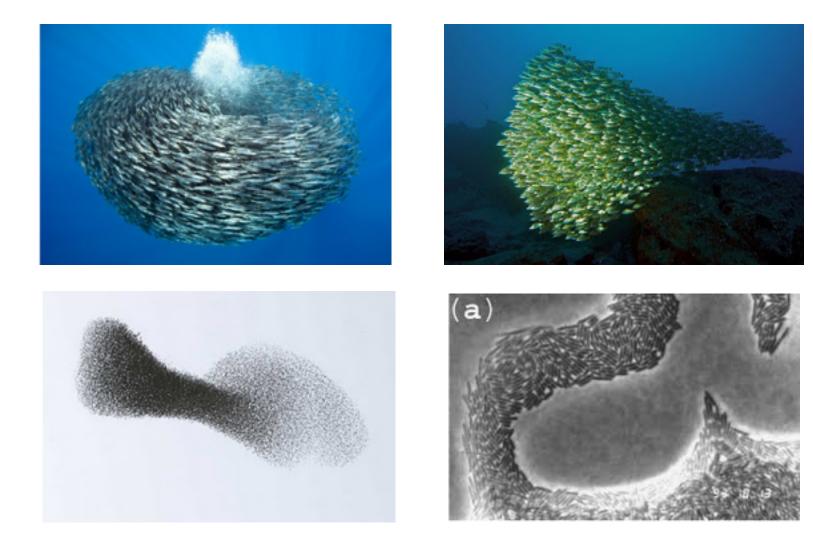
Active matter - overview

18.354 L23

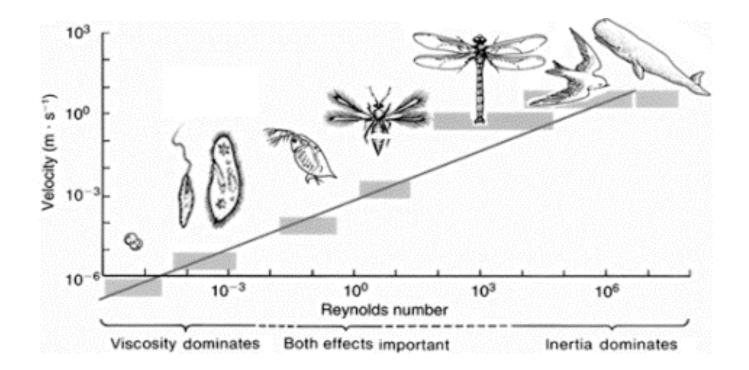
dunkel@math.mit.edu

Active matter



Typical Reynolds numbers

$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu}$$

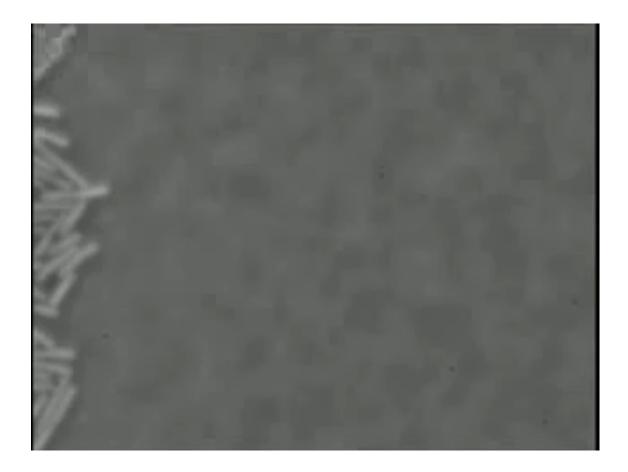


dunkel@math.mit.edu

Birds

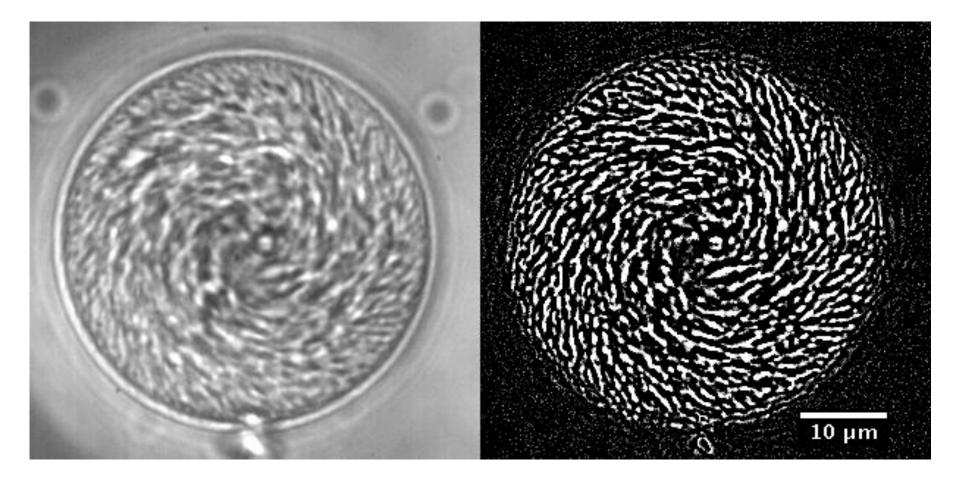
Fish

