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Compare: vibrated granular media

longitudinal vortices in rapid chute flows !Forterre and
Pouliquen, 2001", see Fig. 8, long modulation waves
!Forterre and Pouliquen, 2003", and others.

A rich variety of patterns and instabilities has also
been found in underwater flows of granular matter:
transverse instability of avalanche fronts, fingering, pat-
tern formation in the sediment behind the avalanche,
etc. #see Daerr et al. !2003" and Malloggi et al. !2005"$.
Whereas certain pattern-forming mechanisms are spe-
cific to the water-granulate interaction, one also finds
striking similarities with the behavior of dry granular
matter.

C. Flows in rotating cylinders

Energy is often supplied to a granular system through
the shear which is driven by the moving walls of the

container. One of the most commonly used geometries
for this class of systems is a horizontal cylinder rotated
around its axis, or rotating drum. Rotating drums partly
filled with granular matter are often used in chemical
engineering for mixing and separation of particles.
Flows in rotating drums have recently become a subject
of active research in the physics community. For not-too-
high rotating rates the flow regime in the drum is sepa-
rated into an almost solid-body rotation in the bulk of
the drum and a localized fluidized layer near the free
surface !Fig. 9". Slowly rotating drums exhibit oscilla-
tions related to the gradual increase of the free-surface
angle to the static angle of repose and subsequent fast

FIG. 3. !Color online" Representative pat-
terns in vertically vibrated granular layers for
various values of frequency and amplitude of
the vibration: stripes, squares, hexagons, spi-
ral, interfaces, and localized oscillons. Snap-
shots of the layer surface under low-angle ob-
lique lighting. Courtesy of Paul Umbanhowar.

FIG. 4. !Color online" Localized oscillon in a vertically vi-
brated granular layer. Courtesy of Paul Umbanhowar.

FIG. 5. Snapshots demonstrating segregation in a layer of cop-
per balls–poppy seeds mixture in a horizontally shaken cavity
!frequency 12.5 Hz, amplitude 2 mm" at 5 min, 10 min, 15 min,
30 min, 1 h, and 6 h. From Mullin, 2000.
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Vibrated granular media

longitudinal vortices in rapid chute flows !Forterre and
Pouliquen, 2001", see Fig. 8, long modulation waves
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engineering for mixing and separation of particles.
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high rotating rates the flow regime in the drum is sepa-
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the drum and a localized fluidized layer near the free
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tions related to the gradual increase of the free-surface
angle to the static angle of repose and subsequent fast

FIG. 3. !Color online" Representative pat-
terns in vertically vibrated granular layers for
various values of frequency and amplitude of
the vibration: stripes, squares, hexagons, spi-
ral, interfaces, and localized oscillons. Snap-
shots of the layer surface under low-angle ob-
lique lighting. Courtesy of Paul Umbanhowar.
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Slime mold

aggregation of a starving slime mold (credit: Florian Siegert)
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Physarum developmental cycle 
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Slime mold (physarum plasmodium)
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Slime mold

aggregation of a starving slime mold (credit: Florian Siegert)
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Belousov-Zhabotinsky reaction

Mix of potassium bromate, cerium(IV) sulfate, malonic acid and citric acid in 
dilute sulfuric acid. !
The ratio of concentration of the cerium(IV) and cerium(III) ions oscillates.!
This is due to the cerium(IV) ions being reduced by malonic acid to cerium(III) 
ions, which are then oxidized back to cerium(IV) ions by bromate(V) ions.
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In the above equations, C, C9, and C0 are the functions of the shell

thickness hR and the modulus mismatch of Ef
!
Es

, respectively. In our

case (i.e., hR and Ef
!
Es

remain unchanged when the oxidation reac-
tion time, the mixed acid composition, and microsphere modulus are
fixed), lR and R approximately satisfy the following linear relation:

lg lR~0:3 lg R{0:33: ð8Þ

Apparently, the slope in Eq. (8) is somehow larger than those shown
in Eqs.5–7. This difference may be attributed to the different wrink-
ling systems and experimental conditions22,27. Additionally, this devi-
ation from the theoretical predictions might as well be due to the fact
that the oxidation procedure introduces a cross-linkage gradient
rather than a layer with a constant elastic property, as it is usually
assumed in the theoretical work.

Here we study the effect of the mixed acid composition on the
wrinkling morphologies on PDMS(1051) microspheres (Fig. 2).
Different from the as-reported composition modulation of the mixed
acid solution via the heating-induced volatilization of HNO3

34, the
current case is achieved by simply mixing the corresponding volume
ratio of acids and water directly. Firstly, the change of HNO3 content
is studied (Fig. 1b–e and Fig. 2a–g). For example, when
VH2SO4 : VHNO3 : VH2O is set to be 66:x:12 (x: HNO3 content), the
mixed acid solution with a too high (e.g., x 5 40, Fig. 2a) or too
low x (e.g., x 5 5, Fig. 2g) can not engender the wrinkling on the
spherical surface. The relatively suitable HNO3 content for the
wrinkling is found to be 15 , 7 with VH2SO4 : VHNO3 : VH2O of 66:
(15 , 7):12 (Fig. 1b–e and Fig. 2c–f). It is known that the oxidation
reactivity of the mixed acid solution decreases as the HNO3 content
decreases34. Thus a small HNO3 content with a low oxidation react-
ivity can not elicit the formation of the rigid oxidized outerlayer in
the PDMS substrate because PDMS has a good surface chemical
stability (Fig. 2g). When the oxidation reactivity is too high, the
oxidized PDMS microspheres deform severely and adhere to each
other (Fig. 2a). Meanwhile, a thicker and stiffer oxidized outerlayer is
generated, resulting in a higher sR

