
L04: 
Continuum theory  

&  
diffusion

18.354



15 mm

Dilute Fluid
φ = 0.34

Molecular Dynamics Simulations

Last class: Hamiltonian dynamics 

http://www.youtube.com/watch?v=t5ZFoU0S5iE


http://web.mit.edu/mbuehler/www/research/f103.jpg

http://web.mit.edu/mbuehler/www/research/f103.jpg


How do we describe systems with large N of  particles?

Falcon attacks a flock of starlings



Swarming:

How do we describe systems with large N of  particles?



Traffic flow:

How do we describe systems with large N of  particles?



How do we describe systems with large N of  particles?



1st example: 
Brownian motion



Brownian motion



“Brownian” motionÜbersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Jan Ingen-Housz (1730-1799)

1784/1785:

http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html
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Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Robert Brown (1773-1858)

1827: irreguläre Eigenbewegung von Pollen in Flüssigkeit

http://www.brianjford.com/wbbrownc.htm
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irregular motion of pollen in fluid

Linnean Society (London)



Brownian motion

David Walker

Mark Haw



Polymer in a fluid

Dogic lab	


(Brandeis)

18.S995



Flow & transport in cells

Goldstein lab (Cambridge)

Drosophila 
embryo



DAMTP, Cambridge, 

February 2010

Tracer scattering & anomalous diffusion

 

Mathematical description of standard BM
Übersicht

Brownsche Bewegung - Historischer Überblick
Relativistische Di�usionsprozesse

Fazit

Adolf Eugen Fick (1829-1901)

erstes Di�usionsgesetz

⇥

⇥t
�(t, x) = �⇤J(t, x)

zweites Di�usionsgesetz

J(t, x) = �D⇤�(t, x)

⇥ ⇥

⇥t
� = D⇤2� Phil. Mag. 10: 30 (1855)
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Augsburg, Oktober, 2009Relativistic Brownian motion & 

thermodynamics  

Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Motivation
Relativistische Langevin-Gleichungen
Relativistische Thermostatistik
Di�usion

Beispiel: Klassische Di�usionsgleichung

Lineare PDG, Markow-Prozess

⌅

⌅t
⇤(t, x) = D⌃2⇤(t, x) t ⇤ 0

Stochastische Di�erentialgleichung

dX (t) := X (t + dt)� X (t) = (2D)1/2 ⇥ dB(t)

X (0) = x0 ⇧ ⇤(0, x) = �(x � x0)

⇤(t, x) =
1
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Widerspruch zur SRT ⌅ Relativistische Verallgemeinerung ?

No-Go Theorem [Lopuszanski 1953; Dudley 1965]

Jörn Dunkel Di�usionsprozesse und Thermostatistik in der speziellen Relativitätstheorie

Conflict with 
Einstein’s 
postulate   v < c !

first law

second law Louis Bachelier, Theorie de la speculation, 

Ann. Sci. lʼÉcole Norm. Sup. 3 (17): 21–86 (1900)
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Augsburg, Oktober, 2009Relativistic Brownian motion & 

thermodynamics  

Non-relativistic Brownian motion theory

Goal:  D=f(microscopic parameters)

Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit
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Conflict with 
Einstein’s 
postulate   v < c !



Louis Bachelier, aged 15
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L A S P É C U L A T I O N ,
Ï^K M. L. BACHELIER.

Ï N T B O D U C T I O N .

Les influences qui déterminent les mouvements de la Bourse sont
innombrables, des événements passés, actuels ou même escomptables,
ne présentant souvent aucun rapport apparent avec ses variations, se
répercutent sur son cours.

A côté des causes en quelque sorte naturelles des variations, inter-
v i e n n e n t aussi des causes factices : la Bourse agit sur elle-même et le
mouvement actuel est fonction, non seulement des mouvements anté-
rieurs, mais aussi de la position de place.

La détermination de ces mouvements se subordonne à un nombre
i n f i n i de facteurs : il est des lors impossible d'en espérer la prévi-
sion mathématique. Les opinions contradictoires relatives à ces varia-
tions se partagent si bien qu'au même instant les acheteurs croient à,
la hausse et les vendeurs à la baisse.

