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Typical Reynolds numbers

Boulder Summer School 2011: Introduction to Low Reynolds Number Locomotion
(Notes from Peko Hosoi’s Lecture)

0.1 Reynolds Numbers in Biology

The Reynolds number is dimensionless group that characterizes the ratio of inertial to viscous
forces. It is defined as

Re =
⇥UL

µ
=

UL

�

where ⇥ is the density of the medium the organism is moving through; µ is the dynamic viscosity
of the medium; � is the kinematic viscosity; U is a characteristic velocity of the organism; and L
is a characteristic length scale. When we discuss swimming biological organisms, we are usually
referring to creatures that are moving through water (or through a fluid with material properties
very close to those of water). This means that the material properties µ and ⇥ are fixed1 and the
Reynolds number is roughly determined by the size of the organism.

In general, the characteristic size of the organism and the characteristic swimming velocity are
related. As a rule-of-thumb, the characteristic locomotion velocity, U , in biological organisms is
related to L by U � L/second e.g. for people L � 1 m and we move at U � 1 m/s; bugs are about
L � 1 mm, and they move at about U � 1 mm/s; for microorganisms L � 100 µm and U � 100
µm/s. Obviously this is a very very very very rough estimate and one does not have to think very
hard to come up with exceptions (as is always the case in biology!). However, it serves as a good
starting point to estimate the Reynolds numbers for various biological organisms as illustrated in
the sketch in Figure ??. Note that even for organisms as small as ants, the Reynolds number is
still on the order of 1 (which is not very low). In this lecture we will focus on Re ⇥ 1 which is
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Figure 1: Typical Reynolds numbers for various biological organisms. Reynolds numbers are esti-
mated using the length scales indicated, the “rule-of-thumb” in the text, and material properties
of water.

relevant for single-cell organisms and bacteria.
1For water, � � 10�2cm2/s and ⇥ � 1 g/cm3.
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Questions

• universal aspects of collective motion & self-
organization ?	


• biological functions ?	


• information transport ?	


• mathematical description? (microscopically, 
macroscopically, …)	


• effects of boundary conditions ?
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
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induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both

2 www.pnas.org — — Footline Author

Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both

2 www.pnas.org — — Footline Author
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since it is partially cancelled by the flow field of its “puller” image.
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flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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and applying the same measurement technique than before,
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
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existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Hydrodynamic scattering

dipole flow

vorticity
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r2

HD rotation
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⇥|�⇥|2⇤ � (⇤�)2 �
�

A�

r3

⇥2

� = ⇤� v ⇥ A

r3

yielding

ωi = 6A
(r̂.d̂′)
|r|3

ϵijkd̂′
j r̂k, [20]

Eij =
A
|r|3

ȷ

h

3(r̂.d̂′)2 − 1
i

δij + 3(r̂.d̂′)(d̂′
j r̂i + d̂′

ir̂j) −

h

15(r̂.d̂′)2 − 3
i

r̂ir̂j

ff

. [21]

Assuming the characteristic scattering time τ is sufficiently
small, which is realistic for 3D scattering due to the relatively
large swimming speeds of bacteria, we can approximate

⟨|∆θ(τ, r)|2⟩H ≃ τ 2
D

|ḋ(0)|2
E

H

= 9 (Γ + 1)2
A2τ 2

r6

D

(r̂.d̂′)2(d.d̂′)2
E

H
.

Assuming that r̂ is uniformly distributed on a sphere, and d̂
uniformly distributed on a circle in the tangential plane at
radius r, we obtain

⟨|∆θ(τ, r)|2⟩H =
3
5
(Γ + 1)2

A2τ 2

r6
. [22]

Equating this expression with rotational diffusion (see
Eq. [17]) yields the effective hydrodynamic horizon

rH ≃
»

3
20

(Γ + 1)2
A2τ
Dr

–1/6

. [23]

Note that, due to the τ 1/6- dependence, the result is rather
insensitive to the particular value used for τ and, similarly,
to changes in the other parameters. Adopting τ = a/V0

and inserting experimentally measured values (a, ℓ, F, V, Dr)
as given in the main text, we obtain rH ≃ 3.3 µm for E. coli.
Equation [23] can be viewed as an upper bound, as the dipo-
lar flow model overestimates u for r < 6 µm (see Fig. 1D in
the main text).

We may thus conclude that (near-field) hydrodynamic in-
teraction will be of relevance only if one (or more) of the
following conditions are satisfied: (i) bacterial suspensions
are sufficiently dense; (ii) self-organization and/or external
stimuli lead orientational and positional correlations between
nearby bacteria; (iii) rotational diffusion is strongly sup-
pressed (e.g., through an increase of viscosity). However,
our results strongly suggest that under natural conditions hy-
drodynamic long-range interactions are washed out by noise
and that orientational order in dense bacterial suspensions is
primarily caused by an interplay of self-motility and short-
range interactions (steric repulsion, lubrication effects, flagel-
lar bundling, etc.).

Hydrodynamic interactions with a wall
The previous section focussed on the competition between
noise and hydrodynamics in bacterial pair-scattering. We
shall now perform a similar analysis regarding the hydrody-
namic interaction between the bacterium with a wall. Specif-
ically, we are interested in the following two questions [6, 7]:

• Is long-range hydrodynamics for relevant for bacterial cell-
surface collisions?

• Can hydrodynamics trap a bacterium near a wall – and, if
so, for how long?

Dipole model.We denote the position of the bacterium by
x, its normalized orientation vector (the swimming direction)
by d̂, and the unit normal vector of the solid boundary by
n̂ (pointing into the fluid). Using Blake’s solution [8] for a
Stokeslet near an infinite planar no-slip surface one can derive
explicit expressions for the advective flow u′

i(x), the vorticity
ω′

i(x), and the symmetric rate-of-strain tensor E′
ij(x), which

act on a force dipole near a wall due to the interaction with
its hydrodynamic image [8, 6]:

u′
j(x) =

3A
8h2

ȷ

2(n̂.d̂)d̂j +
h

(n̂.d̂)2 − 1
i

n̂j

ff

, [24a]

ω′
k(x) = − 3A

4|h|3
(n̂.d̂)ϵknin̂id̂n, [24b]

E′
in(x) =

A
16|h|3

ȷ

h

5(n̂.d̂)2 − 1
i

δin − 6d̂id̂n −

12(n̂.d̂)(d̂in̂n + n̂id̂n) +

9
h

(n̂.d̂)2 + 1
i

n̂in̂n

ff

, [24c]

where h := |(x̂.n̂)| denotes the orthogonal distance to the
wall, assuming that the coordinate origin lies on the sur-
face, and ϵijk is the Levi-Civita tensor. Following Pedley and
Kessler [5], the deterministic equations of motion for a dipole
swimmer, that moves at constant swimming speed V0 in the
presence of the wall, are given by

q̇j = V0d̂j + u′
j(x), [25a]

˙̂dj =
1
2

ϵjkl ω′
k d̂l + Γ d̂i E′

in (δnj − d̂nd̂j). [25b]

As before, Γ := [(a/b)2 − 1]/[(a/b)2 + 1] is a geometric factor
for ellipsoidal particles with major axis length a and minor
axis length b. The equation [25b] for the orientation change
can be explicitly written as

˙̂
dj =

3A
8h3

(n̂.d̂)

ȷ

1 − Γ
2

h

3(n̂.d̂)2 − 1
i

ff

[(n̂.d̂)d̂j − n̂j ]. [26]

To study whether or not long-range hydrodynamics affects
the dynamics of a bacterium when it swims towards a wall,
we numerically integrated Eqs. [25b] using the experimen-
tally determined parameters for the bacterial flow field. The
results, which are summarized as Fig. 2 in the main text,
show that, due to the high self-swimming speeds of E. colie,
hydrodynamic long-range interactions are not likely to play
an important role in wall collisions - and therefore are not
relevant for the very early stages of biofilm formation.

Escape from the wall. A ‘pusher’ bacterium aligned in parallel
to a non-slip surface experiences a hydrodynamic attraction
towards the surface [6]. Orientational noise and self-swimming
may counteract this attraction. We wish to estimate the typ-
ical time scale it takes for bacterium to escape from the wall,
using the dipole model defined by Eqs. [24]-[26].

Let us assume that an inelastic collision has led to align-
ment of the swimmer parallel to the wall. According to
Eq. [24a], the hydrodynamic attraction for a dipole swimmer
pointing parallel to the surface is given by

u′
i(x) = − 3A

8h2
n̂i. [27]

Let θ denote the angle between swimmer and surface (i.e.,
θ = 0 means parallel to surface). A bacterium can escape
from the wall by virtue of its self-motility if the self-swimming
velocity in the direction perpendicular to the wall exceeds the
advective attraction [27], yielding the ‘escape inequality’

V0 sin θ
!

≥ 3A
8h2

. [28]
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RESULTS AND DISCUSSION

Our swimmers were green fluorescent protein (GFP)-ex-
pressing motile (E. coli) bacteria (strain RP 437/pGFP!2).
They were initially uniformly spread in both compartments
filled with LB medium. Individual bacteria were tracked as
they approached and left the internal walls of the chamber, far
removed from the funnels. Figure 1C shows that for the 70
tracks examined, the impinging distribution (angles "out) was
dramatically different from the distribution of the angles of
incidence ("in). The latter was effectively a uniform random
distribution over the 0°-to-80° range (measured with respect to
the surface normal; we discarded all tracks with "in values of
#80° for reasons of ambiguity). The outgoing angles were
strongly confined to "out values of #80°. This indicates that the
bacteria practically follow walls and lose information about
their initial angle of attack. They keep this direction during an
entire straight run, even if the wall ends. Thus, near the walls,
the motion of bacteria is not a random walk but instead cor-
relates with the constraining geometry. We indeed observed a
concentration of swimming bacteria, as shown in Fig. 2, sup-
porting the mechanism depicted in Fig. 1A. After a uniform
initial distribution (Fig. 2A), the E. coli cells became increas-
ingly concentrated with time on the restricted exit side of the
funnel array (Fig. 2B). In about an hour, there were three
times more cells on the right side than on the left. As a control,
we filled the chip with an aqueous solution of 100-nm-diameter
fluorescent polystyrene beads, which remained uniformly dis-

tributed during a 24-h period, and thus this population imbal-
ance occurs only if the objects actively swim, as opposed to
spreading due to diffusion (data not shown). Since bacteria
communicate with each other (1) and (moreover) move to-
wards one another (9, 10), it is possible that such quorum-
chemotaxis processes could strongly influence the results
shown in Fig. 2. We did control experiments to show that in
this case the concentration was due to swimming motility and
was not a result of bacterial chemotaxis (data not shown). A
motile strain with the chemosensing network knocked out (RP
437 cheAW/pGFPu2) showed the same concentration increase
with time, thus showing that the process is not due to chemo-
taxis. A flat wall with evenly spaced openings but no funnels
showed no development of asymmetry in cell density, demon-
strating the necessity for broken symmetry of the funnel wall
(Fig. 3).

We used the average fluorescence intensity in the two com-
partments as a measure of the cell density. Figure 2C shows
how the density ratio [A(t) $ %R/%L] changes with time (with %R

and %L being the densities on the right and left, respectively).
A simple model (see Appendix) with two differential equa-

tions (equations A1) describing the changes in the density of
cells due to growth and transfer between the compartments
can be used to characterize the kinetics of the system. The two
parameters are the fractions of the populations on the two
sides that cross the funnel wall in unit time (cLR for crossing
left to right and cRL for crossing right to left). The solution of

FIG. 1. Microstructures with funnel walls. (A) Schematic drawing of the interaction of bacteria with the funnel opening. Bacteria on the left
side may (trace 1) or may not (trace 2) get through the gap, depending on the angle of attack. On the right, all bacteria colliding with the wall are
diverted away from the gap (traces 3 and 4). (B) Scanning electron micrograph of the device. (C) Distribution of incoming and outgoing angles
for bacteria colliding with a wall. Data were taken for 70 events.