c expected from Eqs.2,329. However
the swelling-induced sR from the surface oxidation processing,
which will be discussed later, is still lower than sR

c . Consequently

no wrinkling happens in this case (Fig. 2a). As for the same large size
of the PDMS microspheres (e.g., ,5 mm in the radius, the circled one
in Fig. 2f), a careful examination shows that the wrinkling morpho-
logy evolves from the labyrinth patterns to the dimples, when the
volume ratio of the strong acid mixtures varies from 66:(15 , 11):12
(Fig. 1b and Fig. 2c,d) to 66:(9 , 7):12 (Fig. 2e,f). In the latter case, a
low overstress is obviously at least one pre-requisite for the formation
of dimples on spherical surfaces. Additionally, these results are
reminiscent of the fine modulation of sR

c and sR through alteration
of the mixed acid composition, and the internal relation of the spher-

ical wrinkling patterns with sR!
sR

c
and hR/R. According to

Eqs.2,328,29, it is known that no wrinkling is induced on too small
microspheres due to the sharp increase in sR

c . However, when the
mixed acid solution with the volume ratio of 66:(9 , 7):12 is used, no
wrinkling happens on big PDMS microspheres yet (denoted by red
arrows in Fig. 2e.f). It is assumed to be the induced sR lower than sR

c .
From the latter result shown in Fig. S2 (SI), we know that bigger
microspheres have a smaller swelling ratio in comparison with smal-
ler ones under the same conditions.

Similarly, H2SO4 composition in the mixed acid solution is also
important. A lower H2SO4 content can not lead to surface wrinkling
on PDMS microspheres (Fig. 2h,i). This is due to the fact that the
oxidation ability of the mixed acid solution comes from the syn-
ergetic effect of HNO3 and H2SO4

33. In addition, the concentration
of the mixed acid solution also needs to be carefully considered
(Fig. 2j, k). The mixed acid solution with a high concentration
(e.g., VH2SO4 : VHNO3 5 66511, no water added) leads to a porous
film with full disappearance of the original PDMS microspheres due
to the excessively strong oxidation etching (Fig. 2j). As for a relatively
low concentration (Fig. 2k), low surface oxidation reactivity is not
enough to oxidize PDMS microspheres, just as the case of a low
content of HNO3 (Fig. 2g) or H2SO4 (Fig. 2h,i) applied.

In addition, the relation of the oxidation time tr with the wrinkling
behavior has also been explored (Fig. 3). From the recorded SEM
images (Fig. 3a–e), it is seen that tr has no obvious effect on the
wrinkling morphology. A shorter oxidation time tr (e.g., 30 s,
Fig. 3a), even 10 s (data not shown here), roughly results in the

Figure 2 | SEM images of the PI-processed PDMS(1051) microspheres with different VH2 SO4
: VHNO3

: VH2 O : a) 66540512; b) 66520512; c) 66515512; d)
66513512; e) 6659512; f) 6657512; g) 6655512; h) 30511512; i) 10511512; j) 6651150; k) 66511524.
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onstrate that these surface textures belong to typical wrinkle
morphologies (Fig. 1c–e). Furthermore, when the radius R of
PDMS(1051) microspheres increases from ,2.25 mm to ,4.75 mm,
the corresponding wrinkles change from the dimple (or buckyball-
like) (Fig. 1c) to labyrinth patterns (Fig. 1d). A careful examination
further shows that under the same conditions, no surface wrinkling is
induced on a small radius of PDMS(1051) microsphere (circled one in
Fig. 1b), owing to the requirement of a larger critical wrinkling stress
according to Eqs.2,328,29.

The influence of the Young’s modulus of PDMS(n:1) microspheres
(EPDMS (n:1)

) on the wrinkling patterns is given in Fig. S1d–f (SI). In the
current case, EPDMS (n:1)

is well tuned by the weight ratio (n:1) of the
PDMS base/curing agent. Furthermore, the EPDMS (n:1)

of PDMS(n:1)

microsphere can be considered equal to that of the corresponding
planar PDMS(n:1) film. According to the planar data reported in Ref.
38, EPDMS (n:1)

is estimated to be ,2.6 MPa, 1.8 MPa, 0.9 MPa, and
0.5 MPa, when n:1 5 551, 1051, 1551, and 2051, respectively.
Evidently, the wrinkling behavior on these spherical surfaces (SI:
Fig. S1d–f) is similar to that on the PDMS(1051) microspheres
(Fig. 1b–e). When compared the roughly same radius sizes of
PDMS(n:1) microspheres (Fig. 1b and SI: Fig. S1e,f), we see the
bridged dimples are favorable on stiffer PDMS microspheres (e.g.,
SI: Fig. S1d). It should be originated from the increase of sR

c for more
rigid spherical substrates and the decrease of the resultant overstress.

Figure 1f shows the relation of the wrinkling wavelength lR with
the radius R and the modulus EPDMS (n:1)

of PDMS(n:1) microspheres,
respectively. Here the wrinkling wavelength lR is mainly estimated
on the base of the recorded SEM images. It is found that the power
law behavior between lR and R exists for the same EPDMS (n:1)

applied
(Fig. 1f). Additionally, consistent with the theoretical predictions
given by Eqs.2,3, the lR , R plots for different moduli of
PDMS(n:1) microspheres are approximately parallel to each other
in the double logarithmic coordinate (Fig. 1f). Meanwhile, the wrin-
kles triggered on stiffer PDMS microspheres have a smaller wrinkle
wavelength under the same conditions.

