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4 Kepler’s problem and Hamiltonian dynamics

4.1 Kepler’s laws of planetary motion

In the early seventeenth century (1609-1619) Kepler proposed three laws of planetary motion

(i) The orbits of the planets are ellipses, with the Sun’s centre of mass at one focus of
the ellipse.

(ii) The line joining a planet and the Sun describes equal areas in equal intervals of time.

(iii) The squares of the periods of the planets are proportional to the cubes of their semi-
major axes.

These laws were based on detailed observations made by Tycho Brahe, and put to rest
any notion that planets move in perfectly circular orbits. However, it wasn’t until Newton
proposed his law of gravitation in 1687 that the origins of this motion were understood.
Newton proposed that

“Every object in the Universe attracts every other object with a force directed along a line
of centres for the two objects that is proportional to the product of their masses and
inversely proportional to the square of the separation of the two objects.”

Based on this one statement, it is possible to derive Kepler’s laws.



4.1.1 Second law

Keplers second law is the simplest to derive, and is a statement that the angular momentum
of a particle moving under a central force, such as gravity, is constant. By definition, the
angular momentum L of a particle with mass m and velocity u is

L=r/Am—, (53)

where 7 is the vector position of the particle. The rate of change of angular momentum is

given by
dL R
— =rANf=rAf(r)r=0, (54)

where f(r)r is the central force, depending only on the distance r = |r| and pointing in the
direction 7 = r/r. It can therefore be seen that the angular momentum of a particle moving
under a central force is constant, a consequence of this being that motion takes place in a

plane. The area swept out by the line joining a planet and the sun is half the area of the
parallelogram formed by r and dr. Thus

1
dA = Slr Ndr| =

1 dr L

where L = |L| is a constant. The area swept out is therefore also constant.



4.1.2 First law

To prove Keplers first law consider the sun as being stationary (i.e., infinitely heavy), and
the planets in orbit around it. The equation of motion for a planet is

d’r .
In plane polar coordinates
d .
d—: — i+ 60, (57a)
d2r ) o . A
o (7 —7r0°)r + (10 + 270)0. (57Db)

In component form, equation (56) therefore becomes

m(i —r6?) = f(r), (58a)
m(rf + 2r0) = 0. (58D)
Putting (57a) into (53) gives
L=|rA ar| _ Imr26) (59)
m| = :

Thus



Thus .
r20 =1, (60)

where [ = L/m is the angular momentum per unit mass. Given a radial force f(r), equa-
tions (58a) and (58b) can now be solved to obtain r and 8 as functions of . A more practical
result is to solve for r(0), however, and this requires the definition of a new variable

r = % (61)

Rewriting the equations of motion in terms of the new variable requires the identities

1 1 dO du du
4 2T T2 dt do 40’ (62a)
d du . d?u d?u
T L R 7 M L A T 2%
" dt do 102 Y a0? (62b)

Equation (58a) becomes

db?  mil2u? U



Equation (58a) becomes

I Lfc). (63)

db?  mi2y2 U

This is the differential equation governing the motion of a particle under a central force.
Conversely, if one is given the polar equation of the orbit » = r(0), the force function can be
derived by differentiating and putting the result into the differential equation. According

to Newtons law of gravitation f(r) = —k/r2, so that
d*u k
— =, 64
agz T i (64)

This has the general solution

k

mil?’

u = Acos(0 — 6y) + (65)

where A and 6y are constants of integration that encode information about the initial
conditions. Choosing #p=0 and replacing u by the original radial coordinate r = 1/u,

r= <A0086’ + i) h (66)

ml?



r= (ACOSH + i) h (66)

ml?

which is the equation of a conic section with the origin at the focus. This can be rewritten

in standard form
1+ €

07 + ecosf’

T =

(67)

where
B Aml? mi?

T k0t e

(68)

¢ is called the eccentricity of the orbit:
e ¢ = (0 is a circle,
e ¢ < 1 is an ellipse,
e ¢ = 1 is a parabola and

e ¢ > 1 1is a hyperbola.



For an elliptical orbit, rg is the distance of closest approach to the sun, and is called the
perihelion. Similarly,

ri =ro(l+¢€)/(1 —¢€) (69)

is the furthest distance from the sun and is called the aphelion. Orbital eccentricities are
small for planets, whereas comets have parabolic or hyperbolic orbits. Interestingly though,
Halley’s comet has a very eccentric orbit but, according to the definition just given, is not
a comet!




4.1.3 Third law

To prove Keplers third law go back to equation (55). Integrating this area law over time

gives
It

A7) = /0 A= (70)

where 7 is the period of the orbit. The area A of an ellipse can also be written as A = wab
where a and b are the semi-major and semi-minor axes, yielding

I

5= mab (71)

The ratio of a and b can be expressed in terms of the eccentricity

b_ite (72)

a

Using this expression to substitute b in (71)

2 2
=01 (73)

[

The length of the major axis is

2ml?
2a = = —. 74
S ey (74)
Squaring (71) and replacing gives
4 2
2= (75)

confirming Kepler’s 3rd law.



4.2 Hamiltonian dynamics of many-body systems

The Kepler problem is essentially a two-body problem. In the remainder of this course, we
will be interested in classical (non-quantum) systems that consist of N > 2 particles. The
complete microscopic dynamics of such systems is encoded in their Hamiltonian

N o2
H = > ;;;‘n +U(x1,...,xN), (76a)

where m,,, p,(t) and x,(t) denote the mass, momentum and position of the nth particle.
The first contribution on the rhs. of Eq. (76a) is the kinetic energy, and U is the potential
energy. For our purposes, it is sufficient to assume that we can decompose (76a) into a sum
of pair interactions

1
Uy, aN) = 5 > O(mn, k). (76D)
n,k:n#k

Given H, Newton’s equations can be compactly rewritten as

That this so-called Hamiltonian dynamics is indeed equivalent to Newton’s laws of motion
can be seen by direct insertion, which yields
_ Pu

T, , P, = MpZy, = —Vg, U (78)
mn



Conservation laws

An important observation is that many physical systems obey certain conservation laws.
For instance, the Hamiltonian (76a) itself remains conserved under the time-evolution (77)

d

= > (Vp H) P+ (Vo,H) - o)

n

= > [(Vp,H) (~Ve,H)+ (Vo,H) - Vyp H] =0. (79)

n

which is just the statement of energy conservation. Other important examples of conserved
quantities are total linear momentum and angular momentum,

P:an, L:Zmn/\pn (80)

if the pair potentials ® only depend on the distance between particles.

Reflection of underlying symmetry !
(Noether’s theorem)



4.3 Practical limitations

... too many particles in interesting systems

Solution: continuum theory ... leads to new challenges

(i) How does one write down macroscopic descriptions in terms of microscopic constants
in a systematic way? It would be terrible to have to solve 10?3 coupled differential
equations!

(ii) Forces and effects that a priori appear to be small are not always negligible. This

turns out to be of fundamental importance, but was not recognised universally until
the 1920’s.

(iii) The mathematics of how to solve ‘macroscopic equations’, which are nonlinear partial
differential equations, is non-trivial. We will need to introduce many new ideas.