FIG. 2. Distribution of bacteria in a structure with a funnel wall. (A) Uniform distribution after injection. (B) Steady-state distribution after
80 min. (C) Ratios of densities in the left and right compartments versus time. The blue circles are experimental data, and the dashed red line is
a fit of equation A2 from the Appendix.
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incidence ("in). The latter was effectively a uniform random
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strongly confined to "out values of #80°. This indicates that the
bacteria practically follow walls and lose information about
their initial angle of attack. They keep this direction during an
entire straight run, even if the wall ends. Thus, near the walls,
the motion of bacteria is not a random walk but instead cor-
relates with the constraining geometry. We indeed observed a
concentration of swimming bacteria, as shown in Fig. 2, sup-
porting the mechanism depicted in Fig. 1A. After a uniform
initial distribution (Fig. 2A), the E. coli cells became increas-
ingly concentrated with time on the restricted exit side of the
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with time, thus showing that the process is not due to chemo-
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(Fig. 3).

We used the average fluorescence intensity in the two com-
partments as a measure of the cell density. Figure 2C shows
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sides that cross the funnel wall in unit time (cLR for crossing
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filled with LB medium. Individual bacteria were tracked as
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removed from the funnels. Figure 1C shows that for the 70
tracks examined, the impinging distribution (angles "out) was
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with time, thus showing that the process is not due to chemo-
taxis. A flat wall with evenly spaced openings but no funnels
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Chlamydomonas

!
size ~ 20µm 	


speed ~ 100µm/s	

beat frequency ~30 Hz

flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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FIG. 4 (color online). Time- and azimuthally-averaged flow field of C. reinhardtii. (a) Streamlines (red [medium gray]) computed
from velocity vectors (blue [dark gray]). The spiraling near elliptic points is an artifact of the direct integration of a noisy experimental
velocity field. A color scheme indicates flow speed magnitudes. (b) Streamlines of the azimuthally-averaged flow of the three-Stokeslet
model: flagellar thrust is distributed among two Stokeslets placed (not fitted) at the approximate flagellar position (lateral green
arrows), whose sum balances drag on the cell body (central red arrow). (c) Decay of kuðrÞk for the three directions indicated by
separate colors in the inset, compared to results from the three-Stokeslet model (dashed lines).
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Control of algal locomotion



Sperm near surfaces 

boundary is, in fact, mainly determined by the contact interactions
between their flagella and the surface, whereas hydrodynamic
effects only play a secondary role. Building on these insights, we
derive a simple criterion to predict an efficient ratchet design for
Chlamydomonas and confirm its validity experimentally, thereby

demonstrating that robust rectification of algal locomotion is pos-
sible. More generally, our results show that the interactions be-
tween swimming microorganisms and surfaces are more complex
than previously recognized, suggesting the need for a thorough
revision of currently accepted paradigms. Because mechano-elastic

A

B

C

Fig. 1. Surface scattering of bull spermatozoa is governed by ciliary contact interactions, as evident from the scattering sequences of individual cells at two
temperature values: (A) T = 10 °C and (B) T = 29 °C. The background has been subtracted from the micrographs to enhance the visibility of the cilia. The cyan-
colored line indicates the corner-shaped boundary of themicrofluidic channels (seeMovies S1 and S2 for raw imaging data). The horizontal dotted line in the last
image inB defines θ = 0. (Scale bars: 20 μm.) (C) Theprobability distributions of scattering angles θ from the corner peak at negative angles, due to the fact that the
beat amplitude of the cilia exceeds the size of the cell body (sample size: n = 116 for T = 10 °C and n = 115 for T = 29 °C). At higher temperatures, the cilia exhibit
a larger oscillation amplitude and beat frequency (29), resulting in a larger swimming speed and shifting the typical scattering angles to larger absolute values.

Fig. 2. Surface scattering of Chlamydomonas is governed by ciliary contact interactions. (A) Scattering sequence for WT Chlamydomonas CC-125 (Movie S3).
(Upper) Originalmicrographs. (Lower) Cilia manually marked red. Results for the long-flagellamutant lf3-2 and the short-flagellamutant shf1 look qualitatively
similar (Movies S4 and S5). (Scale bar: 20 μm.) (B) Themutant pushermbo1 remains trapped for several seconds (Movie S6). (Scale bar: 20 μm.) (C) The conditional
probability distributions P(θoutjθin) indicate that, for all four strains, memory of the incidence angle is lost during the collision process, due to multiple flagellar
contact with the surface. (D) The cumulative scattering distribution P(θout) shows how cilia length and swimming mechanisms determine the effective surface-
scattering law. (E) Schematic illustration of the flagella-induced scattering and trapping mechanisms.

1188 | www.pnas.org/cgi/doi/10.1073/pnas.1210548110 Kantsler et al.
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Surface + shear flow

Figure 1: Sperm swim on upwards spirals against shear flow. (A) Background-subtracted mi-
crograph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPas
shear rate �̇ =2.1 s�1), channel boundary false-colored with black, see Movie XX for raw
data. (B) Schematic representation not drawn to scale. The conical envelope of the flagel-
lar beat holds the sperm close to the surface (11). The vertical flow gradient exerts a torque
that turns the sperm against the flow, but is counteracted by a torque from the chirality of
the flagellar wave, resulting in a mean diagonal upstream motion. (C) Tracks of bull sperm
near a flat channel surface. (D) Upstream and transverse mean velocities hv

y,x

i versus shear
flow speed u20 at 20µm from the surface for different viscosities. All velocities are normal-
ized by the sample mean speed v0µ at �̇ = 0. For human sperm, in order of increasing vis-
cosity v0µ = 53.5 ± 3.0, 46.8 ± 3.7, 36.8 ± 3.3, 29.7 ± 3.9µms�1, and for bull sperm
v0µ = 70.4 ± 11.8, 45.6 ± 4.7, 32.4 ± 4.8, 29.6 ± 4.1µms�1, where uncertainties are stan-
dard deviations of mean values from different experiments. Each data point is an average over
> 1000 sperms (Supporting Material). (E) Histograms for selected points in (D).
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Viscosity & shear dependence

Figure 1: Sperm swim on upstream spirals against shear flow. (A) Background-subtracted
micrograph showing the track of a bull sperm in a cylindrical channel (viscosity µ = 3mPas
shear rate �̇ =2.1 s�1), channel boundary false-colored with black, see Movie S1 for raw data.
(B) Schematic representation not drawn to scale. The conical envelope of the flagellar beat
holds the sperm close to the surface (11). The vertical flow gradient exerts a torque that turns the
sperm against the flow, but is counteracted by a torque from the chirality of the flagellar wave,
resulting in a mean diagonal upstream motion. (C) Tracks of bull sperm near a flat channel
surface. (D) Upstream and transverse mean velocities hv

y,x

i versus shear flow speed u20 at
20µm from the surface for different viscosities. All velocities are normalized by the sample
mean speed v0µ at �̇ = 0. For human sperm, in order of increasing viscosity v0µ = 53.5 ±
3.0, 46.8± 3.7, 36.8± 3.3, 29.7± 3.9µms�1, and for bull sperm v0µ = 70.4± 11.8, 45.6±
4.7, 32.4± 4.8, 29.6± 4.1µms�1, where uncertainties are standard deviations of mean values
from different experiments. Each data point is an average over > 1000 sperms (Supporting
Material). (E) Histograms for selected points in (D).
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7

where ⌘ > 0 is a geometric prefactor with dimensions of length. Neglecting the translational chirality-e↵ects in Eq. (36)
is indeed a reasonable approximation since, for su�ciently fast sperm cells, the beat chirality acts predominantly
through the rotation dynamics of N , which becomes amplified by multiplication with V in Eq. (36).

To obtain an equation of motion for Ṅ , we first remark that due to conservation of |N |2 = 1, the dynamics of the

components Ṅ
x

and Ṅ

y

are coupled by

0 = ˙|N |2 = 2(N
x

Ṅ

x

+N

y

Ṅ

y

). (37)

Thus, only one of the three zero-torque conditions (34) is needed to determine both Ṅ

x

and Ṅ

y

. For sperm swimming
next to a solid surface, only rotations parallel to the surface are possible and, therefore, the relevant condition is
⌧3 = 0. Whilst a passive helix would rotate around its center of mass, the rotation axis is shifted towards the tip
position R for real sperm cells due to the presence of the cell head, which has been omitted thus far in our discussion
of the rigid-spiral model. To account at least partially for the influence of the head on the rotation dynamics, we
approximate X⇤ ' (R, 0) in Eq. (34) and focus on the rotation dominated regime, U ⌧ ṘN · Ĉ. Adopting these
simplifications and averaging over �, one finds for small ✏⌧ 1 from the vanishing ⌧3-component of Eq. (34) the leading
order result

 ̇ = ✏ �̇� sin +
�

4
✏

2 � 1



�̇� S cos . (38)

Recalling that N = (N
x

, N

y

) = (� sin , cos ), this can be rewritten as

Ṅ = ��̇✏
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N
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� 1

◆

+
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4
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2 � 1



�̇� S

✓

N

2
x

� 1
N

x

N

y

◆

. (39)

The first term represents alignment against the flow due to the conical shape of the flagellar envelope, in agreement
with Eq. (14). The second term describes chirality-induced deviations from exact anti-alignment, leading to a non-
vanishing transversal velocity component, as observed in the experiments.

Clearly, the model of a rigid conical helix, as discussed here, is a relatively crude approximation to the full swimming
dynamics of a sperm cell, for it neglects dynamical aspects of the flagellar beat (exact wave form, etc.) as well as
hydrodynamic e↵ects due to translation and rotation of the cell’s head. Notwithstanding, it is plausible to expect
that, on time scales larger than the typical beat period, Eqs. (36) and (39) provide a useful coarse-grained description
of sperm swimming near a surface, as the model captures the main symmetries of the problem.

Minimal model

We now summarise the minimal quasi-2D model implemented in our simulations. Assuming as before that the
shear flow is along the y-axis (Fig. 1B, Main Text), Eqs. (36) and (39) imply the following minimal 2D model for the
quasi-2D motion of a sperm with position R(t) = (X(t), Y (t)) and orientation N(t) = (N

x

(t), N
y

(t)) in the vicinity
of the surface

Ṙ = VN + �Ue
y

, (40)

Ṅ = ��̇↵

✓

N

x

N

y

N

2
y

� 1

◆

+ ��̇��

✓

N

2
x

� 1
N

x

N

y

◆

+ (2D)1/2(I �NN) · ⇠(t). (41)

Here, V > 0 is the self-swimming speed, � = ±1 defines the flow direction, �̇ > 0 is the shear rate, U > 0 the
mean flow speed experienced by the cell, and � 2 {0,±1} the beat chirality. The dimensionless geometry parameters
↵ > 0,� > 0 encode details of the shape of the flagellar beat, and the coe�cient D determines the strength of
the two-dimensional Gaussian white noise ⇠, interpreted here in the Stratonovich-sense and included to account for
variability in sperm swimming.