It is known that when exposed to the mixed strong acid solution,
the surface oxidation reaction occurs on PDMS microspheres with
the formation of an oxidized SiOx layer, just as the case of the planar
PDMS substrate applied33,34. Consequently, a film/substrate spherical
system composed of the SiOx outerlayer and the underlying PDMS
microsphere is generated. Under the standard oxidation conditions,
the thickness hR of the oxidized layer can be assumed to be equal for
different radii of PDMS(1051) microspheres. Thus in Fig. 1b–e, the
dimple patterns are formed in the oxidized PDMS(1051) microspheres
with a larger hR/R (i.e., V), whereas the labyrinth patterns take over in
the presence of a smaller hR/R. These substrate curvature-dependent
wrinkle morphologies are in good agreement with the previous
experimental and theoretical results22,25,26,28. As for the power law
between the wrinkling wavelength lR and the sphere radius R
(Fig. 1f) is also in accord with the previous results22–24,27. For example,
according to the numerical result of Yin et al., the critical wrinkling
wavelength lR

cr in a cylindrical substrate is given by23,24:

lR
cr~2phR

R
hR

! "1
4 Ef

12Es

! "1
4

: ð4Þ

It can be simplified as:

lg lR
cr~

1
4

lg RzC: ð5Þ

In the work of Cao et al., the critical wrinkling wavelength on Ag
core/SiO2 shell composite microspheres is shown in Eq.1 with the
constants of a 5 3.0 and b 5 20.8, respectively22. Alternatively, Eq.1
can be written as

lg lR
cr~0:2 lg RzC’: ð6Þ

From the experimental result of Trindade et al. on the hemispherical
surface wrinkling in elastomeric PU/PBDO spheres, we have27

lg lR~0:18 lg RzC’’: ð7Þ

Figure 1 | SEM images of PDMS(1051) microspheres before (a) and after (b–e) the PI processing. Zoomed PDMS(1051) microspheres with the radius R: c)
,2.25 mm; d) ,4.75 mm; e) ,15 mm. Frame f shows the lR , R relationship for different EPDMS (n:1)

.
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FIG. 1: Macroscopic and microscopic wrinkling morphologies of sti↵ thin films on spherically curved soft

substrates. a-c, Theoretical predictions based on numerical steady-state solutions of Eq. (1). Color red (blue) signals inward
(outward) wrinkles. Simulation parameters: (a) �0 = �0.029, a = 0.00162, c = 0.0025, (b) �0 = �0.04, a = �1.26 · 10�6,
c = 0.002, (c) �0 = �0.02, a = 1.49 · 10�4, c = 0.0025 (see Table I). d-f, Experimentally observed patterns confirm the
transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h (see
Fig. 2) is increased. Scale bars: 10mm. Parameters: Ef = 2100 kPa, R = 20mm, ⌫ = 0.5 and (d) Es = 230 kPa, h = 0.630mm;
(e) Es = 29 kPa, h = 0.14mm; (f) Es = 63 kPa, h = 0.10mm. g-i, Oxide layers on microscopic PDMS hemispheres exhibit
a similar transition from hexagonal to labyrinth patterns when the excess film stress is increased via changes in the ambient
ethanol concentration (indicated in %). Scale bars 250µm. Micrographs courtesy of D. Breid and A. Crosby [27].

Theory of thin-film deformation on soft substrates

Our derivation starts from the covariant Koiter shell
equations [31], obtained from three-dimensional elasticity
theory through an expansion in the film thickness h ! 0.
Koiter’s model expresses the elastic energy of a freestand-
ing curved shell in terms of deformations of its central
surface (Supplementary Information). Although the Koi-
ter equations have been successfully used in computa-
tional wrinkling studies [25, 26], their nonlinear tenso-
rial structure o↵ers limited insight beyond linear stabil-
ity analysis. We found, however, that substantial analyt-
ical simplifications are possible when a sti↵ film (Young
modulus Ef ) is adhered to a soft substrate with Young
modulus Es ⌧ Ef .

As relevant to our experiments, which are described
in detail below, we consider a spherical geometry with
radius R/h � 1 and assume that film and substrate
have the same Poisson ratio ⌫. Generalizations to non-
spherical surfaces are obtained by replacing the met-
ric tensor appropriately. Continuity across the film-
substrate interface favors deformations that are domi-
nated by the radial displacement u (Fig. 2; from now

all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the
strain energy, which contains the original Koiter shell
energy density as well as additional substrate coupling
and overstress contributions, in terms of the covariant
surface derivative ru and powers of u (Supplementary
Information). Functional variation of the elastic energy
with respect to u then yields a nonlinear partial di↵er-
ential equation for the wrinkled equilibrium state of the
film. Assuming overdamped relaxation dynamics, one
thus obtains the following GSH equation (Supplementary
Information)

@tu = �04u� �242u� au� bu2 � cu3 +

(�1 + �2u) ·
⇥
(ru)2 + 2u4u

⇤
(1)

Here, 4 denotes the Laplace-Beltrami operator, involv-
ing the surface metric tensor of the sphere and Christof-
fel symbols of the second kind, and 42 is the surface
biharmonic operator [33]. The (�0, �2)-terms describe
stress and bending, the (a, b, c)-terms comprise local film-
substrate interactions and stretching contributions, and
the (�1,�2)-terms account for higher-order stretching
forces. For �1 = �2 = 0, Eq. (1) reduces to the stan-
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =

p
|�0|/(2�2), Eq. (1) can be approximated

by the standard SH equation

@t� = �24��42��A��B�2 � �3 (2)

