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4 Kepler’s problem and Hamiltonian dynamics

Why do we study applied mathematics? Aside from the intellectual challenge, it is reason-
able to argue that we do so to obtain an understanding of physical phenomena, and to be
able to make predictions about them. Possibly the greatest example of this, and the origin
of much of the mathematics we do, came from Newton’s desire to understand the motion
of the planets, which were known to obey Kepler’s laws.

4.1 Kepler’s laws of planetary motion

In the early seventeenth century (1609-1619) Kepler proposed three laws of planetary motion

(i) The orbits of the planets are ellipses, with the Sun’s centre of mass at one focus of
the ellipse.

(ii) The line joining a planet and the Sun describes equal areas in equal intervals of time.

(iii) The squares of the periods of the planets are proportional to the cubes of their semi-
major axes.

These laws were based on detailed observations made by Tycho Brahe, and put to rest
any notion that planets move in perfectly circular orbits. However, it wasn’t until Newton
proposed his law of gravitation in 1687 that the origins of this motion were understood.
Newton proposed that

“Every object in the Universe attracts every other object with a force directed along a line
of centres for the two objects that is proportional to the product of their masses and

inversely proportional to the square of the separation of the two objects.”

Based on this one statement, it is possible to derive Kepler’s laws.

4.1.1 Second law

Keplers second law is the simplest to derive, and is a statement that the angular momentum
of a particle moving under a central force, such as gravity, is constant. By definition, the
angular momentum L of a particle with mass m and velocity u is

L = r ^m
dr

dt
, (53)

where r is the vector position of the particle. The rate of change of angular momentum is
given by

dL

dt
= r ^ f = r ^ f(r)r̂ = 0, (54)

where f(r)r̂ is the central force, depending only on the distance r = |r| and pointing in the
direction r̂ = r/r. It can therefore be seen that the angular momentum of a particle moving
under a central force is constant, a consequence of this being that motion takes place in a
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13plane. The area swept out by the line joining a planet and the sun is half the area of the
parallelogram formed by r and dr. Thus

dA =
1

2
|r ^ dr| = 1

2

����r ^ dr

dt
dt

���� =
L

2m
dt, (55)

where L = |L| is a constant. The area swept out is therefore also constant.

4.1.2 First law

To prove Keplers first law consider the sun as being stationary (i.e., infinitely heavy), and
the planets in orbit around it. The equation of motion for a planet is

m
d2r

dt2
= f(r)r̂. (56)

In plane polar coordinates

dr

dt
= ṙr̂ + r✓̇✓̂, (57a)

d2r

dt2
= (r̈ � r✓̇2)r̂+ (r✓̈ + 2ṙ✓̇)✓̂. (57b)

In component form, equation (56) therefore becomes

m(r̈ � r✓̇2) = f(r), (58a)

m(r✓̈ + 2ṙ✓̇) = 0. (58b)

Putting (57a) into (53) gives

L =

����r ^m
dr

dt

���� = |mr2✓̇|. (59)

Thus
r2✓̇ = l, (60)

where l = L/m is the angular momentum per unit mass. Given a radial force f(r), equa-
tions (58a) and (58b) can now be solved to obtain r and ✓ as functions of t. A more practical
result is to solve for r(✓), however, and this requires the definition of a new variable

r =
1

u
. (61)

Rewriting the equations of motion in terms of the new variable requires the identities

ṙ = � 1

u2
u̇ = � 1

u2
d✓

dt

du

d✓
= �l

du

d✓
, (62a)

r̈ = �l
d

dt

du

d✓
= �l✓̇

d2u

d✓2
= �l2u2

d2u

d✓2
. (62b)

Equation (58a) becomes
d2u

d✓2
+ u = � 1

ml2u2
f

✓
1

u

◆
. (63)
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This is the di↵erential equation governing the motion of a particle under a central force.
Conversely, if one is given the polar equation of the orbit r = r(✓), the force function can be
derived by di↵erentiating and putting the result into the di↵erential equation. According
to Newtons law of gravitation f(r) = �k/r2, so that

d2u

d✓2
+ u =

k

ml2
. (64)

This has the general solution

u = Acos(✓ � ✓0) +
k

ml2
, (65)

where A and ✓0 are constants of integration that encode information about the initial
conditions. Choosing ✓0=0 and replacing u by the original radial coordinate r = 1/u,

r =

✓
Acos✓ +

k

ml2

◆�1

(66)

which is the equation of a conic section with the origin at the focus. This can be rewritten
in standard form

r = r0
1 + ✏

1 + ✏cos✓
, (67)

where

✏ =
Aml2

k
, r0 =

ml2

k(1 + ✏)
. (68)

✏ is called the eccentricity of the orbit:

• ✏ = 0 is a circle,

• ✏ < 1 is an ellipse,

• ✏ = 1 is a parabola and

• ✏ > 1 is a hyperbola.

