
18.354/12.207 – Nonlinear Dynamics II: Continuum systems
Mid-term - take home.

Due: Friday, April 25 by 1pm in E17-412.

The above deadline is final. There will be no extensions. For this take-home exam you
are allowed to use Acheson and your class notes. No other references are allowed. No
collaboration or consultation with others is allowed.

Problem 1: Diffusion driven flows

Diffusion driven flow in a stratified environment is an interesting example of a counterintu-
itive problem in fluid mechanics that finds applications in oceanography. In such systems,
diffusion can drive flow along a wall inclined at angle α to the horizontal, placed in a strat-
ified fluid (note: in a stratified fluid the density varies with height due to the presence of a
component, such as salt or temperature). A schematic diagram of the problem is shown in
Fig. 1.
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Figure 1: Setup for Problem 1: diffusion driven flow.

(i) Making the x- and y-axes parallel and perpendicular to the wall (see Fig. 1), and
assuming a flow of the form u = (u(y), 0), show that the Navier-Stokes equations and
the advection-diffusion equation reduce to

0 = −∂p
∂x

+ µ
d2u

dy2
− ρg sinα, (1)

0 = −∂p
∂y
− ρg cosα, (2)

u
∂ρ

∂x
= κ

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
. (3)

where κ is the diffusion coefficient of the quantity affecting the density. Note that the
advection-diffusion equation is also called the transport equation, which you derived
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in problem set 2 – Dc/Dt = κ∇2c – for the concentration c of the component. You
may assume c is proportional to the density ρ, i.e. c = aρ, where a is a constant.

(ii) At the inclined surface the velocity and the normal density gradient vanish, while far
away the velocity vanishes and the density distribution reduces to its undisturbed
state,

ρ→ ρ0 +K(x sinα+ y cosα).

This corresponds to a linear density gradient in the vertical direction. Note that K
should be a negative number so that we have light fluid over heavy fluid and ρ0 is a
reference density far away from the wall along the line x sinα + y cosα = 0. Seeking
a solution for the density of the form

ρ = ρ0 +K(x sinα+ y cosα) + ρ0f(y), (4)

show that f(y) satisfies
d4f

dy4
= −4γ4f, (5)

where γ is given below (see hint), and determine f(y) for solutions of the type f = eδy.

(Hint : You will want to eliminate pressure from your equations. To make your solu-

tion more presentable, it will help to define N2 = −Kg/ρ0 and γ = (N2ρ0 sin2 α/4µκ)
1
4 .

N is a well known quantity in fluid dynamics, called buoyancy frequency, and corre-
sponds to the natural frequency of oscillation within a stratified fluid. Note that δ may
be a complex number, whereas you want your final result for f(y) to be real).

(iii) From your solution for the density find the velocity u(y). Then sketch both u (y) and
f (y) as functions of the coordinate y away from the wall. Write a sentence about
what you see in the plots. Comment on anything unphysical in the analytic solution
for u (y). In case you had trouble in (ii), assume that u(y) can be found from

u(y) =
κρo

K sinα

d2f

dy2

Problem 2: Modeling a Tornado

A horizontal slice through a tornado can be modeled by two distinct regions. The inner or
core region (0 < r < R) is modeled by solid body rotation – a rotating but inviscid region
of flow. The outer region (r > R) is modeled as an irrotational regions of flow. The flow is
assumed to be two-dimensinoal in the (r, θ) plane, and the components of the velocity field
u = (ur, rθ) are given by

ur = 0 uθ =

{
ωr if 0 < r < R
ωR2

r if r > R
(6)
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where ω is the magnitude of the angular velocity in the inner region. The ambient pressure
far away from the tornado (at r → ∞) is P∞ and the fluid there (∞) is stationary. You
can neglect gravity effects - an additional hydrostatic pressure field exists in the z-direction
but does not affect the dynamics of the flow. The pressure along the z-axis is Po(z) which
is constant for a particular slice. Moreover, assume that the flow is steady, incompressible
and inviscid.

(i) Calculate the pressure field in the inner region, P (r) (for 0 < r < R), in a horizontal
slice of the tornado. Although R increases and ω decreases with increasing elevation,
z, assume that both R and ω are constants in a particular horizontal slice.

(ii) Calculate the pressure field in the outer region, P (r) (for R < r < ∞) for the same
horizontal slice of the tornado as in (i).

(iii) What is the pressure at r = R and r = 0 (as a function of P∞). Then, re-write your
results of (i) and (ii) involving P∞ only (not Po) in dimensionless form, i.e.

ūθ(r) =
uθ
ωR

=? and P̄ (r) =
P (r)− P∞
ρω2R2

=? (7)

(iv) Plot both the pressure and velocity fields in the dimensionless form you found in (iii).

Problem 3: Bending of a thin elastic sheet under gravity

In class we saw that, in the linearized limit of small deformations, the elastic bending energy
of a two dimensional sheet with shape y(x) is

U [y(x)] =
1

2

(
Y h3

12(1− σ2)

)∫ l

0

(
d2y

dx2

)2

dx, (8)

where l is the projected length of the beam, h is the thickness of the sheet and Y is it’s
Young’s modulus. The term B = Y h3/[12(1−σ2)] is often referred to the bending modulus
which measures how stiff the sheet is under bending deformations.