Le Calcul des probabilités ne pourra sans doute jamais s'appliquer
aux mouvements de la cote et la dynamique de la Bourse ne sera
jamais une science exacte. !

Mais il est possible d'étudier mathématiquement l'état s ta t ique du
marché à un instant donné/c'est-à-dire d'établir la loi de probabilité
des variations de cours qu'admet à cet instant le marché. Si le marché,
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ANNALES SCIENTIFIQUES DE L’É.N.S.

L. BACHELIER
Théorie de la spéculation

Annales scientifiques de l’É.N.S. 3e série, tome 17 (1900), p. 21-86.
<http://www.numdam.org/item?id=ASENS_1900_3_17__21_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1900, tous droits réservés.
L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens), implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systéma-
tique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

1870 – 1946



This animation depicts the diffusion of a discrete mass released at (x = 0, y = 0, t = 0). The diffusion is 
anisotropic, Dx = 4 Dy. The length scales grow in proportion to the square root of the diffusion, such that 
the dimensions of the cloud are anisotropic, with Lx = 2 Ly. Note that the profiles of concentration along 
the x- and y-axes are Gaussian in shape.

Diffusion of  an Instantaneous Point Source
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T :  Temperature	


P :  ParticleRadius

R : molar gas constant	


k : viscosity N:  Avogadro’s number	





Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Jean Baptiste Perrin (1870-1942, Nobelpreis 1926)

Mouvement brownien et réalité moléculaire, Annales de chimie et de
physique VIII 18, 5-114 (1909)

Les Atomes, Paris, Alcan (1913)

� colloidal particles of
radius 0.53µm

� successive positions
every 30 seconds
joined by straight line
segments

� mesh size is 3.2µm

Experimenteller Nachweis der atomistischen Struktur der Materie

Jörn Dunkel Di�usionsprozesse und Thermostatistik in der speziellen Relativitätstheorie

experimental evidence for 
atomistic structure of matter

Nobel prize 



Norbert Wiener
(1894-1864)

MIT



How fast must a cell swim	


to beat Brownian motion?

and obtains in this way his famous formula

D =
kT

6πη0a
, k =

R

NA

(35)

(R = gas constant).
This was almost simultaneously discovered in Australia by William Suther-

land.
A beauty of the argument is that the exterior force drops out. Similar

equilibrium considerations between systematic and fluctuating forces were
repeatedly made by Einstein.

3.6 Silence, a calculational error, late attention

By 1909 Perrin’s careful measurements of Brownian motion led to a new value
for Avogadro’s number that was significantly different from the value Einstein
had obtained from his thesis work, and also somewhat different from what
he and Planck had deduced from black-body radiation. Einstein then drew
Perrin’s attention to his hydrodynamical method, and suggested its applica-
tion to the suspensions studied by Perrin. Then Jacques Bancelin, a Pupil
of Jean Perrin, checked Einstein’s viscosity formula η = η0(1 + ϕ). Bancelin
confirmed that there was an increase of the viscosity that was independent
of the size of the suspended particles, and only depends on the total volume
they occupy. However, he got a stronger increase. Initially, this increase was
too steep; in the publication Bancelin gives the result η = η0(1 + 2.9ϕ).

On 27 December, 1910 Einstein wrote from Zürich to his former student
and collaborator Ludwig Hopf about the puzzling situation, and then adds:

“I have checked my previous calculations and arguments and found
no error in them. You would be doing a great service in this mat-
ter if you would carefully recheck my investigation. Either there
is an error in the work, or the volume of Perrin’s suspended sub-
stance in the suspended state is greater than Perrin believes.”

