function $\zeta(\boldsymbol{x})$ the sum over all particles by the integral

$$
\begin{equation*}
\sum_{\boldsymbol{x}_{j}} \zeta\left(\boldsymbol{x}_{j}\right) \simeq \frac{1}{m} \int d^{3} y \rho(t, \boldsymbol{y}) \zeta(\boldsymbol{y}) \tag{329}
\end{equation*}
$$

Replacing for some function $\zeta(\boldsymbol{x})$ the sum over all particles by the integral

$$
\begin{equation*}
\sum_{\boldsymbol{x}_{j}} \zeta\left(\boldsymbol{x}_{j}\right) \simeq \frac{1}{m} \int d^{3} y \rho(t, \boldsymbol{y}) \zeta(\boldsymbol{y}) \tag{329}
\end{equation*}
$$

we have

$$
\begin{align*}
\boldsymbol{c}(t, \boldsymbol{x}) & \simeq-\frac{1}{m} \int d v^{3} \int d^{3} y \rho(t, \boldsymbol{y})\left\langle\left[\nabla_{\boldsymbol{x}} \varphi(\boldsymbol{x}-\boldsymbol{y})\right] f(t, \boldsymbol{x}, \boldsymbol{v})\right\rangle \\
& =-\frac{1}{m} \int d v^{3} \int d^{3} y \rho(t, \boldsymbol{y})\left\langle\left[-\nabla_{\boldsymbol{y}} \varphi(\boldsymbol{x}-\boldsymbol{y})\right] f(t, \boldsymbol{x}, \boldsymbol{v})\right\rangle \\
& =-\frac{1}{m} \int d v^{3} \int d^{3} y[\nabla \rho(t, \boldsymbol{y})]\langle\varphi(\boldsymbol{x}-\boldsymbol{y}) f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \tag{330}
\end{align*}
$$

$$
\boldsymbol{c}(t, \boldsymbol{x}) \simeq-\frac{1}{m} \int d v^{3} \int d^{3} y[\nabla \rho(t, \boldsymbol{y})]\langle\varphi(\boldsymbol{x}-\boldsymbol{y}) f(t, \boldsymbol{x}, \boldsymbol{v})\rangle
$$

In general, it is impossible to simplify this further without some explicit assumptions about initial distribution \mathbb{P} that determines the average $\langle\cdot\rangle$. There is however one exception, namely, the case when interactions are very short-range so that we can approximate the potential by a delta-function,

$$
\begin{equation*}
\varphi(\boldsymbol{r})=\phi_{0} a^{3} \delta(\boldsymbol{r}), \tag{331}
\end{equation*}
$$

where φ_{0} is the interaction energy and a^{3} the effective particle volume. In this case,

$$
\begin{align*}
\boldsymbol{c}(t, \boldsymbol{x}) & =-\frac{\varphi_{0} a^{3}}{m} \int d v^{3} \int d^{3} y[\nabla \rho(t, \boldsymbol{y})]\langle\delta(\boldsymbol{x}-\boldsymbol{y}) f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \\
& =-\frac{\varphi_{0} a^{3}}{m}[\nabla \rho(t, \boldsymbol{x})] \int d v^{3}\langle f(t, \boldsymbol{x}, \boldsymbol{v})\rangle \\
& =-\frac{\varphi_{0} a^{3}}{m^{2}}[\nabla \rho(t, \boldsymbol{x})] \rho(t, \boldsymbol{x}) \\
& =-\frac{\varphi_{0} a^{3}}{2 m^{2}} \nabla \rho(t, \boldsymbol{x})^{2} \tag{332}
\end{align*}
$$

Inserting this into (326), we have thus derived the following hydrodynamic equations

$$
\begin{align*}
\frac{\partial}{\partial t} \rho+\nabla \cdot(\rho \boldsymbol{u}) & =0 \tag{333a}\\
\rho\left(\frac{\partial}{\partial t}+\boldsymbol{u} \cdot \nabla\right) \boldsymbol{u} & =\nabla \cdot \boldsymbol{\Xi}+\rho \boldsymbol{g}(\boldsymbol{x}), \tag{333b}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Xi}:=-\left[\rho(\boldsymbol{\Sigma}-\boldsymbol{u} \boldsymbol{u})+\frac{\varphi_{0} a^{3}}{2 m^{2}} \rho^{2} \boldsymbol{I}\right] \tag{333c}
\end{equation*}
$$

is the stress tensor with \boldsymbol{I} denoting unit matrix.