For large deformations, the corresponding bending energy (per unit width) is

U [y(s)] =
1

2
B

∫ L

0

(
dθ

ds

)2

ds, (9)

where L is the total length of the sheet, θ is the angle that the sheet makes with the
horizontal and s is the arclength along the neutral surface of the sheet. Eqn. (9) can be
read in english as: “The bending energy of a thin sheet per unit width equals one half of the
bending modulus times the curvature (dθ/ds) squared, integrated along its total length.”

Consider the following configuration. A thin sheet of thickness h, width b and total
length L is held vertically at s = 0 and is free to bend under gravity otherwise. The
boundary condition are that: 1) the sheet is vertical at the clamp θ(s = 0) = π/2 and 2)
there is no curvature at the free end (dθ/ds)(s = L) = 0. Assume that the sheet has a
linear density (mass per unit length) given by ρl = ρhb, where ρ is the volumetric density.
A schematic diagram of this configuration is given in Fig. 2a).
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Figure 2: a) Schematic diagram of a thin sheet clamped vertically and bending under
gravity. The sheet has dimensions: length L, thickness h and width/span b Note that yL is
the height of the free end of the sheet at s = L b) Plot of the dimensionless parameters ∆
and yL/L for equilibrium shapes θE that satisfy Eqn. (12). c) Table for some values of ∆
v.s. yL/L.

(i) Write the total energy functional, E [θ(s)], for this thin strip bent under gravity. Make
sure that your expression for the energy only depends on s, θ(s) and dθ/ds. (hint:
the fact that dy = sin θds i.e. y(s) =

∫ s
0 sin[θ(s)]ds will help).

(ii) Assuming small functional perturbations, δθ(s), on the equilibrium shape of the beam
θE(s), use calculus of variations (δE ∼ E [θE(s) + δθ(s)]− E [θE(s)]→ 0) to show that
the equilibrium shape satisfies the following differential equation

Bb
d2θE
ds2

= ρlg(L− s) cos θE (10)

(iii) Non-dimensionalize Eqn. (10) using L and show that

d2θE
ds̄2

= ∆(1− s̄) cos θE , (11)

where ∆ = (L/Lc)
3 and Lc is often called the elasto-gravity lengthscale. What is Lc

in terms of the physical quantities in the problem? What is its physical significance
of Lc?

(iv) Determine Lc from scaling arguments and ensure that you get the same result as in
(iii).

(v) Show that the differential equation in (11) is identical to

1

2

(
dθE
ds̄

)2

= ∆ [(1− s̄) sin θE + (ȳ − ȳL)] , (12)
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where ȳ = y/L, ȳL = yL/L and yL is the height of the free end with respect to the
horizontal (see the diagram in Fig. 2a). (hint: it will be easier to go backwards from
Eqn. (12) to Eqn. (11). Extra points if you do it the other way round.)

(vi) The differential equation that describes the equilibrium shapes of the bent sheet under
gravity – Eqn. (12) – is nonlinear and therefore one has to solve it numerically to find
θE(s) (that yields the equilibrium shapes). One of your friends has done this for you
(he is good with MATLAB!) and plotted ∆ as a function of yL/L in Fig. 2b) (some
points of this graph are given in the table of Fig. 2c). Develop a method to calculate
the bending modulus B of a piece of paper (hint: you may need only one of the points
in the table of Fig. 2c).

(viii) Using your technique, calculate the numerical value of B for the white paper sheet in
the printers of the Athena clusters (hint: you will need the paper density that you will
find written on the label packages of the paper rims. Most likely it will be 75g/m2)

Problem 4: A spinning cylinder
In this question, you will use a complex potential to analyze a spinning cylinder of radius a
in a uniform flow of speed U (and density ρ). (This is described in section 4.5 of Acheson,
although the notation is slightly different.)

(i) Verify that the complex potential

w(z) = U

(
z +

a2

z

)
+ i

Γ

2π
ln
z

a
(13)

correctly describes this situation: Check that (1) the boundary of the cylinder z = aeiθ

is a streamline in this flow, and (2) far away from the cylinder, the flow is the uniform
flow given by u = (U, 0).

(ii) Use Bernoulli’s theorem to calculate the pressure p at any location θ on the cylinder
and the total lift and drag. (Use p0 to refer to the pressure far away from the cylinder.)

(iii) Find a formula for the location z of the stagnation points and draw a sketch of the
cylinder, the stagnation points, and the streamlines for the three cases Γ/4πaU < 1,
Γ/4πaU = 1, and Γ/4πaU > 1. (Assume Γ > 0. For Γ < 0 the problem is identical
but with the cylinder moving downward instead.)

(iv) In real life, the flow around a cylinder doesn’t look like this. Forgetting the spinning
for now, at moderate Reynolds number, a cylinder “sheds” vortices. In this situa-
tion, what assumption(s) that we used in the first three parts of this question were
incorrect? If n is the frequency of vortex shedding (n vortices per second, say), what
dimensionless parameter(s) does this problem involve?
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