Hopf indeed found an error in some differentiation process, and got the
formula (4). Einstein communicated the result to Perrin, and published in
(1911) a correction of his thesis in the Annalen. (By the way, this correction
is the second most quoted paper of Einstein.) New experimental data for
sugar solutions now gave the excellent value

NA = 6.56 × 1023 (36)

for the Avogadro number, in good agreement with the results of other meth-
ods, in particular with Perrin’s determination from the Brownian motion, for

11
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1.10 Solutions

1.10.1 Problem 1: Order-of-magnitude estimates

(a) How heavy is a bacterium? Assuming a volume v = 1µm3 and a mass density
⇢ = 1000 kg/m3 (water), we find

m = ⇢v ⇠ 10�18 ⇥ 103 kg = 1 fg (1.159a)

(b) How fast must a bacterium swim so that swimming makes sense? At room tem-
perature, kT = 4 ⇥ 10�21 J. Stokes drag coe�cient of a sphere of radius a = 1µm in
water

�S = 6⇡⌘a ⇠ 2⇥ 10�8 kg/s

Hence, we find for the di↵usion constant

D ⇠ 0.2µm2/s

Assuming a run length ⇠ 1 s, Brownian motion would move a micron-sized bacterium by
approximately 0.5µm per second. Thus a bacterium should swim at last 5-10 µm/s, which
is close to typical swim bacterial speeds.

(c) How large is the e↵ective di↵usion constant of bacteria that perform run-and-tumble
motion with run periods ⌧ ⇠ 1 s?

Db ⇠ V 2⌧ ⇠ 102 µm2/s

(d) How large are the self-propulsion force and the torque generated by a bacterial motor?
Force

F ⇠ �SV ⇠ 2⇥ 10�8 kg/s⇥ 10µm/s = 0.2 pN (1.159b)

Torque

T ⇠ (a/2)⇥ F ⇠ 10�19 Nm = 10�12 dyn · cm (1.159c)

Both estimates are very close to experimentally measured values.

1.10.2 Problem 2: Brownian motion

(a) The probability P (N,K) := P[XN/` = K] to be at an even position x/` = K � 0
after N steps is given by the binomial coe�cient

P (N,K) =

✓
1

2

◆N ✓
N

N�K
2

◆

=

✓
1

2

◆N
N !

((N +K)/2)! ((N �K)/2)!
(1.160)
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How fast must a cell swim	


to beat Brownian motion?

and obtains in this way his famous formula

D =
kT

6πη0a
, k =

R

NA

(35)

(R = gas constant).
This was almost simultaneously discovered in Australia by William Suther-

land.
A beauty of the argument is that the exterior force drops out. Similar

equilibrium considerations between systematic and fluctuating forces were
repeatedly made by Einstein.

3.6 Silence, a calculational error, late attention

By 1909 Perrin’s careful measurements of Brownian motion led to a new value
for Avogadro’s number that was significantly different from the value Einstein
had obtained from his thesis work, and also somewhat different from what
he and Planck had deduced from black-body radiation. Einstein then drew
Perrin’s attention to his hydrodynamical method, and suggested its applica-
tion to the suspensions studied by Perrin. Then Jacques Bancelin, a Pupil
of Jean Perrin, checked Einstein’s viscosity formula η = η0(1 + ϕ). Bancelin
confirmed that there was an increase of the viscosity that was independent
of the size of the suspended particles, and only depends on the total volume
they occupy. However, he got a stronger increase. Initially, this increase was
too steep; in the publication Bancelin gives the result η = η0(1 + 2.9ϕ).

On 27 December, 1910 Einstein wrote from Zürich to his former student
and collaborator Ludwig Hopf about the puzzling situation, and then adds:

“I have checked my previous calculations and arguments and found
no error in them. You would be doing a great service in this mat-
ter if you would carefully recheck my investigation. Either there
is an error in the work, or the volume of Perrin’s suspended sub-
stance in the suspended state is greater than Perrin believes.”

Hopf indeed found an error in some differentiation process, and got the
formula (4). Einstein communicated the result to Perrin, and published in
(1911) a correction of his thesis in the Annalen. (By the way, this correction
is the second most quoted paper of Einstein.) New experimental data for
sugar solutions now gave the excellent value

NA = 6.56 × 1023 (36)

for the Avogadro number, in good agreement with the results of other meth-
ods, in particular with Perrin’s determination from the Brownian motion, for
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is close to typical bacterial swimming speeds.
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