�0 =
2

3
� 1

6

p
⌘4/3 + 24(1 + ⌫)2 + 164

a =
⌘4/3

12
+

6(1 + ⌫)� ⌘2/3

3
2 +

4

3
+ ã2⌃e

b = 3(1 + ⌫)3

c =
2(1 + ⌫)⌘2/3

3
c1 + (1 + ⌫)4

�1 =
1 + ⌫
2



�2 =
1 + ⌫
2

2

ã2 = �⌘4/3(c+ 3|�0|�2)
48�2

0

TABLE I: List of parameters for Eq. (1) in units h = 1, with
⌘ = 3Es/Ef , �2 = 1/12, ⌃e = (�/�c)� 1 and  = h/R. The
only remaining fitting parameter of the model is c1.
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Theory vs. experiment
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FIG. 1: Macroscopic and microscopic wrinkling morphologies of sti↵ thin films on spherically curved soft

substrates. a-c, Theoretical predictions based on numerical steady-state solutions of Eq. (1). Color red (blue) signals inward
(outward) wrinkles. Simulation parameters: (a) �0 = �0.029, a = 0.00162, c = 0.0025, (b) �0 = �0.04, a = �1.26 · 10�6,
c = 0.002, (c) �0 = �0.02, a = 1.49 · 10�4, c = 0.0025 (see Table I). d-f, Experimentally observed patterns confirm the
transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h (see
Fig. 2) is increased. Scale bars: 10mm. Parameters: Ef = 2100 kPa, R = 20mm, ⌫ = 0.5 and (d) Es = 230 kPa, h = 0.630mm;
(e) Es = 29 kPa, h = 0.14mm; (f) Es = 63 kPa, h = 0.10mm. g-i, Oxide layers on microscopic PDMS hemispheres exhibit
a similar transition from hexagonal to labyrinth patterns when the excess film stress is increased via changes in the ambient
ethanol concentration (indicated in %). Scale bars 250µm. Micrographs courtesy of D. Breid and A. Crosby [27].

Theory of thin-film deformation on soft substrates

Our derivation starts from the covariant Koiter shell
equations [31], obtained from three-dimensional elasticity
theory through an expansion in the film thickness h ! 0.
Koiter’s model expresses the elastic energy of a freestand-
ing curved shell in terms of deformations of its central
surface (Supplementary Information). Although the Koi-
ter equations have been successfully used in computa-
tional wrinkling studies [25, 26], their nonlinear tenso-
rial structure o↵ers limited insight beyond linear stabil-
ity analysis. We found, however, that substantial analyt-
ical simplifications are possible when a sti↵ film (Young
modulus Ef ) is adhered to a soft substrate with Young
modulus Es ⌧ Ef .

As relevant to our experiments, which are described
in detail below, we consider a spherical geometry with
radius R/h � 1 and assume that film and substrate
have the same Poisson ratio ⌫. Generalizations to non-
spherical surfaces are obtained by replacing the met-
ric tensor appropriately. Continuity across the film-
substrate interface favors deformations that are domi-
nated by the radial displacement u (Fig. 2; from now

all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the
strain energy, which contains the original Koiter shell
energy density as well as additional substrate coupling
and overstress contributions, in terms of the covariant
surface derivative ru and powers of u (Supplementary
Information). Functional variation of the elastic energy
with respect to u then yields a nonlinear partial di↵er-
ential equation for the wrinkled equilibrium state of the
film. Assuming overdamped relaxation dynamics, one
thus obtains the following GSH equation (Supplementary
Information)

@tu = �04u� �242u� au� bu2 � cu3 +

(�1 + �2u) ·
⇥
(ru)2 + 2u4u

⇤
(1)

Here, 4 denotes the Laplace-Beltrami operator, involv-
ing the surface metric tensor of the sphere and Christof-
fel symbols of the second kind, and 42 is the surface
biharmonic operator [33]. The (�0, �2)-terms describe
stress and bending, the (a, b, c)-terms comprise local film-
substrate interactions and stretching contributions, and
the (�1,�2)-terms account for higher-order stretching
forces. For �1 = �2 = 0, Eq. (1) reduces to the stan-

Stoop et al.,  Nature Materials, 2015
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Broken reflection-symmetry at surfaces

l i gh t absorp t i on proper t i es o f the g l ass. By us i ng
a ser i es o f f i l t ers (Ze i ss : UG5 , BG3 , BG12) , the
ac t i ve wave l eng th i n l i gh t - i nduced s topp i ng has
been de t erm i ned to l i e i n the range 400-500 r i m ,
and the e f f ec t can be a l mos t e l i m i na t ed by use o f
a green f i l t er (Ze i ss , VG9) . The dose response
curve was measured by es t i ma t i ng the percen t age
o f sperm tha t s topped upon i n i t i a l movemen t i n to
the l i gh t beam a t d i f f eren t i n t ens i t i es o f i l l um i na -
t i on (F i g . 3) . As men t i oned , i t was found tha t w i th
the fu l l i n t ens i ty o f our i l l um i na tor , c l ose to 100%
o f the sperm i mmed i a t e l y s topped i n the qu i escen t
wave form (F i g . 4) . A s t r i k i ng aspec t o f the resu l t s
shown i n F i g . 3 i s tha t the percen t age o f sperm
s topped shows a gradua l decrease to -0 . 3% as the
l i gh t i n t ens i ty decreases over a f ac tor o f - 10 " . The
l ow percen t age o f sperm tha t con t i nue to become
i n t erm i t t en t l y qu i escen t a t a re l a t i ve l i gh t i n t ens i ty
o f 10 - ° , or w i th the green f i l t er i nser t ed , may
represen t a basa l , spon t aneous l eve l because under
these cond i t i ons the sperm usua l l y do no t s top
i mmed i a t e l y upon movemen t i n to the l i gh t beam .
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F IGURE 1

