Biological applications of elasticity theory
 |8.354-LII

Polymers

DNA = biopolymer pair

~ 3m per cell
$\sim 10^{\wedge} 14$ cells/human
> max. distance between
Earth and Pluto
$\left(\sim 50 \mathrm{AU}=7.5 \times 10^{\wedge} 12 \mathrm{~m}\right)$

DNA packaging

Virus Phi-29

DNA packaging in eukaryotes

Nucleosomes

DNA packaging in eukaryotes

DNA packaging in humans

DNA packaging in humans

C unfolded polymer

FOLDED POLYMER

Cross-section view

Cross-section view

Cyto-skeleton

Nucleus

Actin

Microtubuli
mechanical properties, network topology, ...
eukaryotic cells (source: wiki)

Cyto-skeleton

microtubules

25-nm diameter
actin filaments

7-nm
diameter
intermediate filaments

http://library.thinkquest.org/C004535/cytoskeleton.html

Amoeba

Iliii

Actin bundles

Cyto-skeleton

photo:
Philipp Khuc- Trong

Microtubuli network in Drosophila embryo

Polymers \& filaments

Physical parameters (e.g. bending rigidity) from fluctuation analysis

Actin in 2D

F-Actin

helical
 filament

Dogic Lab (Brandeis)

Actin in 2D

F-Actin

helical
 filament

Dogic Lab (Brandeis)

Actin in 2D

with attractive solvent

Dogic Lab (Brandeis)

helical
 filament

F-Actin

Actin in flow

PRL 108, 038103 (2012)

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference ΔP between inlet and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red) of an actin filament and definition of geometric quantities used in the analysis.

Kantsler \& Goldstein (2012) PRL

Actin in flow

Kantsler \& Goldstein (2012) PRL

Actin in flow

Kantsler \& Goldstein (2012) PRL

DNA Origami - principle

source: wiki

DNA Origami - principle

A

100 nm

DNA Origami - 2D

http://www.nature.com/scitable/blog/bio2.0/dna_origami

DNA Origami - 3D

DNA polyhedra

edge $\sim 10 \mathrm{~nm}$

A rigid tetrahedron formed by self-assembly from DNA, figure from Goodman et al, Science 310 p1661 (2005)

Artificial cilia

~ 50 beats / sec

speed $\sim 100 \mu \mathrm{~m} / \mathrm{s}$

Goldstein et al (2011) PRL

Artificial cilia

Dogic Lab (Brandeis)

Science 201I

Artificial cilia

Dogic Lab
(Brandeis)

Science 201I

