Course summary

18.354

Dimensional analysis

Kepler’s problem

$$
\mathbf{L}=\mathbf{r} \times m \frac{d \mathbf{r}}{d t}
$$

Random walks \& diffusion

$$
\frac{\partial n}{\partial t}=-\frac{\partial J_{x}}{\partial x}=D \frac{\partial^{2} n}{\partial x^{2}}
$$

Mark Haw
David Walker

(In)stability analysis \& pattern formation

$$
\begin{gathered}
\partial_{t} \psi=-U^{\prime}(\psi)+\gamma_{0} \nabla^{2} \psi-\gamma_{2}\left(\nabla^{2}\right)^{2} \psi \\
U(\psi)=\frac{a}{2} \psi^{2}+\frac{b}{3} \psi^{3}+\frac{c}{4} \psi^{4}
\end{gathered}
$$

Calculus of variations

$$
\begin{aligned}
\frac{\delta I[Y]}{\delta Y} & =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\{I[f(x)+\epsilon \delta(x-y)]-I[f(x)]\} \\
& =\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial Y} \delta(x-y)+\frac{\partial f}{\partial Y^{\prime}} \delta^{\prime}(x-y)\right] d x \\
& =\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial Y}-\frac{d}{d x} \frac{\partial f}{\partial Y^{\prime}}\right] \delta(x-y) d x .
\end{aligned}
$$

$$
0=\frac{\partial f}{\partial Y}-\frac{d}{d x} \frac{\partial f}{\partial Y^{\prime}}
$$

Surface tension

Elasticity

Hydrodynamics

$$
\int_{V} \frac{\partial \rho}{\partial t} d V=-\int_{S} \rho \mathbf{u} \cdot \mathbf{n} d S=-\int_{V} \nabla \cdot(\rho \mathbf{u}) d V . \quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 .
$$

$$
\int_{V(t)} \rho \frac{D \mathbf{u}}{D t} d V=\int_{V(t)}(-\nabla p+\rho \mathbf{g}) d V \quad \frac{D \mathbf{u}}{D t}=\frac{-\nabla p}{\rho}+\mathbf{g}
$$

Low Re

Singular perturbations

$$
\epsilon \frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}=1
$$

Conformal mappings

$$
W(Z)=u_{0}\left(Z e^{-i \alpha}+\frac{R^{2}}{Z} e^{i \alpha}\right)-\frac{i \Gamma}{2 \pi} \ln Z .
$$

Rotating flows

$$
\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\Omega \times(\Omega \times \boldsymbol{r}) & =-\frac{1}{\rho} \nabla p_{\Omega}+\nu \nabla^{2} \boldsymbol{u}-2 \Omega \times \boldsymbol{u} \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

Taylor columns, etc

Solitons

KdV equation

Topological defects

Active matter