 

Dark - f i e l d m i crographs o f l i ve sperm o f Tr i pneus t es suspended i n na tura l seawa t er con t a i n i ng
0. 2 mM EDTA and ad j us t ed to pH 8 . 3 ( re f er red to as s t andard seawa t er ) . The m i crograph , wh i ch was
t aken a f ew seconds a f t er mov i ng th i s f i e l d i n to the l i gh t beam , shows some sperm i n l i gh t - i nduced
qu i escence , and some tha t are sw i mm i ng . Among those sw i mm i ng , mos t show l i t t l e asymme t ry as i nd i ca t ed
by the near s t ra i gh tness o f the i r pa ths . Exposure : 1 s. X 380 .
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However , we canno t be cer t a i n on th i s po i n t be -
cause i t i s d i f f i cu l t to make an accura t e es t i ma t e
o f the percen t age o f qu i escen t sperm when th i s i s
<1% . Excep t a t the h i ghes t i n t ens i t i es , the sperm
appear to adap t to the l i gh t , so tha t the percen t age
o f qu i escen t sperm i s h i ghes t when they are i n i -
t i a l l y moved i n to the beam and decreases to a
cons t an t l ower va l ue a f t er they have been i n the
beam - 15 s . Exposure o f the sperm to the max i -
mum l i gh t i n t ens i ty for severa l m i nu t es rendered
them i r revers i b l y nonmo t i l e , presumab l y by rad i a -
t i on damage .

The br i e f per i od o f re l a t i ve l y s t ra i gh t sw i mm i ng
tha t usua l l y fo l l ows qu i escence i n t er f eres w i th the
measuremen t o f the s t eady-s t a t e asymme t ry o f the
f l age l l ar bend i ng waves o f these sperm as i nd i ca t ed
by the i r turn i ng ra t e . However , w i th qu i escence
preven t ed by suspens i on o f the sperm i n ar t i f i c i a l
seawa t er con t a i n i ng on l y 2 mM Ca " , the average
turn i ng ra t e i n a t yp i ca l prepara t i on was de t er -
m i ned to be 0. 18 rad / bea t ( range for 20 sperm was
0 . 12-0 . 26 rad / bea t ) . I t i s be l i eved tha t th i s i s the

Sea urchin sperm	


F IGURE 5

 

Dark - f i e l d m i crographs o f . (A) sperm tha t have been t rea t ed w i th i onophore A23187 , then
d i l u t ed t en fo l d i n to ar t i f i c i a l seawa t er con t a i n i ng 0 . 2 mM EGTA and no d i va l en t ca t i ons . The sperm are
sw i mm i ng i n c i rc l es a t the bo t tom sur f ace o f the Pe t r i d i sh . (B) the same prepara t i on o f sperm a f t er
add i t i on o f -0 . 1 mM f ree Ca " . Near l y a l l the sperm i n the prepara t i on are qu i escen t . B l ur red c i rc l es are
caused by st a t i onary sperm ou t o f the p l ane o f focus . Exposure : 1 s . x 380 .
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      similar for bacteria (E. coli):    Di Luzio et al (2005) Nature

in bulk (dilute) near surface (dilute)
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2. (Pseudo) scalar order-parameter theory

The minimal model considered in this section belongs to the class of generalized

Swift-Hohenberg theories [29, 35]. Our motivation for prepending a brief discussion

of this well-known model here is two-fold: It is helpful to recall some of its basic

properties before considering the generalization to vectorial order-parameters. This

model is also useful for illustrating how microscopic symmetry-breaking mechanisms [40]

can be incorporated into macroscopic descriptions of experimentally relevant microbial

systems [28], as discussed in Section 2.4 below.

2.1. Model equations

We consider the simplest isotropic fourth-order model for a non-conserved scalar or

pseudo-scalar order-parameter ⇤(t,x), given by

⇧t⇤ = F (⇤) + �0�⇤ � �2�
2⇤, (1)

where ⇧t = ⇧/⇧t denotes the time derivative, and ⇤ = ⌅2 is the d-dimensional

Laplacian. The force F is derived from a Landau-potental U(⇤)

F = �⇧U

⇧⇤
, U(⇤) =

a

2
⇤2 +

b

3
⇤3 +

c

4
⇤4, (2)

and the derivative terms on the rhs. of Equation (1) can also be obtained by variational

methods from a suitably defined energy functional. In the context of active suspensions,

⇤ could, for example, quantify local energy fluctuations, local alignment, phase

di⇤erences, or vorticity. We will assume throughout that the system is confined to

a finite spatial domain ⇥ ⇥ Rd of volume

|⇥| =

⇤

�

ddx, (3)

adopting with periodic boundary conditions in simulations.

For completeness, one should note that in the case of a conserved order-parameter

field ⌅ the field equations would either have to take the current-form ⇧t⌅ = �⌅ · J(⌅)

or, alternatively, one could implement conservation laws globally by means of Lagrange

multipliers [36]. For example, for a dynamics similar to that of Equation (1) and a

simple global ‘mass’ constraint

M =

⇤

�

ddx ⌅ = const,

the Lagrange-multiplier approach yields the non-local equations of motions

⇧t⌅ = F (⌅) + �0�⌅� �2�
2⌅� ⇥1,

⇥1 =
1

|⇥|

⇤

�

ddx
�
F (⌅) + �0�⌅� �2�

2⌅
⇥
.

In the remainder of this section, however, we shall focus on the local dynamics defined

by Equations (1) and (2), since this well-known example will be a useful reference point

for the discussion of the vector model in Section 3.