For D = 0, the fixed points of Eq. (41) read

N+ =

 

��

p

↵

2 + �

2
�

2
,

↵

p

↵

2 + �

2
�

2

!

, N� = �N+
. (42)

The Jacobian

J(N) = �̇�

✓

↵N

y

+ 2��N
x

↵N

x

�N

y

� 2↵N
y

+ ��N

x

◆

(43)

Resistive force theory

6

Assuming that the tip R(t) of the helix performs a quasi-2D motion along the surface, R(t) = X(t)e
x

+ Y (t)e
y

,

we are interested in obtaining simplified e↵ective equations for the mean drag velocity Ṙ = U(N) and the change

in the orientation Ṅ(t) due to the action of the flow gradient on the rigid helical curve C. As we shall discuss next,
such equations can be derived from resistive force theory (RFT).

From Eq. (26), the velocity of some point s 2 [0, S] on the helix can be decomposed as1

Ċ(s) = Ṙ+ ṘN · Ĉ
✏

= U + ṘN · Ĉ
✏

. (30)

Given the shear flow profile u, RFT assumes that the force line-density (force per unit length) can be split as

f(s) = ⇣||

nh

u(C(s))� Ċ(s)
i

· t(s)
o

t(s) +

⇣?

nh

u(C(s))� Ċ(s)
i

· [I � t(s)t(s)]
o

(31)

where ⇣|| and ⇣? are tangential and perpendicular drag coe�cients. The drag ratio

 =
⇣?
⇣||

, (32)

which equals 2 for rigid rods, takes values  ' 1.4 � 1.7 for realistic flagella. Combining the RFT ansatz (31) with
the zero-force and zero-torque conditions of the over-damped Stokes-regime
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j

]f
k

(s), (34)

withX⇤ denoting the center of rotation, yields a 6⇥6-linear system which could be solved to obtain exact RFT- results
for U and Ṅ . However, the resulting expressions are very complicated and do not o↵er much insight. Fortunately, it
is possible to obtain simple analytical formulas for U and Ṅ , that capture the essential parts of their dynamics, by
focussing on the two limit cases U � ṘN · Ĉ (translation-dominated regime) and U ⌧ ṘN Ĉ (rotation-dominated
regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated

regime U � ṘN · Ĉ, the zero-force conditions (34) in the (x, y)-directions, F1 = 0 and F2 = 0, can be solved for
U = (U

x

, U

y

). After averaging over � with a uniform angular distribution, we find for ✏ ⌧ 1 and  ' 1 to leading
order2

U ' 1
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, (35)

where ⇤ ' S� is the approximate length of the flagellum. The first term is the mean drag on the geometric center of
the conical helix, and the second is an orientation-dependent drag contribution due to chirality �. For passive chiral
objects, such as dead bacterial cells, both terms can be important, although the first term is likely more relevant for
self-swimming sperm cells. For completeness, we mention that the leading-order transverse-drag term (not shown)
appears at next order in (� 1) and is found to be proportional to ���(� 1)2✏2S2

�̇�.
Guided by Eq. (35), we simulate the position dynamics of sperm cells that swim at self-swimming speed V in the

direction of their 2D orientation N by implementing a minimal dynamics of the form

Ṙ = VN +U = VN + ��̇✏⌘

✓

0
1

◆

, (36)

1
For quasi-2D motions along the surface, the contact angle ✓

✏

remains constant and, hence,

˙R
x

= 0.

2
The first term in Eq. (35) could also have been obtained by simply computing the mean drag velocity

u =
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regime).

To estimate U , note that steric interactions between flagellum and channel wall compensate drag forces in vertical
directions, so that only the (x, y)-components of the velocity are non-zero. Considering the translation-dominated
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2D minimal model

Figure 3: Model simulations reproduce main experimental observations. (A) Upstream and
transverse velocity for different values of the variability (effective noise) parameter D in units
rad2/s and dimensionless shape factors (↵, �). (B) Time response of a chiral swimmer with
� = +1 (“Human”) and a non-chiral swimmer with � = 0 (“Bull”) to a reversal of the flow
direction at time t = 0. Blue dashed line shows fluid flow u

y

at 5µm from the boundary.
Simulation parameters (N = 1000 trajectories, A = 10µm, ` = 60µm, V = 50µm/s) were
chosen to match approximately those for viscosity 1 mPas in Fig. 2C.
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Broken reflection-symmetry at surfaces

l i gh t absorp t i on proper t i es o f the g l ass. By us i ng
a ser i es o f f i l t ers (Ze i ss : UG5 , BG3 , BG12) , the
ac t i ve wave l eng th i n l i gh t - i nduced s topp i ng has
been de t erm i ned to l i e i n the range 400-500 r i m ,
and the e f f ec t can be a l mos t e l i m i na t ed by use o f
a green f i l t er (Ze i ss , VG9) . The dose response
curve was measured by es t i ma t i ng the percen t age
o f sperm tha t s topped upon i n i t i a l movemen t i n to
the l i gh t beam a t d i f f eren t i n t ens i t i es o f i l l um i na -
t i on (F i g . 3) . As men t i oned , i t was found tha t w i th
the fu l l i n t ens i ty o f our i l l um i na tor , c l ose to 100%
o f the sperm i mmed i a t e l y s topped i n the qu i escen t
wave form (F i g . 4) . A s t r i k i ng aspec t o f the resu l t s
shown i n F i g . 3 i s tha t the percen t age o f sperm
s topped shows a gradua l decrease to -0 . 3% as the
l i gh t i n t ens i ty decreases over a f ac tor o f - 10 " . The
l ow percen t age o f sperm tha t con t i nue to become
i n t erm i t t en t l y qu i escen t a t a re l a t i ve l i gh t i n t ens i ty
o f 10 - ° , or w i th the green f i l t er i nser t ed , may
represen t a basa l , spon t aneous l eve l because under
these cond i t i ons the sperm usua l l y do no t s top
i mmed i a t e l y upon movemen t i n to the l i gh t beam .

4

F IGURE 1

 

Dark - f i e l d m i crographs o f l i ve sperm o f Tr i pneus t es suspended i n na tura l seawa t er con t a i n i ng
0. 2 mM EDTA and ad j us t ed to pH 8 . 3 ( re f er red to as s t andard seawa t er ) . The m i crograph , wh i ch was
t aken a f ew seconds a f t er mov i ng th i s f i e l d i n to the l i gh t beam , shows some sperm i n l i gh t - i nduced
qu i escence , and some tha t are sw i mm i ng . Among those sw i mm i ng , mos t show l i t t l e asymme t ry as i nd i ca t ed
by the near s t ra i gh tness o f the i r pa ths . Exposure : 1 s. X 380 .

THE JOURNAL OF CELL B IOLOGY " VOLUME 84 , 1980

However , we canno t be cer t a i n on th i s po i n t be -
cause i t i s d i f f i cu l t to make an accura t e es t i ma t e
o f the percen t age o f qu i escen t sperm when th i s i s
<1% . Excep t a t the h i ghes t i n t ens i t i es , the sperm
appear to adap t to the l i gh t , so tha t the percen t age
o f qu i escen t sperm i s h i ghes t when they are i n i -
t i a l l y moved i n to the beam and decreases to a
cons t an t l ower va l ue a f t er they have been i n the
beam - 15 s . Exposure o f the sperm to the max i -
mum l i gh t i n t ens i ty for severa l m i nu t es rendered
them i r revers i b l y nonmo t i l e , presumab l y by rad i a -
t i on damage .

The br i e f per i od o f re l a t i ve l y s t ra i gh t sw i mm i ng
tha t usua l l y fo l l ows qu i escence i n t er f eres w i th the
measuremen t o f the s t eady-s t a t e asymme t ry o f the
f l age l l ar bend i ng waves o f these sperm as i nd i ca t ed
by the i r turn i ng ra t e . However , w i th qu i escence
preven t ed by suspens i on o f the sperm i n ar t i f i c i a l
seawa t er con t a i n i ng on l y 2 mM Ca " , the average
turn i ng ra t e i n a t yp i ca l prepara t i on was de t er -
m i ned to be 0. 18 rad / bea t ( range for 20 sperm was
0 . 12-0 . 26 rad / bea t ) . I t i s be l i eved tha t th i s i s the
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F IGURE 5

 

Dark - f i e l d m i crographs o f . (A) sperm tha t have been t rea t ed w i th i onophore A23187 , then
d i l u t ed t en fo l d i n to ar t i f i c i a l seawa t er con t a i n i ng 0 . 2 mM EGTA and no d i va l en t ca t i ons . The sperm are
sw i mm i ng i n c i rc l es a t the bo t tom sur f ace o f the Pe t r i d i sh . (B) the same prepara t i on o f sperm a f t er
add i t i on o f -0 . 1 mM f ree Ca " . Near l y a l l the sperm i n the prepara t i on are qu i escen t . B l ur red c i rc l es are
caused by st a t i onary sperm ou t o f the p l ane o f focus . Exposure : 1 s . x 380 .
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2. (Pseudo) scalar order-parameter theory

The minimal model considered in this section belongs to the class of generalized

Swift-Hohenberg theories [29, 35]. Our motivation for prepending a brief discussion

of this well-known model here is two-fold: It is helpful to recall some of its basic

properties before considering the generalization to vectorial order-parameters. This

model is also useful for illustrating how microscopic symmetry-breaking mechanisms [40]

can be incorporated into macroscopic descriptions of experimentally relevant microbial

systems [28], as discussed in Section 2.4 below.

2.1. Model equations

We consider the simplest isotropic fourth-order model for a non-conserved scalar or

pseudo-scalar order-parameter ⇤(t,x), given by

⇧t⇤ = F (⇤) + �0�⇤ � �2�
2⇤, (1)

where ⇧t = ⇧/⇧t denotes the time derivative, and ⇤ = ⌅2 is the d-dimensional

Laplacian. The force F is derived from a Landau-potental U(⇤)

F = �⇧U

⇧⇤
, U(⇤) =

a

2
⇤2 +

b

3
⇤3 +

c

4
⇤4, (2)

and the derivative terms on the rhs. of Equation (1) can also be obtained by variational

methods from a suitably defined energy functional. In the context of active suspensions,

⇤ could, for example, quantify local energy fluctuations, local alignment, phase

di⇤erences, or vorticity. We will assume throughout that the system is confined to

a finite spatial domain ⇥ ⇥ Rd of volume

|⇥| =

⇤

�

ddx, (3)

adopting with periodic boundary conditions in simulations.

For completeness, one should note that in the case of a conserved order-parameter

field ⌅ the field equations would either have to take the current-form ⇧t⌅ = �⌅ · J(⌅)

or, alternatively, one could implement conservation laws globally by means of Lagrange

multipliers [36]. For example, for a dynamics similar to that of Equation (1) and a

simple global ‘mass’ constraint

M =

⇤

�

ddx ⌅ = const,

the Lagrange-multiplier approach yields the non-local equations of motions

⇧t⌅ = F (⌅) + �0�⌅� �2�
2⌅� ⇥1,

⇥1 =
1

|⇥|

⇤

�

ddx
�
F (⌅) + �0�⌅� �2�

2⌅
⇥
.