Bacteria



Berg lab, Harvard

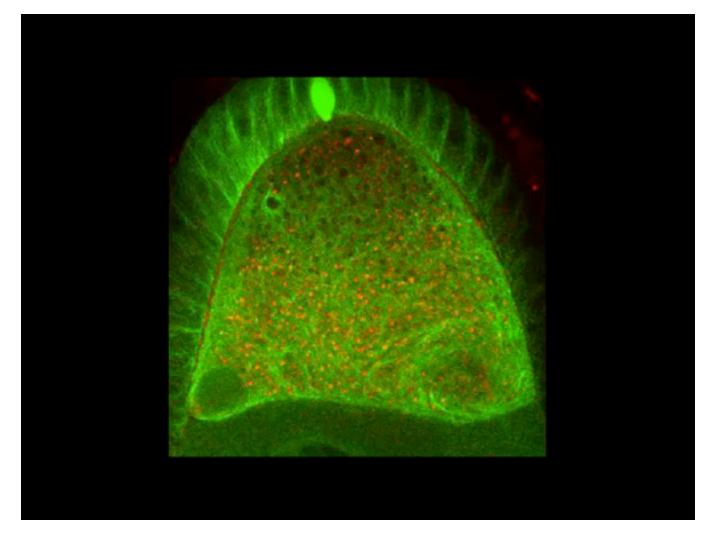
Bacteria



Vortex life time ~ minutes

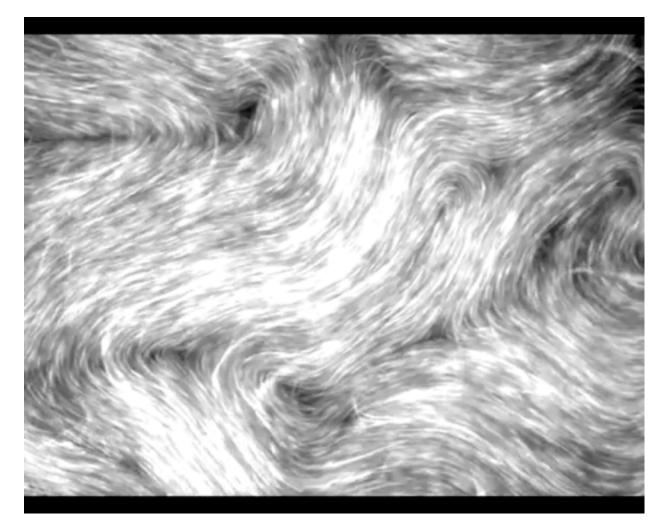
Wioland et al (2013) PRL

Motor-driven filaments



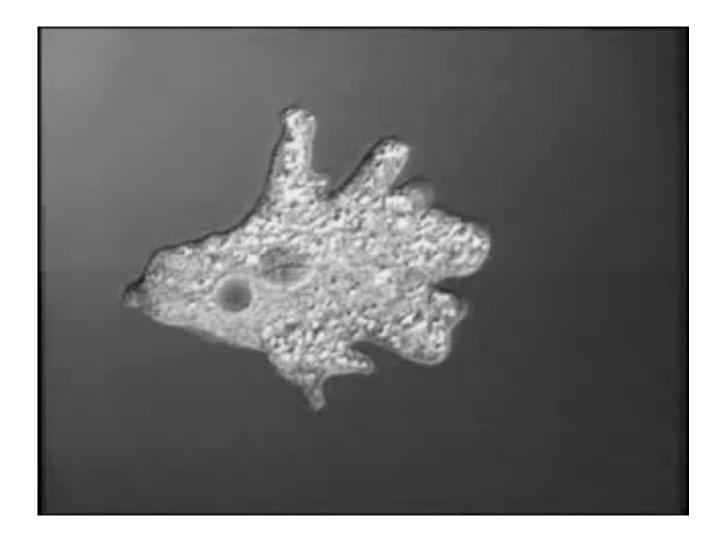
Drosophila embryo, Goldstein lab, Cambridge

Motor-driven filaments



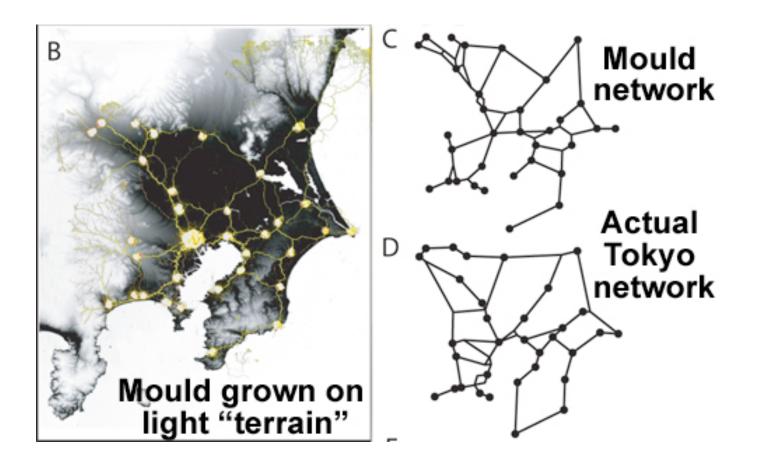
Dogic lab (Brandeis) Nature 2012

Amoeba



Tero et al, Science 2010

Physarum



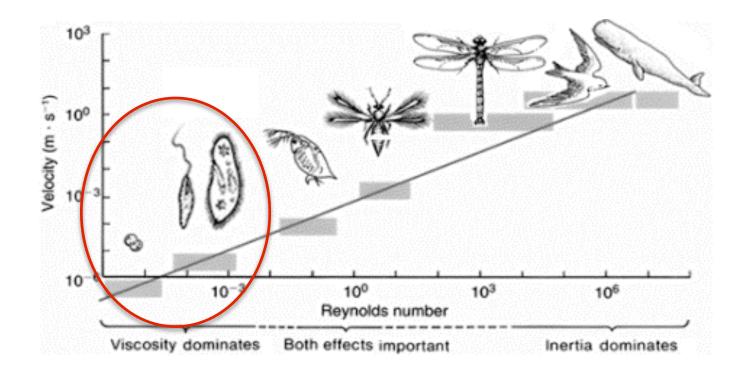
Tero et al, Science 2010

Questions

- universal aspects of collective motion & selforganization ?
- biological functions ?
- information transport ?
- mathematical description? (microscopically, macroscopically, ...)
- effects of boundary conditions ?