⇤t⇥ = �U �(⇥) + �0⇥2⇥ � �2(⇥2)2⇥

!
reflection-symmetry 	
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Figure 1. Numerical illustration of structural transitions in the order-parameter
⇤ for (a-c) mono-stable and (d-f) bi-stable potentials. (a,d) Symbols show the
results of simulations for the first two �0-induced transitions, and lines are linear
interpolations. Quasi-stationary space-time averages ⇤ · ⌅ were computed over 3000
successive simulation time-steps (�t = 0.1) after an initial relaxation period of 200
characteristic time units tu = L4/�2. (b,c) Snapshots of the order-parameter field ⇤
at t = 500, scaled by the maximum value ⇤m, for a mono-stable potential U(⇤) and
homogeneous random initial conditions. After the first transition two stripes appear,
and the number of stripes increases with the number of transitions. (e,f) Snapshots
of the order-parameter at t = 500 for a bi-stable potential. For �0 ⇥ �(2⇥)2�2/L2,
increasingly more complex quasi-stationary structures arise; see References [29, 47] for
similar patterns in excited granular media and chemical reaction systems.
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the Lagrange-multiplier approach yields the non-local equations of motions
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2⌅� ⇥1,

⇥1 =
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⇤
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ddx
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In the remainder of this section, however, we shall focus on the local dynamics defined

by Equations (1) and (2), since this well-known example will be a useful reference point

for the discussion of the vector model in Section 3.
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2.4. Symmetry breaking

With regard to microbial suspensions, the minimal model (1) is useful for illustrating

how microscopic symmetry-breaking mechanisms that a�ect the motion of individual

organisms or cells [40, 48, 49, 50] can be implemented into macroscopic field equations.

To demonstrate this, we interpret ⇥ as a 2D pseudo-scalar vorticity field⌃

⇥ ⇥ ⇤ = ⌥⇧ v = �ij⌅ivj, (7)

which is assumed to describe the flow dynamics v of a dense microbial suspension

confined to a thin quasi-2D layer of fluid. If the confinement mechanism is top-bottom

symmetric, as for example in a thin free-standing bacterial film [10], then one would

expect that vortices of either handedness are equally likely. In this case, Equation (1)

must be invariant under ⇤ ⇤ �⇤, implying that U(⇤) = U(�⇤) and, therefore, b = 0

in Equation (2). Intuitively, the transformation ⇤ ⇤ �⇤ corresponds to a reflection of

the observer position at the midplane of the film (watching the 2D layer from above vs.

watching it from below).

The situation can be rather di�erent, however, if we consider the dynamics of

microorganisms close to a liquid-solid interface, such as the motion of bacteria or sperms

cells in the vicinity of a glass slide (Figure 2). In this case, it is known that the

trajectory of a swimming cell can exhibit a preferred handedness [40, 48, 49, 50]. For

example, the bacteria Escherichia coli [40] and Caulobacter [48] have been observed

⌃ �ij denotes the Cartesian components of the Levi-Civita tensor, ⌅i = ⌅/⌅xi for i = 1, 2, and we use
a summation convention for equal indices throughout.

Figure 2. E�ect of symmetry breaking. (a) Stationary hexagonal lattice of the pseudo-
scalar vorticity order-parameter ⇥ = ⇤, scaled by the maximum value ⇥m = ⇤m,
as obtained in simulations of Equations (1) and (2) with b > 0, corresponding to a
broken reflection symmetry ⇤ ⌅⇤ �⇤. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus
droebachiensis) near a glass surface; from [28] adapted and reprinted with permission
from AAAS. At high densities, the spermatozoa assemble into vortices that rotate in
clockwise direction (inset) when viewed from the bulk fluid.



Minimal continuum models of active fluids 8

2.4. Symmetry breaking

With regard to microbial suspensions, the minimal model (1) is useful for illustrating

how microscopic symmetry-breaking mechanisms that a�ect the motion of individual

organisms or cells [40, 48, 49, 50] can be implemented into macroscopic field equations.

To demonstrate this, we interpret ⇥ as a 2D pseudo-scalar vorticity field⌃

⇥ ⇥ ⇤ = ⌥⇧ v = �ij⌅ivj, (7)

which is assumed to describe the flow dynamics v of a dense microbial suspension

confined to a thin quasi-2D layer of fluid. If the confinement mechanism is top-bottom

symmetric, as for example in a thin free-standing bacterial film [10], then one would

expect that vortices of either handedness are equally likely. In this case, Equation (1)

must be invariant under ⇤ ⇤ �⇤, implying that U(⇤) = U(�⇤) and, therefore, b = 0

in Equation (2). Intuitively, the transformation ⇤ ⇤ �⇤ corresponds to a reflection of

the observer position at the midplane of the film (watching the 2D layer from above vs.

watching it from below).

The situation can be rather di�erent, however, if we consider the dynamics of

microorganisms close to a liquid-solid interface, such as the motion of bacteria or sperms

cells in the vicinity of a glass slide (Figure 2). In this case, it is known that the

trajectory of a swimming cell can exhibit a preferred handedness [40, 48, 49, 50]. For

example, the bacteria Escherichia coli [40] and Caulobacter [48] have been observed

⌃ �ij denotes the Cartesian components of the Levi-Civita tensor, ⌅i = ⌅/⌅xi for i = 1, 2, and we use
a summation convention for equal indices throughout.