For an elliptical orbit, r0 is the distance of closest approach to the sun, and is called the
perihelion. Similarly,

r1 = r0(1 + ✏)/(1� ✏) (69)

is the furthest distance from the sun and is called the aphelion. Orbital eccentricities are
small for planets, whereas comets have parabolic or hyperbolic orbits. Interestingly though,
Halley’s comet has a very eccentric orbit but, according to the definition just given, is not
a comet!
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✏ is called the eccentricity of the orbit:

• ✏ = 0 is a circle,

• ✏ < 1 is an ellipse,

• ✏ = 1 is a parabola and

• ✏ > 1 is a hyperbola.

For an elliptical orbit, r0 is the distance of closest approach to the sun, and is called the
perihelion. Similarly,

r1 = r0(1 + ✏)/(1� ✏) (69)

is the furthest distance from the sun and is called the aphelion. Orbital eccentricities are
small for planets, whereas comets have parabolic or hyperbolic orbits. Interestingly though,
Halley’s comet has a very eccentric orbit but, according to the definition just given, is not
a comet!
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4.1.3 Third law

To prove Keplers third law go back to equation (55). Integrating this area law over time
gives

A(⌧) =

Z
⌧

0
dA =

l⌧

2
, (70)

where ⌧ is the period of the orbit. The area A of an ellipse can also be written as A = ⇡ab
where a and b are the semi-major and semi-minor axes, yielding

l⌧

2
= ⇡ab (71)

The ratio of a and b can be expressed in terms of the eccentricity

b

a
=

p
1� ✏2. (72)

Using this expression to substitute b in (71)

⌧ =
2⇡a2

l

p
1� ✏2 (73)

The length of the major axis is

2a = r0 + r1 =
2ml2

k(1� ✏2)
. (74)

Squaring (71) and replacing gives

⌧2 =
4⇡2m

k
a3, (75)

confirming Kepler’s 3rd law.

4.2 Hamiltonian dynamics of many-body systems

The Kepler problem is essentially a two-body problem. In the remainder of this course, we
will be interested in classical (non-quantum) systems that consist of N � 2 particles. The
complete microscopic dynamics of such systems is encoded in their Hamiltonian

H =
NX

n=1

p

2
n

2m
n

+ U(x1, . . . ,xN

), (76a)

where m
n

, p
n

(t) and x

n

(t) denote the mass, momentum and position of the nth particle.
The first contribution on the rhs. of Eq. (76a) is the kinetic energy, and U is the potential
energy. For our purposes, it is su�cient to assume that we can decompose (76a) into a sum
of pair interactions

U(x1, . . . ,xN

) =
1

2

X

n,k:n 6=k

�(x
n

,x
k

). (76b)
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16Given H, Newton’s equations can be compactly rewritten as

ẋ

n

= r
pn
H , ṗ

n

= �r
xnH. (77)

That this so-called Hamiltonian dynamics is indeed equivalent to Newton’s laws of motion
can be seen by direct insertion, which yields

ẋ

n

=
p

n

m
n

, ṗ

n

= m
n

ẍ

n

= �r
xnU. (78)

An important observation is that many physical systems obey certain conservation laws.
For instance, the Hamiltonian (76a) itself remains conserved under the time-evolution (77)

d

dt
H =

X

n

⇥
(r

pn
H) · ṗ

n

+ (r
xnH) · ẋ

n

⇤

=
X

n

⇥
(r

pn
H) · (�r

xnH) + (r
xnH) ·r

pn
H
⇤
⌘ 0. (79)

which is just the statement of energy conservation. Other important examples of conserved
quantities are total linear momentum and angular momentum,

P =
X

n

p

n

, L =
X

n

x

n

^ p

n

(80)

if the pair potentials � only depend on the distance between particles.
There exists a deep mathematical connection between such invariants and symmetries of

the underlying Hamiltonian, known as Noether’s theorem. For example, energy conservation
is a consequence of the fact that the Hamiltonian (76a) is note explicitly time-dependent
and, hence, invariant under time translations. Similarly, conservation of linear momentum is
linked to spatial translation invariance and conservation of angular momentum to rotational
invariance.