Typical Reynolds numbers

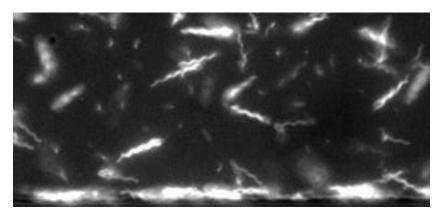
$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu}$$

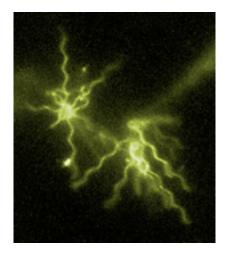


dunkel@math.mit.edu

Bacterial motors

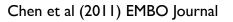
movie: V. Kantsler

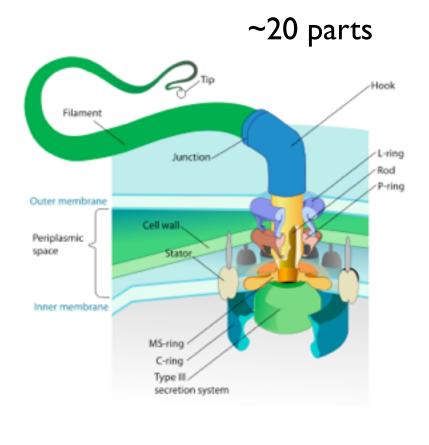




Berg (1999) Physics Today

20 nm

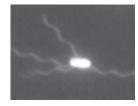




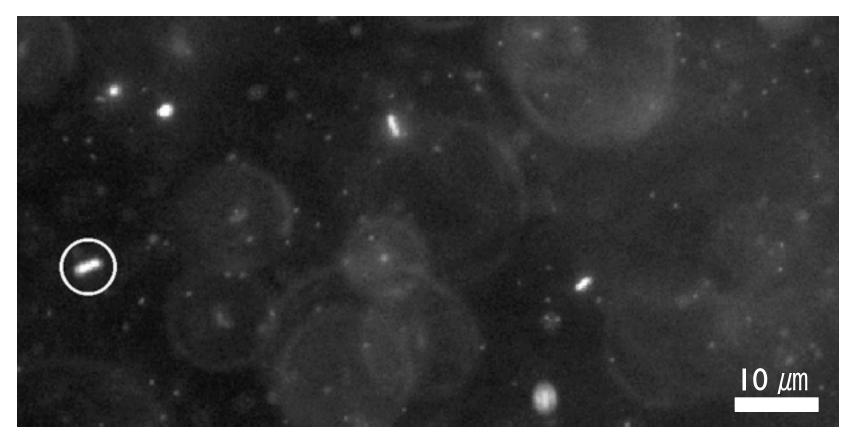
source: wiki

dunkel@math.mit.edu

E. coli (non-tumling)



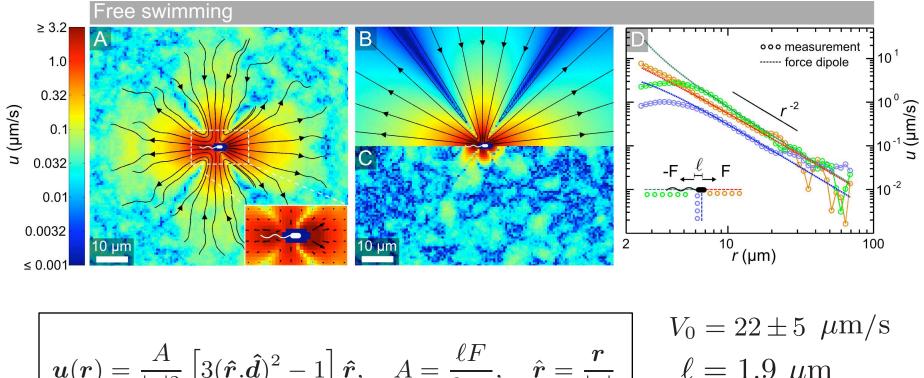
non-tumbling HCB 437



Drescher et al (2011) PNAS

E.coli (non-tumbling HCB 437)





$$\boldsymbol{\iota}(\boldsymbol{r}) = \frac{A}{|\boldsymbol{r}|^2} \begin{bmatrix} 3(\boldsymbol{\hat{r}}.\boldsymbol{\hat{d}})^2 - 1 \end{bmatrix} \boldsymbol{\hat{r}}, \quad A = \frac{\kappa r}{8\pi\eta}, \quad \boldsymbol{\hat{r}} = \frac{\boldsymbol{r}}{|\boldsymbol{r}|}$$