In the remainder of this section, however, we shall focus on the local dynamics defined

by Equations (1) and (2), since this well-known example will be a useful reference point

for the discussion of the vector model in Section 3.
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Figure 1. Numerical illustration of structural transitions in the order-parameter
⇤ for (a-c) mono-stable and (d-f) bi-stable potentials. (a,d) Symbols show the
results of simulations for the first two �0-induced transitions, and lines are linear
interpolations. Quasi-stationary space-time averages ⇤ · ⌅ were computed over 3000
successive simulation time-steps (�t = 0.1) after an initial relaxation period of 200
characteristic time units tu = L4/�2. (b,c) Snapshots of the order-parameter field ⇤
at t = 500, scaled by the maximum value ⇤m, for a mono-stable potential U(⇤) and
homogeneous random initial conditions. After the first transition two stripes appear,
and the number of stripes increases with the number of transitions. (e,f) Snapshots
of the order-parameter at t = 500 for a bi-stable potential. For �0 ⇥ �(2⇥)2�2/L2,
increasingly more complex quasi-stationary structures arise; see References [29, 47] for
similar patterns in excited granular media and chemical reaction systems.
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2.4. Symmetry breaking

With regard to microbial suspensions, the minimal model (1) is useful for illustrating

how microscopic symmetry-breaking mechanisms that a�ect the motion of individual

organisms or cells [40, 48, 49, 50] can be implemented into macroscopic field equations.

To demonstrate this, we interpret ⇥ as a 2D pseudo-scalar vorticity field⌃

⇥ ⇥ ⇤ = ⌥⇧ v = �ij⌅ivj, (7)

which is assumed to describe the flow dynamics v of a dense microbial suspension

confined to a thin quasi-2D layer of fluid. If the confinement mechanism is top-bottom

symmetric, as for example in a thin free-standing bacterial film [10], then one would

expect that vortices of either handedness are equally likely. In this case, Equation (1)

must be invariant under ⇤ ⇤ �⇤, implying that U(⇤) = U(�⇤) and, therefore, b = 0

in Equation (2). Intuitively, the transformation ⇤ ⇤ �⇤ corresponds to a reflection of

the observer position at the midplane of the film (watching the 2D layer from above vs.

watching it from below).

The situation can be rather di�erent, however, if we consider the dynamics of

microorganisms close to a liquid-solid interface, such as the motion of bacteria or sperms

cells in the vicinity of a glass slide (Figure 2). In this case, it is known that the

trajectory of a swimming cell can exhibit a preferred handedness [40, 48, 49, 50]. For

example, the bacteria Escherichia coli [40] and Caulobacter [48] have been observed

⌃ �ij denotes the Cartesian components of the Levi-Civita tensor, ⌅i = ⌅/⌅xi for i = 1, 2, and we use
a summation convention for equal indices throughout.

Figure 2. E�ect of symmetry breaking. (a) Stationary hexagonal lattice of the pseudo-
scalar vorticity order-parameter ⇥ = ⇤, scaled by the maximum value ⇥m = ⇤m,
as obtained in simulations of Equations (1) and (2) with b > 0, corresponding to a
broken reflection symmetry ⇤ ⌅⇤ �⇤. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus
droebachiensis) near a glass surface; from [28] adapted and reprinted with permission
from AAAS. At high densities, the spermatozoa assemble into vortices that rotate in
clockwise direction (inset) when viewed from the bulk fluid.
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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FIG. 1: (color online) Flow fields from experiments and sim-
ulations [? ]. (a) Very dense homogeneous suspension of
B. subtilis overlaid with the PIV flow field showing collective
bacterial dynamics. Longest arrows correspond to velocity of
30 µm/s. (b) Streamlines and normalized vorticity field deter-
mined from PIV data in (a). (c) Turbulent ‘Lagrangian’ flow
of fluorescent tracer particles (false-color) in the same sus-
pension, obtained by integrating emission signals over 1.5 s.
(d) Partial snapshot of a 2D slice from a 3D simulation of
the continuum model (parameters in Table ??). Scale bars
70 µm.

sequent pairs. During the ⇤10 min imaging period for
each device, the motility of B. subtilis cells decreased
markedly due to oxygen depletion [? ]. The experimental
setup yields 2D projected velocities of 3D suspension mo-
tion (Fig. ??). Data were analyzed under the assumption
that the flow structures are isotropic, as verified by test
measurements at di⌅erent distances from the chamber
bottom. Commercial particle tracking velocimetry (PIV)
software (Dantec Flow Manager) was used to determine
the bacterial flow velocity (vx, vy) from bright-field im-
ages (Fig. ??a,b), corrected for systematic pixel-locking
errors [? ]. Data shown in Figs. ?? and ?? are based on
7 movie segments (40 fps, each 50 s long) corresponding
to 7 di⌅erent activity levels.

Global bacterial flows were quantified by the in-plane
kinetic energy Exy(t) = ⌃(v2

x + v2
y)/2⌥ and in-plane en-

strophy ⇤z(t) = ⌃⇥2
z/2⌥, where ⇥z = ⇤xvy � ⇤yvx is the

vertical component of vorticity and ⌃ · ⌥ is a spatial aver-
age. While Exy and ⇤z fluctuate, their time averages
(Exy,⇤z) are approximately constant during the 50 s
time interval used in the data analysis (Fig. ??b,c). Over
two orders of magnitude in energy (Fig. ??d) we observe
the linear scaling ⇤z = Exy/⇥2, with ⇥ ⌅ 24 µm being
roughly one half of the typical vortex radius.

Probability distribution functions (PDFs) of the in-
plane bacterial velocity are approximately Gaussian,
with a slight broadening due to collective swim-
ming (Fig. ??a). The negative values of the equal-time
spatial velocity correlation function (VCF; Fig. ??a) in-
dicate the existence of vortices [? ] (Fig. ??). The VCF
is remarkably robust with respect to changes in the bac-
terial activity; in particular, the typical vortex radius
Rv ⇤ 40 µm, estimated from the first zero of the VCF,
depends only weakly on the kinetic energy. This result is
consistent with recent findings by Sokolov and Aranson [?
] for free-standing films. The vortex size in 3D is roughly
five times larger than for quasi-2D turbulence in thin mi-
crofluidic chambers [? ], where bacterial swimming and
hydrodynamic interactions are suppressed by the nearby
no-slip boundaries [? ? ]. Unlike the spatial VCF,
the two-time velocity auto-correlation function (VACF)
varies systematically with energy or vorticity (Fig. ??b),
but they collapse when plotted as functions of the dimen-
sionless lag-parameter �⇤1/2

z (inset of Fig. ??b), implying
that the higher the activity the shorter the memory of the
bacterial fluid. Generally, the statistics of 3D bacterial
turbulence di⌅er strongly from conventional 3D Navier-
Stokes turbulence [? ? ], as bacteria inject energy on
the smallest scales, inducing an ‘upward’ energy cascade
towards larger length scales.

We infer the flow of the solvent medium from particle
tracking velocimetry (PTV) analysis of the fluorescence
images, which only show the tracer particles, assuming
that they are passively advected. Data shown in Figs. ??
and ?? are based on 7 movies (40 fps, length 100 s) at
di⌅erent activities. Trajectories of individual tracer par-
ticles were found with a custom algorithm which, depend-
ing on seeding density and tracer dynamics, was able to
identify up to 104 in-plane tracks, the longest typically
lasting 5� 8 s. The e⌅ective sample size was insu⇧cient
to determine reliably the tracer VACFs, but did yield
global flow properties, velocity histograms and equal-
time VCFs. The velocity PDFs, calculated directly from
individual tracer velocities, are approximately Gaussian
with a peak at small velocities from tracer accumulation
near the vortex centers (Fig. ??a).

Estimates from PTV for the medium VCF and enstro-
phy were obtained by interpolating tracer velocities on
a 450⇥ 450 pix subwindow in the center of the imaging
plane using MATLAB’s Delaunay triangulation with a
lattice spacing � = 90

�
pix/Nf , where Nf is the mean

number of tracers detected per frame. The accuracy of
this reconstruction procedure is controlled by the tracer
concentration, which was kept low to limit e⌅ects on the
bacteria motion and to avoid tracking ambiguities (typi-
cally Nf ⇧ [47, 144] for data shown in Figs. ?? and ??).
As a result, the uncertainties for the PTV data are con-
siderably larger than for PIV data (see Fig. ??d). The
interpolated tracer flow fields were used to estimate the
kinetic energy Exy, enstrophy ⇤z, and spatial correlation
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I. GOALS

We obtain analytical results for the e↵ective shear vis-
cosity (or, more precisely, the shear force) in the mean
field regime for the model defined in Eq. (1) below. For
some parameter range, the shear force diverges as a func-
tion of the distance between the wires. Such singular be-
haviour may indicate a phase transition corresponding to
the creation of a vortex state.

II. HYDRODYNAMIC EQUATIONS

Flow equations

0 = r · v (1a)

@tv + (v · r)v = �rp+ r · � (1b)

with stress tensor

� = [�0 � �2(r2) + �4(r2)2](r>
v + rv

>) (1c)

In component notation

0 = @ivi (2a)

@tvj + vk@kvj = �@jp+ @k�kj (2b)

with

�kj = [�0 � �2@nn + �4@nn@mm](@kvj + @jvk) (2c)

where @kk = @k@k. Take divergence of (2b) to obtain
Poisson equation

(@jvk)(@kvj) = �@jjp (3)

Force on some surface region S

Fi =

Z

S

�ijdSj (4)

Goal: look for statistical properties of solutions, and de-
termine mean force.

III. 2D CASE

A. Boundary conditions

Let x = (x1, x2) = (x, y). Three fields (p,v) =
(p, v1, v2), three equations. First-order in time t requires

3 initial conditions. These will not be relevant since we
are interested in stationary flow properties. Equation (3)
is of 2nd order in the two spatial coordinates (x, y), thus
requiring 2⇥2 BCs for p. Below, we shall always consider
periodic boundary conditions in x-direction and constant
pressure P at the solid boundaries y = ±H/2,

p(t, x, y) ⌘ p(t, x+ L, y), (5a)

p(t, x,±H/2) ⌘ P. (5b)

Equation (2b) for the velocity field v = (vx, vy) is of
6th order in two spatial coordinates (x, y) and therefore
requires 2⇥ 2⇥ 6 BCs in total. Consistent with (5a), we
adopt periodic BCs in x-direction (which leaves us with
2⇥6 BCs) and no-slip boundary conditions at y = ±H/2
(fixes 2 BCs per field component),

v(t, x, y) ⌘ v(t, x+ L, y), (6a)

v(t, x,±H/2) = (±V, 0). (6b)

That is, we still need to specify 2 ⇥ 4 more BCs for v =
(vx, vy) at y = ±H/2. We will consider two classes.
S-type: First and second-order derivatives of vanish.
W-type: Second and fourth-order derivatives vanish.
Here, S and W stand for ‘strong’ and ‘weak’, respec-

tively.

B. Force
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FIG. 1 LEFT: Shear force on the upper wire F+
x

depends on the distance between the wires H and the
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u(y), at three di↵erent wire separations. The inset
shows how shear force varies with separation at

constant �2.

S-type: Setting first and second derivatives to zero,

u0(±H/2) = u00(±H/2) = 0, (25)

is less restrictive and the non-zero coe�cients C2 and C3

in Eq. (21a) are now functions of �2 parameter (see the
Appendix). The (scaled) shear force then becomes
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Fig. 1 shows the shear force and velocity profiles for the
S � type boundary conditions. Interestingly, for a fixed
negative value of �2, the shear force diverges at certain
discrete points as a function of the wire separation H.
The divergence is certainly an artifact of the mean-field
procedure, so is the anomalous velocity profile near the
singulairty. However, the region where the mean field
approach breaks down can often be interpreted as an in-
dication of a phase transition. Therefore, we intepret
the divergences as follows. For negative �2, as we vary

the wire separation H, the points where the singular-
ity occurs correspond to the creation of a vortex state.
We hope that numerical simulations can show something
like regularly spaced steps in the shear force, separated
by plateaus of constant values.