For the remainder of this course, it will be important to keep in mind that microscopic
symmetries and conservation laws must be preserved in coarse-grained macroscopic contin-
uum descriptions.

4.3 Practical limitations

Deriving Kepler’s laws required us to solve a second-order linear ordinary di↵erential equa-
tion, which was obtained by considering the idealised case in which a single planet is orbiting
the sun. If we consider a more realistic problem in which several planets orbit the sun, all in-
teracting with each other via gravity, the problem becomes analytically intractable. Indeed,
for just two planets orbiting the sun one encounters the celebrated ‘three-body problem’, for
which there is no general analytical solution. Lagrange showed that there are some solutions
to this problem if we restrict the planets to move in the same plane, and assume that the
mass of one of them is so small as to be negligible. In the absence of an explicit solution
to the ‘three body problem’ one must use ideas from 18.03 to calculate fixed points of the
equations and investigate their stability. However, now you see the problem. The critical
number of equations for complicated things to happen is three (for ODE’s), and yet any
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n

⇤

=
X

n

⇥
(r

pn
H) · (�r

xnH) + (r
xnH) ·r

pn
H
⇤
⌘ 0. (79)

which is just the statement of energy conservation. Other important examples of conserved
quantities are total linear momentum and angular momentum,

P =
X

n

p

n

, L =
X

n

x

n

^ p

n

(80)

if the pair potentials � only depend on the distance between particles.
There exists a deep mathematical connection between such invariants and symmetries of

the underlying Hamiltonian, known as Noether’s theorem. For example, energy conservation
is a consequence of the fact that the Hamiltonian (76a) is note explicitly time-dependent
and, hence, invariant under time translations. Similarly, conservation of linear momentum is
linked to spatial translation invariance and conservation of angular momentum to rotational
invariance.

For the remainder of this course, it will be important to keep in mind that microscopic
symmetries and conservation laws must be preserved in coarse-grained macroscopic contin-
uum descriptions.

4.3 Practical limitations

Deriving Kepler’s laws required us to solve a second-order linear ordinary di↵erential equa-
tion, which was obtained by considering the idealised case in which a single planet is orbiting
the sun. If we consider a more realistic problem in which several planets orbit the sun, all in-
teracting with each other via gravity, the problem becomes analytically intractable. Indeed,
for just two planets orbiting the sun one encounters the celebrated ‘three-body problem’, for
which there is no general analytical solution. Lagrange showed that there are some solutions
to this problem if we restrict the planets to move in the same plane, and assume that the
mass of one of them is so small as to be negligible. In the absence of an explicit solution
to the ‘three body problem’ one must use ideas from 18.03 to calculate fixed points of the
equations and investigate their stability. However, now you see the problem. The critical
number of equations for complicated things to happen is three (for ODE’s), and yet any

17

Conservation laws
Given H, Newton’s equations can be compactly rewritten as

ẋ
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… too many particles in interesting systems
relevant problem in the world contains many more than three degrees of freedom. Indeed a
physical problem typically contains 1023 interacting particles (Avogadro’s number), which
is so great a number that it is unclear if the mathematical techniques described above are
of any use. The central aim of this course is to make theoretical progress towards under-
standing systems with many degrees of freedom. To do so we shall invoke the “continuum
hypothesis”, imagining that the discrete variable (e.g. the velocity of a particular molecule
of fluid) can be replaced with a continuum (e.g. the velocity field v(x, t)). There are many
subtleties that arise in trying to implement this idea, among them;

(i) How does one write down macroscopic descriptions in terms of microscopic constants
in a systematic way? It would be terrible to have to solve 1023 coupled di↵erential
equations!

(ii) Forces and e↵ects that a priori appear to be small are not always negligible. This
turns out to be of fundamental importance, but was not recognised universally until
the 1920’s.

(iii) The mathematics of how to solve ‘macroscopic equations’, which are nonlinear partial
di↵erential equations, is non-trivial. We will need to introduce many new ideas.

In tackling these problems we will spend a lot of time doing fluid mechanics, the reason being
that it is by far the most developed field for the study of these questions. Experiments are
readily available and the equations of motion are very well known (and not really debated!).
Furthermore, fluid dynamics is an important subject in its own right, being relevant to many
di↵erent scientific disciplines (e.g. aerospace engineering, meteorology, co↵ee cups). We will
also introduce other examples (e.g. elasticity) to show the generality of the ideas.

4.4 Suggestions

For more details on Kepler’s laws, and a java applet to let you play with them, go to

http://csep10.phys.utk.edu/astr161/lect/history/kepler.html
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Solution:  continuum theory … leads to new challenges