Closure problem

a commonly adopted closure condition is the ideal isotropic gas approximation

$$
\begin{equation*}
\boldsymbol{\Sigma}-\boldsymbol{u} \boldsymbol{u}=\frac{k T}{m} \boldsymbol{I} \tag{334}
\end{equation*}
$$

where T is the temperature and k the Boltzmann constant. For this closure condition, Eqs. (333a) and (333b) become to a closed system for ρ and \boldsymbol{u}.

$$
\boldsymbol{\Xi}:=-\left[\rho(\boldsymbol{\Sigma}-\boldsymbol{u} \boldsymbol{u})+\frac{\varphi_{0} a^{3}}{2 m^{2}} \rho^{2} \boldsymbol{I}\right] \quad \boldsymbol{\Sigma}-\boldsymbol{u} \boldsymbol{u}=\frac{k T}{m} \boldsymbol{I}
$$

Traditionally, and in most practical applications, one does not bother with microscopic derivations of $\boldsymbol{\Xi}$; instead one merely postulates that

$$
\begin{equation*}
\boldsymbol{\Xi}=-p \boldsymbol{I}+\mu\left(\nabla^{\top} \boldsymbol{u}+\nabla \boldsymbol{u}^{\top}\right)-\frac{2 \mu}{3}(\nabla \cdot \boldsymbol{u}) \tag{335}
\end{equation*}
$$

where $p(t, \boldsymbol{x})$ is the pressure field and μ the dynamic viscosity, which can be a function of pressure, temperature etc. depending on the fluid. Equations (333a) and (333b) combined with the empirical ansatz (335) are the famous Navier-Stokes equations. The second summand in Eq. (335) contains the rate-of-strain tensor

$$
\begin{equation*}
\boldsymbol{E}=\frac{1}{2}\left(\nabla^{\top} \boldsymbol{u}+\nabla \boldsymbol{u}^{\top}\right) \tag{336}
\end{equation*}
$$

and $(\nabla \cdot \boldsymbol{u})$ is the rate-of-expansion of the flow.

For incompressible flow, defined by $\rho=$ const., the Navier-Stokes equations simplify to

$$
\begin{align*}
\nabla \cdot \boldsymbol{u} & =0 \tag{337a}\\
\rho\left(\frac{\partial}{\partial t}+\boldsymbol{u} \cdot \nabla\right) \boldsymbol{u} & =-\nabla p+\mu \nabla^{2} \boldsymbol{u}+\rho \boldsymbol{g} . \tag{337b}
\end{align*}
$$

In this case, one has to solve for (p, \boldsymbol{u}).

14 The Navier-Stokes Equations

$$
\begin{aligned}
\rho \frac{D u_{i}}{D t} & =-\frac{\partial p}{\partial x_{i}}+2 \mu \sum \frac{\partial}{\partial x_{j}} \frac{1}{2}\left(\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}}\right) \\
& =-\nabla_{i} p+\mu \nabla_{i}(\nabla \cdot \mathbf{u})+\mu \nabla^{2} u_{i} .
\end{aligned}
$$

When the fluid density doesn't change very much we have seen that $\nabla \cdot \mathbf{u}=0$, and under these conditions the Navier-Stokes equations for fluid motion are

$$
\begin{equation*}
\rho \frac{D \mathbf{u}}{D t}=-\nabla p+\mu \nabla^{2} \mathbf{u} \tag{347}
\end{equation*}
$$

14.2 The Reynolds number

For an incompressible flow, we have established that the equations of motion are

$$
\begin{equation*}
\rho \frac{\partial \mathbf{u}}{\partial t}+\rho \mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\mu \nabla^{2} \mathbf{u}+\mathbf{f}_{e x t} \tag{348}
\end{equation*}
$$

An important parameter that indicates the relative importance of viscous and inertial forces in a given situation is the Reynolds number. Suppose we are looking at a problem where the characteristic velocity scale is U_{0}, and the characteristic length scale for variation of the velocity is L. Then the size of the terms in the equation are

$$
\begin{equation*}
\frac{\partial \mathbf{u}}{\partial t} \sim \frac{U_{0}^{2}}{L}, \quad \mathbf{u} \cdot \nabla \mathbf{u} \sim \frac{U_{0}^{2}}{L}, \quad \mu \nabla^{2} \mathbf{u} \sim \frac{\mu U_{0}}{L^{2}} \tag{349}
\end{equation*}
$$

The ratio of the inertial terms to the viscous term is

$$
\begin{equation*}
\frac{\rho U_{0}^{2} / L}{\mu U_{0} / L^{2}}=\frac{\rho U_{0} L}{\mu}=R e, \tag{350}
\end{equation*}
$$