E. Comparison: analytical vs. numerical results

To be done ...

IV. FUTURE: 3D CASE

Appendix A: Formulae

C1 = 2V ���+sinh
h�+H

2

i⇣

��sinh
h��H

2

i

coth
h�+H

2

i

��+cosh
h��H

2

i⌘.

n

H�2
��+sinh

h��H

2

i

cosh
h�+H

2

i

� sinh
h�+H

2

i⇣

H���
2
+cosh

h��H

2

i

+ 2(�� � �+)(�� + �+) sinh
h��H

2

io

C2 = 2V �2
+

n

� H���
2
+ cosh

h��H

2

i

+
⇣

2�2
+ � 2�2

� +H�2
��+ coth

h�+H

2

i⌘

sinh
h��H

2

i

)
o�1

C3 = 2V �2
�

n

� H�+�
2
� cosh

h�+H

2

i

+
⇣

2�2
� � 2�2

+ +H�2
+�� coth

h��H

2

i⌘

sinh
h�+H

2

i

)
o�1

Mean field prediction for  
shear flow between two plates

3

FIG. 1 LEFT: Shear force on the upper wire F+
x

depends on the distance between the wires H and the
swimmer parameter �2. White spots indicate regions
close to the singularity. RIGHT: Flow velocity profile,
u(y), at three di↵erent wire separations. The inset
shows how shear force varies with separation at

constant �2.

S-type: Setting first and second derivatives to zero,

u0(±H/2) = u00(±H/2) = 0, (25)

is less restrictive and the non-zero coe�cients C2 and C3

in Eq. (21a) are now functions of �2 parameter (see the
Appendix). The (scaled) shear force then becomes

⌧ F+
x

�0 L
= C1 + C2(�� � �2�

3
� + �5

�)cosh
h��H

2

i

+ C3(�+ � �2�
3
+ + �5

+)cosh
h�+H

2

i

. (26)

Fig. 1 shows the shear force and velocity profiles for the
S � type boundary conditions. Interestingly, for a fixed
negative value of �2, the shear force diverges at certain
discrete points as a function of the wire separation H.
The divergence is certainly an artifact of the mean-field
procedure, so is the anomalous velocity profile near the
singulairty. However, the region where the mean field
approach breaks down can often be interpreted as an in-
dication of a phase transition. Therefore, we intepret
the divergences as follows. For negative �2, as we vary

the wire separation H, the points where the singular-
ity occurs correspond to the creation of a vortex state.
We hope that numerical simulations can show something
like regularly spaced steps in the shear force, separated
by plateaus of constant values.

E. Comparison: analytical vs. numerical results

To be done ...

IV. FUTURE: 3D CASE

Appendix A: Formulae

C1 = 2V ���+sinh
h�+H

2

i⇣

��sinh
h��H

2

i

coth
h�+H

2

i

��+cosh
h��H

2

i⌘.

n

H�2
��+sinh

h��H

2

i

cosh
h�+H

2

i

� sinh
h�+H

2

i⇣

H���
2
+cosh

h��H

2

i

+ 2(�� � �+)(�� + �+) sinh
h��H

2

io

C2 = 2V �2
+

n

� H���
2
+ cosh

h��H

2

i

+
⇣

2�2
+ � 2�2

� +H�2
��+ coth

h�+H

2

i⌘

sinh
h��H

2

i

)
o�1

C3 = 2V �2
�

n

� H�+�
2
� cosh

h�+H

2

i

+
⇣

2�2
� � 2�2

+ +H�2
+�� coth

h��H

2

i⌘

sinh
h�+H

2

i

)
o�1

+ periodic BCs in other directions



Active nematics

Dogic lab (Brandeis) Nature 2012



Active nematics

LETTER
doi:10.1038/nature11591

Spontaneous motion in hierarchically assembled
active matter
Tim Sanchez1*, Daniel T. N. Chen1*, Stephen J. DeCamp1*, Michael Heymann1,2 & Zvonimir Dogic1

With remarkable precision and reproducibility, cells orchestrate
the cooperative action of thousands of nanometre-sized molecular
motors to carry out mechanical tasks at much larger length scales,
such as cell motility, division and replication1. Besides their bio-
logical importance, such inherently non-equilibrium processes
suggest approaches for developing biomimetic active materials
from microscopic components that consume energy to generate
continuous motion2–4. Being actively driven, these materials are
not constrained by the laws of equilibrium statistical mechanics
and can thus exhibit sought-after properties such as autonomous
motility, internally generated flows and self-organized beating5–7.
Here, starting from extensile microtubule bundles, we hierarchically
assemble far-from-equilibrium analogues of conventional polymer
gels, liquid crystals and emulsions. At high enough concentration,
the microtubules form a percolating active network characterized
by internally driven chaotic flows, hydrodynamic instabilities,
enhanced transport and fluid mixing. When confined to emulsion
droplets, three-dimensional networks spontaneously adsorb onto
the droplet surfaces to produce highly active two-dimensional
nematic liquid crystals whose streaming flows are controlled by
internally generated fractures and self-healing, as well as unbinding
and annihilation of oppositely charged disclination defects. The
resulting active emulsions exhibit unexpected properties, such as
autonomous motility, which are not observed in their passive ana-
logues. Taken together, these observations exemplify how assem-
blages of animate microscopic objects exhibit collective biomimetic

properties that are very different from those found in materials
assembled from inanimate building blocks, challenging us to
develop a theoretical framework that would allow for a systematic
engineering of their far-from-equilibrium material properties.

We assembled active materials from microtubule filaments, which are
stabilized with the non-hydrolysable nucleotide analogue GMPCPP,
leading to an average length of 1.5mm. Bundles were formed by adding
a non-adsorbing polymer—poly(ethylene glycol) or PEG—which
induces attractive interactions through the well-studied depletion
mechanism. To drive the system far from equilibrium, we added bio-
tin-labelled fragments of kinesin-1, a molecular motor that converts
chemical energy from ATP hydrolysis into mechanical movement
along a microtubule8. Kinesins were assembled into multi-motor clus-
ters by tetrameric streptavidin, which can simultaneously bind and
move along multiple microtubules, inducing inter-filament sliding
(Fig. 1a). In this respect, our experiments build upon important earlier
work that demonstrated the formation of asters and vortices in net-
works of unbundled microtubules and kinesin9,10. However, compared
to these dispersed networks, the proximity and alignment of depletion-
bundled microtubules greatly increases the probability of kinesin clus-
ters simultaneously binding and walking along neighbouring filaments,
thus enhancing the overall activity.

Motor-induced sliding of aligned microtubules depends on their
relative polarity. Kinesin clusters generate sliding forces between
microtubules of opposite polarity, whereas no sliding force is induced
between microtubules of the same polarity11–13. To study the dynamics

*These authors contributed equally to this work.

1Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA. 2Graduate Program in Biophysics and Structural Biology, Brandeis University, 415 South
Street, Waltham, Massachusetts 02454, USA.
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Figure 1 | Active microtubule
networks exhibit internally
generated flows. a, Schematic
illustration of an extensile
microtubule–kinesin bundle, the basic
building block used for the assembly
of active matter. Kinesin clusters exert
inter-filament sliding forces, whereas
depleting PEG polymers induce
microtubule bundling. b, Two
microtubule bundles merge and the
resultant bundle immediately extends,
eventually falling apart. Time interval,
5 s; scale bar, 15mm. c, In a
percolating microtubule network,
bundles constantly merge (red
arrows), extend, buckle (green dashed
lines), fracture, and self-heal to
produce a robust and highly dynamic
steady state. Time interval, 11.5 s; scale
bar, 15mm. d, An active microtubule
network viewed on a large scale.
Arrows indicate local bundle velocity
direction. Scale bar, 80mm.
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This can be compared with the traditional representation
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DYNAMICS

We start from the generalized Landau-de-Gennes free-
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Note that the potential cannot contain odd-power terms
since TrQ2k+1 = 0 in 2D. Consider the corresponding
field equation
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case of an incompressible fluid of constant density !,
where r ! v ¼ 0, the equations are given by

Dc

Dt
¼ @i½Dij@jcþ "1c

2@jQij%; (1a)

!
Dvi

Dt
¼ #r2vi & @ipþ @j$ij; (1b)

DQij

Dt
¼ %Suij þQik!kj &!ikQkj þ &&1Hij; (1c)

where D=Dt ¼ @t þ v ! r indicates the material deriva-
tive, Dij ¼ D0'ij þD1Qij is the anisotropic diffusion
tensor, # is the viscosity, p is the pressure, and % is the
nematic alignment parameter. Here uij ¼ ð@ivj þ @jviÞ=2
and !ij ¼ ð@ivj & @jviÞ=2 are the symmetrized rate of
strain tensor and the vorticity, respectively. The molecular
fieldHij embodies the relaxational dynamics of the nematic
phase (with & a rotational viscosity) and can be obtained
from the variation of the Landau-de Gennes free energy of a
two-dimensional nematic [21], Hij ¼ &'F='Qij, with

F=K ¼
Z

dA
!
1

4
ðc& c?ÞtrQ2 þ 1

4
cðtrQ2Þ2 þ 1

2
jrQj2

"
;

(2)

where K is an elastic constant with dimensions of energy,
trQ2 ¼ S2=2, and c? is the critical concentration for the

isotropic-nematic transition, so that, at equilibrium, S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& c?=c

p
. Finally, the stress tensor $ij ¼ $r

ij þ $a
ij is the

sum of the elastic stress due to nematic elasticity, $r
ij ¼

&%SHij þQikHkj &HikQkj, where for simplicity we have
neglected the Eriksen stress, and an active contribution,
$a

ij ¼ "2c
2Qij, which describes contractile or extensile

stresses exerted by the active particles in the direction of
the director field. In addition, activity yields a curvature-
induced current ja ¼ &"1c

2r !Q in Eq. (1a) that drives
units from regions populated by fast-moving particles to
regions of slow-moving particles. The c2 dependence of the
active stress and current is appropriate for systems where
activity arises from pair interactions among the filaments
via cross-linking motor proteins. The sign of"2 depends on
whether the active particles generate contractile or extensile
stresses, with"2 > 0 for the contractile case and"2 < 0 for
extensile systems, while we assume "1 > 0.