Figure 2. E�ect of symmetry breaking. (a) Stationary hexagonal lattice of the pseudo-
scalar vorticity order-parameter ⇥ = ⇤, scaled by the maximum value ⇥m = ⇤m,
as obtained in simulations of Equations (1) and (2) with b > 0, corresponding to a
broken reflection symmetry ⇤ ⌅⇤ �⇤. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus
droebachiensis) near a glass surface; from [28] adapted and reprinted with permission
from AAAS. At high densities, the spermatozoa assemble into vortices that rotate in
clockwise direction (inset) when viewed from the bulk fluid.

broken 	

reflection-symmetry 	


b �= 0

2d Swift-Hohenberg model
arxiv: 1208.4464

Minimal continuum models of active fluids 8

2.4. Symmetry breaking

With regard to microbial suspensions, the minimal model (1) is useful for illustrating

how microscopic symmetry-breaking mechanisms that a�ect the motion of individual

organisms or cells [40, 48, 49, 50] can be implemented into macroscopic field equations.

To demonstrate this, we interpret ⇥ as a 2D pseudo-scalar vorticity field⌃

⇥ ⇥ ⇤ = ⌥⇧ v = �ij⌅ivj, (7)

which is assumed to describe the flow dynamics v of a dense microbial suspension

confined to a thin quasi-2D layer of fluid. If the confinement mechanism is top-bottom

symmetric, as for example in a thin free-standing bacterial film [10], then one would

expect that vortices of either handedness are equally likely. In this case, Equation (1)

must be invariant under ⇤ ⇤ �⇤, implying that U(⇤) = U(�⇤) and, therefore, b = 0

in Equation (2). Intuitively, the transformation ⇤ ⇤ �⇤ corresponds to a reflection of

the observer position at the midplane of the film (watching the 2D layer from above vs.

watching it from below).

The situation can be rather di�erent, however, if we consider the dynamics of

microorganisms close to a liquid-solid interface, such as the motion of bacteria or sperms

cells in the vicinity of a glass slide (Figure 2). In this case, it is known that the

trajectory of a swimming cell can exhibit a preferred handedness [40, 48, 49, 50]. For

example, the bacteria Escherichia coli [40] and Caulobacter [48] have been observed

⌃ �ij denotes the Cartesian components of the Levi-Civita tensor, ⌅i = ⌅/⌅xi for i = 1, 2, and we use
a summation convention for equal indices throughout.

Figure 2. E�ect of symmetry breaking. (a) Stationary hexagonal lattice of the pseudo-
scalar vorticity order-parameter ⇥ = ⇤, scaled by the maximum value ⇥m = ⇤m,
as obtained in simulations of Equations (1) and (2) with b > 0, corresponding to a
broken reflection symmetry ⇤ ⌅⇤ �⇤. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus
droebachiensis) near a glass surface; from [28] adapted and reprinted with permission
from AAAS. At high densities, the spermatozoa assemble into vortices that rotate in
clockwise direction (inset) when viewed from the bulk fluid.

Sea urchin sperm cells	

near surface 	


(high concentration)

Riedel et al (2007) Science



dunkel@math.mit.edu

Mathematical description

1. higher-than-second-order PDEs	


2. many coupled second-order PDEs

mailto:dunkel@math.mit.edu


dunkel@math.mit.edu

?

mailto:dunkel@math.mit.edu


a

b

c

xbcd

xhb

Anterior–posterior position

P
ro

te
in

 c
on

ce
nt

ra
tio

n

repeated dissolutions and restorations of their 
membranes. 

The authors also found that a photo-bleached 
nucleus regains its fluorescence within a few 
minutes, indicating that nuclear Bicoid is in 
tight equilibrium with its cytoplasmic pool. 
They established a simple model of diffusion-
limited active transport and used it to predict 
the value of a diffusion constant for Bicoid in 
the cytoplasm. In observing the recovery of 
fluorescence in the photo-bleached region of 
the cytoplasm, they confirmed this prediction. 

The Bicoid gradient was thought to be excep-
tional in terms of regulating early patterns of 
Drosophila gene expression because its distri-
bution can be determined using a diffusion 
equation that assumes there is a constant source 
of Bicoid at the anterior pole and first-order 
decay of diffusing Bicoid7,8. But Gregor and col-
leagues’ results introduce serious complications 
in this picture. 

The authors found that the Bicoid gradi-
ent reaches a steady state in 90 minutes. This 
implies, using the diffusion equation, that the 
diffusion coefficient is more than 2 μm2 per 

second; however, photo-bleaching experi-
ments indicate a value of only 0.35 μm2 per 

second. It may be that diffusivity varies on 
different timescales, or perhaps is affected by 
the nuclei themselves. Although the authors 
provide some evidence for the second possi-
bility by observing that the Bicoid gradient is 
altered in unfertilized eggs, a true solution to 
this problem must await further experiments. 

In their second paper, Gregor et al.5 investi-
gate just how precise the readout of the Bicoid 
effect can be. They find that, by the end of the 
blastoderm stage, certain gene-expression 
patterns are specified to a resolution of one 
nucleus, which corresponds to a 10% differ-
ence in Bicoid concentration between adjacent 
nuclei. Can such small differences be perceived 
by the embryo? 

To be detected by the cell, Bicoid molecules 
must diffuse to a cellular receptor. The theory 
of this diffusive process was worked out for 
bacterial chemotaxis — movement along a 
chemical concentration gradient — many years 
ago9, when it was established that the limit of 
detection depends on the square root of the 
product of the signalling-molecule concen-
tration, its diffusivity, the size of the receptor, 
and the time period over which the concen-
tration is averaged. This relation is completely 
general in physical details, as long as the pro-
cesses involved do not dissipate energy. Thus, 

the accuracy of detection rises with the square 
root of the number of molecules sensed.  

