L04:
 Continuum theory
 \&
 diffusion

18.354

Last class: Hamiltonian dynamics

Dilute Fluid
$\phi=0.34$
Molecular Dynamics Simulations

http://web.mit.edu/mbuehler/www/research/fl03.jpg

How do we describe systems with large N of particles?

Falcon attacks a flock of starlings

How do we describe systems with large N of particles?

Swarming:

How do we describe systems with large N of particles?

Traffic flow:

How do we describe systems with large N of particles?

Ist example:
 Brownian motion

Brownian motion

Iliii

"Brownian" motion

Jan Ingen-Housz (1730-1799)

 eines Sitroffops einen Sropfen Weingetff fonmt etwas seftofener Soble fegen; nan witb biefe sivperthen hat sinet vertwieten beftandigen und beftigen Bewegung ex:
1784/1785: bliden, als wenn es Shterden rairen, die fich reiffend unter citiander fortbetwegen.
http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

Robert Brown (1773-1858)

Linnean Society (London)

1827: irregular motion of pollen in fluid
http://www.brianjford.com/wbbrownc.htm

Brownian motion

Mark Haw

David Walker

Polymer in a fluid

$<1 \mu m$

Flow \& transport in cells

Drosophila embryo

Goldstein lab (Cambridge)

Mathematical description of standard BM

Adolf Eugen Fick (1829-1901)

first law

$$
\frac{\partial}{\partial t} \varrho(t, x)=-\nabla J(t, x)
$$

second law

$$
\begin{aligned}
J(t, x) & =-\mathcal{D} \nabla \varrho(t, x) \\
\Rightarrow \quad \frac{\partial}{\partial t} \varrho & =\mathcal{D} \nabla^{2} \varrho
\end{aligned}
$$

Phil. Mag. 10: 30 (1855)

$$
\left\langle x^{2}(t)\right\rangle=2 D t
$$

Goal: $D=f($ microscopic parameters)

Louis Bachelier, Theorie de la speculation,
Ann. Sci. l'École Norm. Sup. 3 (17): 21-86 (1900)

$1870-1946$

Louis Bachelier, aged 15

Annales scientifiques de l'É.N.S. 3^{e} série, tome 17 (1900), p. 21-86.

THÉORIE

DE
LA SPÉCULATION,
par M. L. BaChelier.

38
L. BACHELIER.

Nous avons donc pour expression de la probabilite

$$
p=\frac{\mu}{\sqrt{t}} e^{-\frac{\pi \pi^{4} x^{2}}{t}}
$$

Diffusion of an Instantaneous Point Source

This animation depicts the diffusion of a discrete mass released at ($x=0, y=0, t=0$). The diffusion is anisotropic, $D x=4 \mathrm{Dy}$. The length scales grow in proportion to the square root of the diffusion, such that the dimensions of the cloud are anisotropic, with $L x=2 L y$. Note that the profiles of concentration along the x - and y-axes are Gaussian in shape.
W. Sutherland (1858-1911)
A. Einstein (1879-1955)
M. Smoluchowski (1872-1917)

Source: www.theage.com.au

$$
D=\frac{R T}{6 \pi \eta a C}
$$

Phil. Mag. 9, 781 (1905)
R : molar gas constant k : viscosity

Source: wikipedia.org

$$
\left\langle x^{2}(t)\right\rangle=2 D t
$$

$$
D=\frac{R T}{N} \frac{1}{6 \pi k P}
$$

$$
D=\frac{32}{243} \frac{m c^{2}}{\pi \mu R}
$$

Ann. Phys. 17, 549 (1905) Ann. Phys. 21, 756 (1906)

T: Temperature
 P : ParticleRadius

Jean Baptiste Perrin (1870-1942, Nobel prize 1926)

Mouvement brownien et réalité moléculaire, Annales de chimie et de physique VIII 18, 5-114 (1909)

- colloidal particles of radius $0.53 \mu \mathrm{~m}$
- successive positions every 30 seconds joined by straight line segments
- mesh size is $3.2 \mu \mathrm{~m}$

Les Atomes, Paris, Alcan (1913)

Norbert Wiener
(I894-I864)

How fast must a cell swim to beat Brownian motion?

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =2 D t \\
D & =\frac{k T}{6 \pi \eta_{0} a}
\end{aligned}
$$

How fast must a cell swim to beat Brownian motion?

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =2 D t \\
D & =\frac{k T}{6 \pi \eta_{0} a}
\end{aligned}
$$

$$
\begin{gathered}
k T=4 \times 10^{-21} \mathrm{~J} \\
a \sim 1 \mu m \\
\gamma_{S}=6 \pi \eta a \sim 2 \times 10^{-8} \mathrm{~kg} / \mathrm{s}
\end{gathered}
$$

How fast must a cell swim to beat Brownian motion?

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =2 D t \\
D & =\frac{k T}{6 \pi \eta_{0} a}
\end{aligned}
$$

$$
\begin{gathered}
k T=4 \times 10^{-21} \mathrm{~J} \\
a \sim 1 \mu m \\
\gamma_{S}=6 \pi \eta a \sim 2 \times 10^{-8} \mathrm{~kg} / \mathrm{s}
\end{gathered}
$$

Hence, we find for the diffusion constant

$$
D \sim 0.2 \mu \mathrm{~m}^{2} / \mathrm{s}
$$

Assuming a run length $\sim 1 \mathrm{~s}$, Brownian motion would move a micron-sized bacterium by approximately $0.5 \mu \mathrm{~m}$ per second. Thus a bacterium should swim at last $5-10 \mu \mathrm{~m} / \mathrm{s}$, which is close to typical bacterial swimming speeds.

Sedimentation

Mississippi

Sedimentation

Particle separation

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

$$
\mathcal{F}=\{\emptyset, A, B, A \cap B, A \cup B, \ldots, \Omega\}
$$

$$
\xrightarrow{\xrightarrow[P]{\mathbb{P}}} \begin{aligned}
& {[0,1]} \\
& \\
& \\
& \\
& \\
& \\
& \mathbb{P}[\emptyset]=0 \\
& \mathbb{P}[\Omega]=1
\end{aligned}
$$

$$
\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]
$$

Expectation values of random variables

$$
\begin{gathered}
X: \Omega \rightarrow \mathbb{R}^{n} \\
\mathbb{E}[f(X)]=\int d \mathbb{P} f(x)=\int d x p(x) f(x) \\
p(x) \geq 0, \quad \int d x p(x)=1
\end{gathered}
$$

$$
\mathbb{E}[\alpha f(X)+\beta g(X)]=\alpha \mathbb{E}[f(X)]+\beta \mathbb{E}[g(X)]
$$

This course simply:

$$
p(x) \geq 0, \quad \int d x p(x)=1
$$

$$
\mathbb{E}[f(X)]=\int d \mathbb{P} f(x)=\int d x p(x) f(x)
$$

$$
\mathbb{E}[\alpha f(X)+\beta g(X)]=\alpha \mathbb{E}[f(X)]+\beta \mathbb{E}[g(X)]
$$