To study the dynamics of defects, we consider a pair of
opposite-sign half-integer disclinations separated by a
distance x ¼ xþ & x&, where x) is the x coordinate of
the )1=2 disclination, respectively, as shown in Figs. 1(a)
and 1(b). When backflow is neglected, the pair dynamics
is purely relaxational and is controlled by the balance of
the attractive force between defects Fpair ¼ &rEpair, with
Epair * K logx=a the energy of a defect pair (with a the
core radius), and an effective frictional force Ffric ¼ ( _x,
with (* & a friction coefficient. Thus ( _x ¼ K=x and
the distance between the annihilating defects decreases

according to a square-root law, xðtÞ / ffiffiffiffiffiffiffiffiffiffiffiffi
ta & t

p
, with ta

the annihilation time. More precise calculations have
shown that the effective friction is itself a function of the
defect separation [29,30], ( ¼ (0 logx=a, although this
does not imply substantial changes in the overall picture.
This simple model predicts that the defect and antidefect
approach each other along symmetric trajectories.
We have integrated numerically Eqs. (1) for an initial

configuration of uniform concentration and zero flow ve-
locity, with two disclinations of charge )1=2 located on
the x axis of a square L+ L box at initial positions
x)ð0Þ ¼ ð)L=4; 0Þ. The integration is performed by using
the finite differences scheme described in Refs. [11,12].
To render Eqs. (1) dimensionless, we normalize distance

by the approximate length of the active rods ‘ ¼ 1=
ffiffiffiffiffi
c?

p
,

stress by the elastic stress of the nematic phase $ ¼ K‘&2,
and time by ) ¼ #‘2=K representing the ratio between
viscous and elastic stress. In these dimensionless units, for
simplicity, we let "2 ¼ " and take "1 ¼ j"2j=2. Periodic
boundary conditions are assumed, and the defects are
allowed to evolve until they annihilate. Figure 1 shows a
snapshot of the order parameter and flow field shortly after
the beginning of the relaxation for both a contractile and
extensile system, with" ¼ )0:2 in the units defined above
(see also the supplemental movie S1 [31]).
In passive nematic liquid crystals (i.e., " ¼ 0), it is well

known that the dynamics of defects is greatly modified by
the so-called backflow, that is, the flow induced by reor-
ientation of the nematic order parameter through the elastic
stresses $r

ij in the Navier-Stokes equation. In particular,

when backflow is neglected, the defect and antidefect are
predicted to move at the same velocity toward each other
until annihilation. Backflow tends to speed up the þ1=2
defect and to slow down the &1=2 defect, yielding asym-
metric trajectories [25]. In active liquid crystals, the active
stress in the Navier-Stokes equation provides a new source
for flow associated with inhomogeneities in the order
parameter, as demonstrated first in a one-dimensional
thin film geometry where activity drives a transition to a
spontaneously flowing state [2]. This new active backflow
can greatly exceed the curvature-driven backflow present
in passive systems. Furthermore, the direction of the active
backflow is controlled by the sign of the activity parameter
" and, for a given director configuration, has opposite
directions in contractile and extensile systems. Backflow
arising from active stresses drives theþ1=2 defect to move
in the direction of its ‘‘tail’’ in contractile systems ("> 0)
and in the direction of its ‘‘head’’ in extensile systems
("< 0), where the terminology arises from the cometlike
shape of þ1=2 defects. In contrast, due to symmetry
considerations the active backflow vanishes at the core of
a &1=2 defect which thus remains stationary under the
action of active stresses. We note that active curvature
currents in the concentration equation controlled by "1

have a similar effect, as first noted by Narayan,
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ij þ $a
ij is the

sum of the elastic stress due to nematic elasticity, $r
ij ¼

&%SHij þQikHkj &HikQkj, where for simplicity we have
neglected the Eriksen stress, and an active contribution,
$a

ij ¼ "2c
2Qij, which describes contractile or extensile

stresses exerted by the active particles in the direction of
the director field. In addition, activity yields a curvature-
induced current ja ¼ &"1c

2r !Q in Eq. (1a) that drives
units from regions populated by fast-moving particles to
regions of slow-moving particles. The c2 dependence of the
active stress and current is appropriate for systems where
activity arises from pair interactions among the filaments
via cross-linking motor proteins. The sign of"2 depends on
whether the active particles generate contractile or extensile
stresses, with"2 > 0 for the contractile case and"2 < 0 for
extensile systems, while we assume "1 > 0.

To study the dynamics of defects, we consider a pair of
opposite-sign half-integer disclinations separated by a
distance x ¼ xþ & x&, where x) is the x coordinate of
the )1=2 disclination, respectively, as shown in Figs. 1(a)
and 1(b). When backflow is neglected, the pair dynamics
is purely relaxational and is controlled by the balance of
the attractive force between defects Fpair ¼ &rEpair, with
Epair * K logx=a the energy of a defect pair (with a the
core radius), and an effective frictional force Ffric ¼ ( _x,
with (* & a friction coefficient. Thus ( _x ¼ K=x and
the distance between the annihilating defects decreases

according to a square-root law, xðtÞ / ffiffiffiffiffiffiffiffiffiffiffiffi
ta & t

p
, with ta

the annihilation time. More precise calculations have
shown that the effective friction is itself a function of the
defect separation [29,30], ( ¼ (0 logx=a, although this
does not imply substantial changes in the overall picture.
This simple model predicts that the defect and antidefect
approach each other along symmetric trajectories.
We have integrated numerically Eqs. (1) for an initial

configuration of uniform concentration and zero flow ve-
locity, with two disclinations of charge )1=2 located on
the x axis of a square L+ L box at initial positions
x)ð0Þ ¼ ð)L=4; 0Þ. The integration is performed by using
the finite differences scheme described in Refs. [11,12].
To render Eqs. (1) dimensionless, we normalize distance

by the approximate length of the active rods ‘ ¼ 1=
ffiffiffiffiffi
c?

p
,

stress by the elastic stress of the nematic phase $ ¼ K‘&2,
and time by ) ¼ #‘2=K representing the ratio between
viscous and elastic stress. In these dimensionless units, for
simplicity, we let "2 ¼ " and take "1 ¼ j"2j=2. Periodic
boundary conditions are assumed, and the defects are
allowed to evolve until they annihilate. Figure 1 shows a
snapshot of the order parameter and flow field shortly after
the beginning of the relaxation for both a contractile and
extensile system, with" ¼ )0:2 in the units defined above
(see also the supplemental movie S1 [31]).
In passive nematic liquid crystals (i.e., " ¼ 0), it is well

known that the dynamics of defects is greatly modified by
the so-called backflow, that is, the flow induced by reor-
ientation of the nematic order parameter through the elastic
stresses $r

ij in the Navier-Stokes equation. In particular,

when backflow is neglected, the defect and antidefect are
predicted to move at the same velocity toward each other
until annihilation. Backflow tends to speed up the þ1=2
defect and to slow down the &1=2 defect, yielding asym-
metric trajectories [25]. In active liquid crystals, the active
stress in the Navier-Stokes equation provides a new source
for flow associated with inhomogeneities in the order
parameter, as demonstrated first in a one-dimensional
thin film geometry where activity drives a transition to a
spontaneously flowing state [2]. This new active backflow
can greatly exceed the curvature-driven backflow present
in passive systems. Furthermore, the direction of the active
backflow is controlled by the sign of the activity parameter
" and, for a given director configuration, has opposite
directions in contractile and extensile systems. Backflow
arising from active stresses drives theþ1=2 defect to move
in the direction of its ‘‘tail’’ in contractile systems ("> 0)
and in the direction of its ‘‘head’’ in extensile systems
("< 0), where the terminology arises from the cometlike
shape of þ1=2 defects. In contrast, due to symmetry
considerations the active backflow vanishes at the core of
a &1=2 defect which thus remains stationary under the
action of active stresses. We note that active curvature
currents in the concentration equation controlled by "1

have a similar effect, as first noted by Narayan,
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defect and to slow down the &1=2 defect, yielding asym-
metric trajectories [25]. In active liquid crystals, the active
stress in the Navier-Stokes equation provides a new source
for flow associated with inhomogeneities in the order
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thin film geometry where activity drives a transition to a
spontaneously flowing state [2]. This new active backflow
can greatly exceed the curvature-driven backflow present
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action of active stresses. We note that active curvature
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for flow associated with inhomogeneities in the order
parameter, as demonstrated first in a one-dimensional
thin film geometry where activity drives a transition to a
spontaneously flowing state [2]. This new active backflow
can greatly exceed the curvature-driven backflow present
in passive systems. Furthermore, the direction of the active
backflow is controlled by the sign of the activity parameter
" and, for a given director configuration, has opposite
directions in contractile and extensile systems. Backflow
arising from active stresses drives theþ1=2 defect to move
in the direction of its ‘‘tail’’ in contractile systems ("> 0)
and in the direction of its ‘‘head’’ in extensile systems
("< 0), where the terminology arises from the cometlike
shape of þ1=2 defects. In contrast, due to symmetry
considerations the active backflow vanishes at the core of
a &1=2 defect which thus remains stationary under the
action of active stresses. We note that active curvature
currents in the concentration equation controlled by "1

have a similar effect, as first noted by Narayan,
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Ramaswamy, and Menon in a systems of vibrated granular
rods [7]. Such active curvature currents control dynamics
in systems with no momentum conservation but are very
small here, where the concentration variations remain
small, as seen from Figs. 1(c) and 1(d), and flow controls
the dynamics.

In contractile systems active backflow yields a net
speedup of the þ1=2 defects towards its antidefect for
the annihilation shown in Fig. 1(b). In extensile systems,
with !< 0, backflow drives the þ1=2 defect to move
towards its head, away from its "1=2 partner in the con-
figuration of Fig. 1(b), acting like an effectively repulsive
interaction. This somewhat counterintuitive effect has been
observed in experiments with extensile microtubules and
kinesin assemblies [16] and can be understood on the basis
of the hydrodynamic approach embodied in Eqs. (1). In
Fig. 2, we have reproduced from Ref. [16] a sequence of
snapshots showing a pair of #1=2 disclinations moving

apart from each other together with the same behavior
observed in our simulations.
To quantify the dynamics we have reconstructed the

trajectories of the defects by tracking the drop in the
magnitude of the order parameter. The trajectories are
shown in Figs. 3(a) and 3(b), where red lines in the upper
portion of the plots represent the trajectory of the þ1=2
disclination, while the blue lines in the lower portion of the
plot are the trajectories of the"1=2 defect. The tracks end
when the cores of the two defects merge. For small activity
and small values of the rotational friction ", the trajectories

FIG. 1 (color online). Snapshots of a disclination pair shortly
after the beginning of relaxation. (Top) Director field (black
lines) superimposed on a heat map of the nematic order parame-
ter and (bottom) flow field (arrows) superimposed on a heat map
of the concentration for an extensile system with ! ¼ "0:2 (a),
(c) and a contractile system with ! ¼ 0:2 (b), (d). In the top
images, the color denotes the magnitude of the nematic order

parameter S relative to its equilibrium value S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" c?=c0

p
.

In the bottom images, the color denotes the magnitude of the
concentration c relative to the average value c0. Depending on
the sign of !, the backflow tends to speed up (!> 0) or slow
down (!< 0) the annihilation process by increasing or decreas-
ing the velocity of the þ1=2 disclination. For ! negative and
sufficiently large in magnitude, the þ1=2 defect reverses its
direction of motion (c) and escapes annihilation.

FIG. 2 (color online). Defect pair production in an active
suspension of microtubules and kinesin (top) and the same
phenomenon observed in our numerical simulation of an exten-
sile nematic fluid with " ¼ 100 and ! ¼ "0:5. The experimen-
tal picture is reprinted with permission from T. Sanchez et al.,
Nature (London) 491, 431 (2012). Copyright 2012, Macmillan.