To apply this formula, Gregor et al. mea-
sured the absolute concentration of Bicoid by 
placing embryos expressing Bicoid–eGFP in 
a bath containing GFP at a known concentra-
tion, thus assigning an absolute concentration 
scale to their measurements. They found that 
the nuclear concentration of Bicoid was about 
8 nanomolar in the centre of the embryo, which 
amounts to about 700 molecules per nucleus. In 
this region of the embryo, Bicoid must be aver-
aged over a period of about 2 hours for a 10% 
difference in concentration to be detectable. 
The actual timescale is much shorter because  
boundaries of gene-expression domains form 
over a period of 7 minutes. These timescales 
imply a Bicoid discrimination threshold of 
20–40% in neighbouring nuclei. 

Embryo-to-embryo variations in gene 
expression also provide information on the 
actual discrimination threshold. The anoma-
lous positional accuracy described in earlier 
work6 had two main components. First, when 

A central idea in developmental biology is 
Lewis Wolpert’s theory of positional infor-
mation1. This states that a substance present 
in a concentration gradient induces different 
developmental fates in cells when present at 
different concentrations. The first such mor-
phogenetic gradient to be identified was that of 
the gene transcription factor Bicoid in embryos 
of the fruitfly Drosophila melanogaster2,3. This 
protein is distributed with an exponential pro-
file, with its concentration decreasing towards 
the posterior pole of the embryo. Although the 
importance of the Bicoid gradient in specify-
ing cellular fates was established, quantitative 
puzzles remained. These problems have now 
been largely solved by Gregor and colleagues4,5 
in two papers in Cell. 

A previous study6 had shown that the Bicoid 
concentration gradient varied far more widely 
between embryos than did the expression of the 
hunchback (hb) gene, which is used as a readout 
of the effect of Bicoid concentration. This and 
other studies, however, were performed in fixed 
tissue, where it is impossible to determine abso-
lute protein concentrations or to follow changes 
in gene expression over time. 

Gregor et al.4 tagged Bicoid with enhanced 
green fluorescent protein (eGFP), which 
allowed them to directly observe its gradient 
in live embryos. For this, the authors con-
structed a genetic line of fruitflies in which the 
bicoid gene (bcd) was replaced by a functional 
bcd–egfp fusion gene. They then monitored the 
gene’s protein product by time-lapse micros-
copy during the blastoderm stage of early 
embryonic development. 

In early Drosophila development, the embryo 
is a syncytium — it consists of a mass of cyto-
plasm, with nuclei that are not separated by 
cell membranes. The nuclei undergo a series of 
13 rapid divisions, with the blastoderm form-
ing at about division 10. The authors found that 
it is at division 9 — before blastoderm forma-
tion — that Bicoid–eGFP is first detected. As it 
is a DNA-binding protein, Bicoid is localized in 
the nucleus. But as nuclei lose their envelopes 
during each division, internally stored Bicoid 
is released into the cytoplasm. 

Gregor and colleagues show that there is a 
remarkable constancy in nuclear Bicoid con-
centration between nuclear divisions, with 
peak concentrations varying by less than 10% 
at any given anterior–posterior position within 
the embryo. Evolution has thus provided a 
startlingly precise mechanism for preserving 
positional information in nuclei, in the face of 

DEVELOPMENTAL BIOLOGY 

A ten per cent solution
John Reinitz

In early embryos, a concentration gradient of the Bicoid protein affects 
pattern formation. Studies of living embryos reveal a surprising level of 
accuracy in the Bicoid gradient. But is it accurate enough?

Figure 1 | The role of Bicoid in dictating levels 
of gene expression during development. 
a, A Drosophila embryo at the blastoderm stage 
of development stained with a fluorescently 
tagged antibody to Bicoid. b, The same embryo 
stained with a fluorescently tagged antibody to 
the Hunchback protein, the expression of which is 
determined by the Bicoid gradient. c, Gregor 
et al.4,5 found that the range of positions of 
threshold concentrations of Bicoid (xbcd) was twice 
that of the border of hunchback gene expression 
(xhb). The mean Bicoid pattern in a population 
(red solid line) is an average of the range of Bicoid 
levels in the population (dashed red lines). The 
mean expression profile of the hunchback gene 
(solid blue line) differs from its upper and lower 
limits of expression in the population (dashed blue 
lines) accordingly. (a and b are from ref. 10.)
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repeated dissolutions and restorations of their 
membranes. 
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of gene expression during development. 
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tagged antibody to Bicoid. b, The same embryo 
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the Hunchback protein, the expression of which is 
determined by the Bicoid gradient. c, Gregor 
et al.4,5 found that the range of positions of 
threshold concentrations of Bicoid (xbcd) was twice 
that of the border of hunchback gene expression 
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levels in the population (dashed red lines). The 
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Figure 2.2: Systematic errors of gap gene expression profiles. A) Optical sections through
the midsagittal plane of a single Drosophila embryo with co-immunofuorescence staining
against the four gap genes Kni (green), Kr (yellow), Gt (orange) and Hb (red); scalebar
100µm.B) Raw intensity profiles (dorsal side) of 23 selected embryos (light colors); embryo
depicted above is highlighted in darker color. C) Quantification of spectral crosstalk and
fluorophore bleed-through. For each channel, the average intensity profile I of 10 embryos
immunofluorescently labeled with three antibodies lacking the specific antibody corresponding
to that optical channel is shown in gray. Black dashed line shows a cross-talk estimate
using a reconstruction algorithm (see text). Average profiles from B are shown in color. D)
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It  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo:~irall, unusual system. 
The investigation is chiefly concerned with the onset of instability. It  is faund that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It  is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

I n  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called 'the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. I n  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 
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