0

(a) (b)

(c) (d)

FIG. 3 (color online). Defect trajectories and annihilation
times obtained from a numerical integration of Eqs. (1) for
various " and ! values. (a) Defect trajectories for " ¼ 5 and
various ! values (indicated in the plot). The upper (red online)
and lower (blue online) curves correspond to the positive
and negative disclination, respectively. The defects annihilate
where the two curves merge. (b) The same plot for " ¼ 10.
Slowing down the relaxational dynamics of the nematic phase
increases the annihilation time and for ! ¼ "0:2 reverses the
direction of motion of the þ1=2 disclination. (c) Defect separa-
tion as a function of time for ! ¼ 0:2 and various " values.
(d) Annihilation time normalized by the corresponding annihi-
lation time obtained at ! ¼ 0 (i.e., t0a). The line is a fit to the
model described in the text.
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case of an incompressible fluid of constant density !,
where r ! v ¼ 0, the equations are given by

Dc

Dt
¼ @i½Dij@jcþ "1c

2@jQij%; (1a)

!
Dvi

Dt
¼ #r2vi & @ipþ @j$ij; (1b)

DQij

Dt
¼ %Suij þQik!kj &!ikQkj þ &&1Hij; (1c)

where D=Dt ¼ @t þ v ! r indicates the material deriva-
tive, Dij ¼ D0'ij þD1Qij is the anisotropic diffusion
tensor, # is the viscosity, p is the pressure, and % is the
nematic alignment parameter. Here uij ¼ ð@ivj þ @jviÞ=2
and !ij ¼ ð@ivj & @jviÞ=2 are the symmetrized rate of
strain tensor and the vorticity, respectively. The molecular
fieldHij embodies the relaxational dynamics of the nematic
phase (with & a rotational viscosity) and can be obtained
from the variation of the Landau-de Gennes free energy of a
two-dimensional nematic [21], Hij ¼ &'F='Qij, with

F=K ¼
Z

dA
!
1

4
ðc& c?ÞtrQ2 þ 1

4
cðtrQ2Þ2 þ 1

2
jrQj2

"
;

(2)

where K is an elastic constant with dimensions of energy,
trQ2 ¼ S2=2, and c? is the critical concentration for the

isotropic-nematic transition, so that, at equilibrium, S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& c?=c

p
. Finally, the stress tensor $ij ¼ $r

ij þ $a
ij is the

sum of the elastic stress due to nematic elasticity, $r
ij ¼

&%SHij þQikHkj &HikQkj, where for simplicity we have
neglected the Eriksen stress, and an active contribution,
$a

ij ¼ "2c
2Qij, which describes contractile or extensile

stresses exerted by the active particles in the direction of
the director field. In addition, activity yields a curvature-
induced current ja ¼ &"1c

2r !Q in Eq. (1a) that drives
units from regions populated by fast-moving particles to
regions of slow-moving particles. The c2 dependence of the
active stress and current is appropriate for systems where
activity arises from pair interactions among the filaments
via cross-linking motor proteins. The sign of"2 depends on
whether the active particles generate contractile or extensile
stresses, with"2 > 0 for the contractile case and"2 < 0 for
extensile systems, while we assume "1 > 0.

To study the dynamics of defects, we consider a pair of
opposite-sign half-integer disclinations separated by a
distance x ¼ xþ & x&, where x) is the x coordinate of
the )1=2 disclination, respectively, as shown in Figs. 1(a)
and 1(b). When backflow is neglected, the pair dynamics
is purely relaxational and is controlled by the balance of
the attractive force between defects Fpair ¼ &rEpair, with
Epair * K logx=a the energy of a defect pair (with a the
core radius), and an effective frictional force Ffric ¼ ( _x,
with (* & a friction coefficient. Thus ( _x ¼ K=x and
the distance between the annihilating defects decreases

according to a square-root law, xðtÞ / ffiffiffiffiffiffiffiffiffiffiffiffi
ta & t

p
, with ta

the annihilation time. More precise calculations have
shown that the effective friction is itself a function of the
defect separation [29,30], ( ¼ (0 logx=a, although this
does not imply substantial changes in the overall picture.
This simple model predicts that the defect and antidefect
approach each other along symmetric trajectories.
We have integrated numerically Eqs. (1) for an initial

configuration of uniform concentration and zero flow ve-
locity, with two disclinations of charge )1=2 located on
the x axis of a square L+ L box at initial positions
x)ð0Þ ¼ ð)L=4; 0Þ. The integration is performed by using
the finite differences scheme described in Refs. [11,12].
To render Eqs. (1) dimensionless, we normalize distance

by the approximate length of the active rods ‘ ¼ 1=
ffiffiffiffiffi
c?

p
,

stress by the elastic stress of the nematic phase $ ¼ K‘&2,
and time by ) ¼ #‘2=K representing the ratio between
viscous and elastic stress. In these dimensionless units, for
simplicity, we let "2 ¼ " and take "1 ¼ j"2j=2. Periodic
boundary conditions are assumed, and the defects are
allowed to evolve until they annihilate. Figure 1 shows a
snapshot of the order parameter and flow field shortly after
the beginning of the relaxation for both a contractile and
extensile system, with" ¼ )0:2 in the units defined above
(see also the supplemental movie S1 [31]).
In passive nematic liquid crystals (i.e., " ¼ 0), it is well

known that the dynamics of defects is greatly modified by
the so-called backflow, that is, the flow induced by reor-
ientation of the nematic order parameter through the elastic
stresses $r

ij in the Navier-Stokes equation. In particular,

when backflow is neglected, the defect and antidefect are
predicted to move at the same velocity toward each other
until annihilation. Backflow tends to speed up the þ1=2
defect and to slow down the &1=2 defect, yielding asym-
metric trajectories [25]. In active liquid crystals, the active
stress in the Navier-Stokes equation provides a new source
for flow associated with inhomogeneities in the order
parameter, as demonstrated first in a one-dimensional
thin film geometry where activity drives a transition to a
spontaneously flowing state [2]. This new active backflow
can greatly exceed the curvature-driven backflow present
in passive systems. Furthermore, the direction of the active
backflow is controlled by the sign of the activity parameter
" and, for a given director configuration, has opposite
directions in contractile and extensile systems. Backflow
arising from active stresses drives theþ1=2 defect to move
in the direction of its ‘‘tail’’ in contractile systems ("> 0)
and in the direction of its ‘‘head’’ in extensile systems
("< 0), where the terminology arises from the cometlike
shape of þ1=2 defects. In contrast, due to symmetry
considerations the active backflow vanishes at the core of
a &1=2 defect which thus remains stationary under the
action of active stresses. We note that active curvature
currents in the concentration equation controlled by "1

have a similar effect, as first noted by Narayan,
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In 2d, the symmetric order-parameter tensor Q(t, x, y)
with

Q

ij

= Q

ji

, TrQ = 0, (1)

can be represented as

Q =

✓
� µ

µ ��

◆
. (2)

Defining

� =
p
�

2 + µ

2
, (3)

the eigenvalues of Q are given by

⇤± = ±� (4)

with eigenvectors

n

± =
1p

(�±�)2 + µ

2

✓
�±�

µ

◆
. (5)

Furthermore, for k 2 N we have

Q

2k = �2k
I , Q

2k+1 = �2k
Q, (6)

which implies that

TrQ2k = �2k Tr I = 2�2k
, (7a)

TrQ2k+1 = �2k TrQ = 0. (7b)

Using the completeness relation

I = n

�
n

� + n

+
n

+
, (8)

we obtain from the spectral decomposition

Q = ⇤+
n

+
n

+ + ⇤�
n

�
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�

= �n

+
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+ ��n

�
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+
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n
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✓
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2

◆
, (9a)

and similarly

Q = ⇤+
n

+
n

+ + ⇤�
n

�
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+
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�
n
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= �(I � n
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�)��n
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◆
. (9b)

This can be compared with the traditional representation

Q

ij

= S

✓
n

i

n

j

� �

ij

2

◆
(10)

where the unit vector n = (n
x

, n

y

) is the director. For
S > 0, we must identify n = n+ and S = ⇤+ = 2�,
whereas n = n� and S = ⇤� = �2� for S < 0.

DYNAMICS

We start from the generalized Landau-de-Gennes free-
energy density

F =

Z
d

2
x

✓
a

2
TrQ2 +

b

4
TrQ4

◆
+

Z
d

2
x

h
�2

2
(rQ)2 +

�4

4
(rrQ)2

i
, (11a)

where

(rQ)2 = (@
k

Q

ij

)(@
k

Q

ij

) (11b)

(rrQ)2 = (@
k

@

n

Q

ij

)(@
k

@

n

Q

ij

). (11c)

Note that the potential cannot contain odd-power terms
since TrQ2k+1 = 0 in 2D. Consider the corresponding
field equation

@

t
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k
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�Q
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(12)

where v is the advection velocity and
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=
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2
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+
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Using

@ TrQk

@Q

ij

= k Q

k�1
ij

(14)

we find

@

t

Q

ij

+ v

k

@

k

Q

ij

= �aQ

ij

� bQ

3
ij

+ (15)

�2@k@kQij

� �4@k@k@n@nQij

.
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To obtain closed equation, we must express v = (v
k

) in
terms of Q. We discuss two possible choices

v

k

= D @

n

Q

nk

(16a)

v

k

= D @

n

(Q
nj

Q

jk

) (16b)

where the constant D is a response coe�cient with units
length2/time. Note the crucial di↵erence between the
two closure conditions: Eq. (16a) assumes that active LC
configurations Q and �Q create flow fields in opposite
directions. By contrast, Eq. (16b) which may also be
written as

v

k

= D@

k

�2
, (17)

assumes that Q and �Q describe physically equivalent
situations because they have identical spectra (although
the corresponding eigenvectors are swapped).

Adopting (16a), which distinguishes between contrac-
tile and extensile nematics, the equations of motions take
the form

@

t

Q

ij

+D(@
n

Q

nk

)@
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Q

ij

= �aQ

ij

� bQ

3
ij

+ (18a)

�2@k@kQij

� �4@k@k@n@nQij

or, equivalently,

@

t

Q+D[(r ·Q) ·r]Q = �aQ� bQ

3 + (18b)

�2r2
Q� �4(r2)2Q

Dynamics conserves the trace, TrQ ⌘ 0. As indicated
above, the velocity term breaks Q ! �Q symmetry, but
could be replaced by (D,Q) ! (�D,�Q) symmetry.

In principle one could include additional terms on
the rhs., such as correctly symmetrized combinations of
vorticity coupling terms involving !

ik

Q

kj

where !

ik

=
@

i

v

k

�@

k

v

i

with v

k

being expressed in terms of Q via the
adopted closure condition (this could lead to less isotropic
structures).

SIMULATION PARAMETERS

Simulate regime a < 0, �2 < 0 with b, �4 > 0 while
D could in principle take both signs (contractile versus
extensile). To estimate a and b, rewrite free energy den-
sity in terms of nematic order parameter S = 2�, using
TrQ2 = S

2
/2 and TrQ4 = S

4
/8,

f =
a

4
S

2 +
b

32
S

4
. (19)

For a < 0, we find minima at S± = ±
p

�4a/b. If we
want a minimum at S = 1, we should fix a = �b/4.
With this convention, the depth of the potential well
is f(S±) = �b/32, where b carries units 1/time, i.e.,
⌧

b

= 1/b determines how rapidly the system is damped

to the ordered state. The typical structure size in the ex-
periments is �0 ⇠ 50µm and the typical flow speed v0 ⇠
1µm/s. To establish local order su�ciently fast, we need
⌧

b

< �0/v0, so ⌧

b

⇠ 5s could be a good choice.
Define ‘vortex’ length scale L

�

=
p
�4/(��2), time

scale T

�

= �4/(��2)2, and speed V

�

= L

�

/T

�

. Choose
�2 < 0 and �4 > 0 such that L

�

matches typical domain
size ⇠ 50µm in experiments, and that V

�

matches typical
flow speed v0 ⇠ 1µm/s.
To estimate a reasonable value for D, assume filament

length ` ⇠ 5µm and approximate velocity D/` by typical
flow speed ⇠ 1µm/s.
To see roughly 100 defects, size of simulation domain

should be 10L
�

⇥ 10L
�

with periodic BCs. Spatial reso-
lution should be of the order of filament length, that is
gridspacing �x = ✏L

�

with ✏ = 1/10 or ✏ = 1/20 could
work reasonably well, corresponding to a total lattice size
100 ⇥ 100 or 200 ⇥ 200, respectively. The time step �t

should be smaller than ✏L

�

/v0 = ✏ ⇥ 5s, i.e. �t = ✏ ⇥ 1s
could work well.
It seems advisable to rescale space and time coordi-

nates in simulations to eliminate two parameters, setting
T

�

= 1 and L

�

⇠ 1 or (L
�

= 2⇡) could be useful.

DEFECT ANALYSIS

Denote by S a spherical area around some point x with
unit tangent vector s = (s

i

) and outward-pointing unit
normal vector b = (b

i

). Stokes-theorem in 2D for some
vector field n
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Example defects: hedgehog at 0
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unlikely to be created spontaneously, since process re-
quires simultaneous production of a pair of �1/2 defects.
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Note that the potential cannot contain odd-power terms
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where the constant D is a response coe�cient with units
length2/time. Note the crucial di↵erence between the
two closure conditions: Eq. (16a) assumes that active LC
configurations Q and �Q create flow fields in opposite
directions. By contrast, Eq. (16b) which may also be
written as
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assumes that Q and �Q describe physically equivalent
situations because they have identical spectra (although
the corresponding eigenvectors are swapped).

Adopting (16a), which distinguishes between contrac-
tile and extensile nematics, the equations of motions take
the form
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being expressed in terms of Q via the
adopted closure condition (this could lead to less isotropic
structures).

SIMULATION PARAMETERS

Simulate regime a < 0, �2 < 0 with b, �4 > 0 while
D could in principle take both signs (contractile versus
extensile). To estimate a and b, rewrite free energy den-
sity in terms of nematic order parameter S = 2�, using
TrQ2 = S

2
/2 and TrQ4 = S

4
/8,

f =
a

4
S

2 +
b

32
S

4
. (19)

For a < 0, we find minima at S± = ±
p

�4a/b. If we
want a minimum at S = 1, we should fix a = �b/4.
With this convention, the depth of the potential well
is f(S±) = �b/32, where b carries units 1/time, i.e.,
⌧

b

= 1/b determines how rapidly the system is damped

to the ordered state. The typical structure size in the ex-
periments is �0 ⇠ 50µm and the typical flow speed v0 ⇠
1µm/s. To establish local order su�ciently fast, we need
⌧

b

< �0/v0, so ⌧

b

⇠ 5s could be a good choice.
Define ‘vortex’ length scale L

�

=
p
�4/(��2), time

scale T

�

= �4/(��2)2, and speed V

�

= L

�

/T

�

. Choose
�2 < 0 and �4 > 0 such that L

�

matches typical domain
size ⇠ 50µm in experiments, and that V

�

matches typical
flow speed v0 ⇠ 1µm/s.
To estimate a reasonable value for D, assume filament

length ` ⇠ 5µm and approximate velocity D/` by typical
flow speed ⇠ 1µm/s.
To see roughly 100 defects, size of simulation domain

should be 10L
�

⇥ 10L
�

with periodic BCs. Spatial reso-
lution should be of the order of filament length, that is
gridspacing �x = ✏L

�

with ✏ = 1/10 or ✏ = 1/20 could
work reasonably well, corresponding to a total lattice size
100 ⇥ 100 or 200 ⇥ 200, respectively. The time step �t

should be smaller than ✏L

�

/v0 = ✏ ⇥ 5s, i.e. �t = ✏ ⇥ 1s
could work well.
It seems advisable to rescale space and time coordi-

nates in simulations to eliminate two parameters, setting
T

�

= 1 and L

�

⇠ 1 or (L
�

= 2⇡) could be useful.

DEFECT ANALYSIS

Denote by S a spherical area around some point x with
unit tangent vector s = (s

i

) and outward-pointing unit
normal vector b = (b
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). Stokes-theorem in 2D for some
vector field n
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unlikely to be created spontaneously, since process re-
quires simultaneous production of a pair of �1/2 defects.
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To obtain closed equation, we must express v = (v
k

) in
terms of Q. We discuss two possible choices

v
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(16a)

v

k

= D @

n

(Q
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) (16b)

where the constant D is a response coe�cient with units
length2/time. Note the crucial di↵erence between the
two closure conditions: Eq. (16a) assumes that active LC
configurations Q and �Q create flow fields in opposite
directions. By contrast, Eq. (16b) which may also be
written as

v

k

= D@

k

�2
, (17)

assumes that Q and �Q describe physically equivalent
situations because they have identical spectra (although
the corresponding eigenvectors are swapped).

Adopting (16a), which distinguishes between contrac-
tile and extensile nematics, the equations of motions take
the form
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or, equivalently,
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Q+D[(r ·Q) ·r]Q = �aQ� bQ

3 + (18b)

�2r2
Q� �4(r2)2Q

Dynamics conserves the trace, TrQ ⌘ 0. As indicated
above, the velocity term breaks Q ! �Q symmetry, but
could be replaced by (D,Q) ! (�D,�Q) symmetry.

In principle one could include additional terms on
the rhs., such as correctly symmetrized combinations of
vorticity coupling terms involving !

ik

Q

kj

where !

ik

=
@

i

v

k

�@

k

v

i

with v

k

being expressed in terms of Q via the
adopted closure condition (this could lead to less isotropic
structures).

SIMULATION PARAMETERS

Simulate regime a < 0, �2 < 0 with b, �4 > 0 while
D could in principle take both signs (contractile versus
extensile). To estimate a and b, rewrite free energy den-
sity in terms of nematic order parameter S = 2�, using
TrQ2 = S

2
/2 and TrQ4 = S

4
/8,

f =
a

4
S

2 +
b

32
S

4
. (19)

For a < 0, we find minima at S± = ±
p

�4a/b. If we
want a minimum at S = 1, we should fix a = �b/4.
With this convention, the depth of the potential well
is f(S±) = �b/32, where b carries units 1/time, i.e.,
⌧

b

= 1/b determines how rapidly the system is damped

to the ordered state. The typical structure size in the ex-
periments is �0 ⇠ 50µm and the typical flow speed v0 ⇠
1µm/s. To establish local order su�ciently fast, we need
⌧

b

< �0/v0, so ⌧

b

⇠ 5s could be a good choice.
Define ‘vortex’ length scale L

�

=
p
�4/(��2), time

scale T

�

= �4/(��2)2, and speed V

�

= L

�

/T

�

. Choose
�2 < 0 and �4 > 0 such that L

�

matches typical domain
size ⇠ 50µm in experiments, and that V

�

matches typical
flow speed v0 ⇠ 1µm/s.
To estimate a reasonable value for D, assume filament

length ` ⇠ 5µm and approximate velocity D/` by typical
flow speed ⇠ 1µm/s.
To see roughly 100 defects, size of simulation domain

should be 10L
�

⇥ 10L
�

with periodic BCs. Spatial reso-
lution should be of the order of filament length, that is
gridspacing �x = ✏L

�

with ✏ = 1/10 or ✏ = 1/20 could
work reasonably well, corresponding to a total lattice size
100 ⇥ 100 or 200 ⇥ 200, respectively. The time step �t

should be smaller than ✏L

�

/v0 = ✏ ⇥ 5s, i.e. �t = ✏ ⇥ 1s
could work well.
It seems advisable to rescale space and time coordi-

nates in simulations to eliminate two parameters, setting
T

�

= 1 and L

�

⇠ 1 or (L
�

= 2⇡) could be useful.

DEFECT ANALYSIS

Denote by S a spherical area around some point x with
unit tangent vector s = (s
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) and outward-pointing unit
normal vector b = (b
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). Stokes-theorem in 2D for some
vector field n
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Example defects: hedgehog at 0
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unlikely to be created spontaneously, since process re-
quires simultaneous production of a pair of �1/2 defects.



Alternative approach 
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To obtain closed equation, we must express v = (v
k

) in
terms of Q. We discuss two possible choices
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where the constant D is a response coe�cient with units
length2/time. Note the crucial di↵erence between the
two closure conditions: Eq. (16a) assumes that active LC
configurations Q and �Q create flow fields in opposite
directions. By contrast, Eq. (16b) which may also be
written as

v
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= D@
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, (17)

assumes that Q and �Q describe physically equivalent
situations because they have identical spectra (although
the corresponding eigenvectors are swapped).

Adopting (16a), which distinguishes between contrac-
tile and extensile nematics, the equations of motions take
the form
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or, equivalently,
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Q+D[(r ·Q) ·r]Q = �aQ� bQ

3 + (18b)
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Q� �4(r2)2Q

Dynamics conserves the trace, TrQ ⌘ 0. As indicated
above, the velocity term breaks Q ! �Q symmetry, but
could be replaced by (D,Q) ! (�D,�Q) symmetry.

In principle one could include additional terms on
the rhs., such as correctly symmetrized combinations of
vorticity coupling terms involving !

ik

Q

kj

where !
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=
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i

with v

k

being expressed in terms of Q via the
adopted closure condition (this could lead to less isotropic
structures).

SIMULATION PARAMETERS

Simulate regime a < 0, �2 < 0 with b, �4 > 0 while
D could in principle take both signs (contractile versus
extensile). To estimate a and b, rewrite free energy den-
sity in terms of nematic order parameter S = 2�, using
TrQ2 = S

2
/2 and TrQ4 = S

4
/8,

f =
a

4
S

2 +
b

32
S

4
. (19)

For a < 0, we find minima at S± = ±
p

�4a/b. If we
want a minimum at S = 1, we should fix a = �b/4.
With this convention, the depth of the potential well
is f(S±) = �b/32, where b carries units 1/time, i.e.,
⌧

b

= 1/b determines how rapidly the system is damped

to the ordered state. The typical structure size in the ex-
periments is �0 ⇠ 50µm and the typical flow speed v0 ⇠
1µm/s. To establish local order su�ciently fast, we need
⌧

b

< �0/v0, so ⌧

b

⇠ 5s could be a good choice.
Define ‘vortex’ length scale L
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=
p
�4/(��2), time

scale T
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= �4/(��2)2, and speed V

�

= L
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/T

�

. Choose
�2 < 0 and �4 > 0 such that L

�

matches typical domain
size ⇠ 50µm in experiments, and that V

�

matches typical
flow speed v0 ⇠ 1µm/s.
To estimate a reasonable value for D, assume filament

length ` ⇠ 5µm and approximate velocity D/` by typical
flow speed ⇠ 1µm/s.
To see roughly 100 defects, size of simulation domain

should be 10L
�

⇥ 10L
�

with periodic BCs. Spatial reso-
lution should be of the order of filament length, that is
gridspacing �x = ✏L

�

with ✏ = 1/10 or ✏ = 1/20 could
work reasonably well, corresponding to a total lattice size
100 ⇥ 100 or 200 ⇥ 200, respectively. The time step �t

should be smaller than ✏L

�

/v0 = ✏ ⇥ 5s, i.e. �t = ✏ ⇥ 1s
could work well.
It seems advisable to rescale space and time coordi-

nates in simulations to eliminate two parameters, setting
T

�

= 1 and L

�

⇠ 1 or (L
�

= 2⇡) could be useful.

DEFECT ANALYSIS

Denote by S a spherical area around some point x with
unit tangent vector s = (s
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) and outward-pointing unit
normal vector b = (b
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). Stokes-theorem in 2D for some
vector field n
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Example defects: hedgehog at 0
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unlikely to be created spontaneously, since process re-
quires simultaneous production of a pair of �1/2 defects.
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