 $\ell = 1.9 \ \mu \mathrm{m}$ F = 0.42 pN

'pusher' dipole

Drescher et al (2011) PNAS

Hydrodynamic scattering

 $oldsymbol{v}\sim rac{A}{r^2}$

 $\omega = \nabla \times \boldsymbol{v} \sim \frac{A}{r^3}$

vorticity

encounter time

HD rotation

rotational diffusion

balance

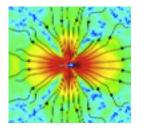
$$r_H \sim \left(\frac{A^2 \tau}{D_r}\right)^{1/6}$$

 $\langle |\Delta \phi|^2 \rangle \sim D_r \tau$

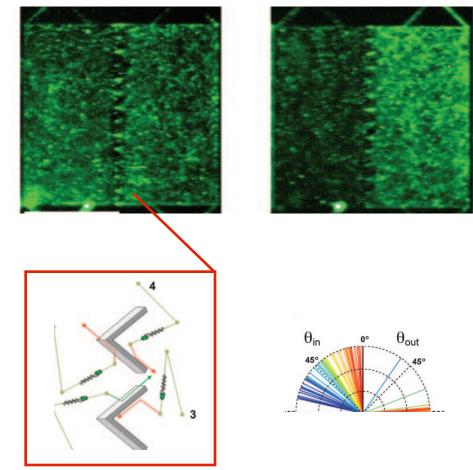
3.3
$$\mu$$
m for *E. coli*

 $D_r = 0.057 \text{ rad}^2/\text{s}$

$$\tau \sim \ell / V$$
$$\langle |\Delta \phi|^2 \rangle \sim (\omega \tau)^2 \sim \left(\frac{A\tau}{r^3}\right)^2$$



Rectification of prokaryotic locomotion

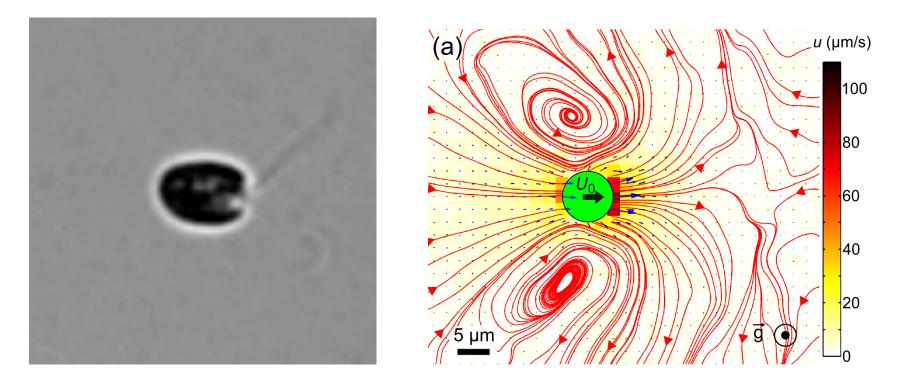


Galadja et al (2009) J Bacteriology

Austin lab, Princeton, 2009

l'Iliī

Chlamydomonas



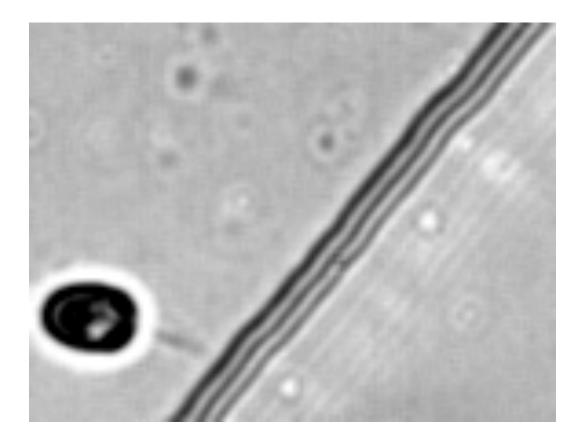
Movie: Jeff Guasto (TUFTS)

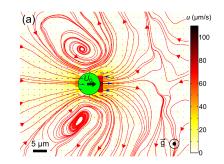
Drescher et al PRL 2010 Guasto et al PRL 2010

'puller'

size ~ 20µm speed ~ 100µm/s beat frequency ~30 Hz

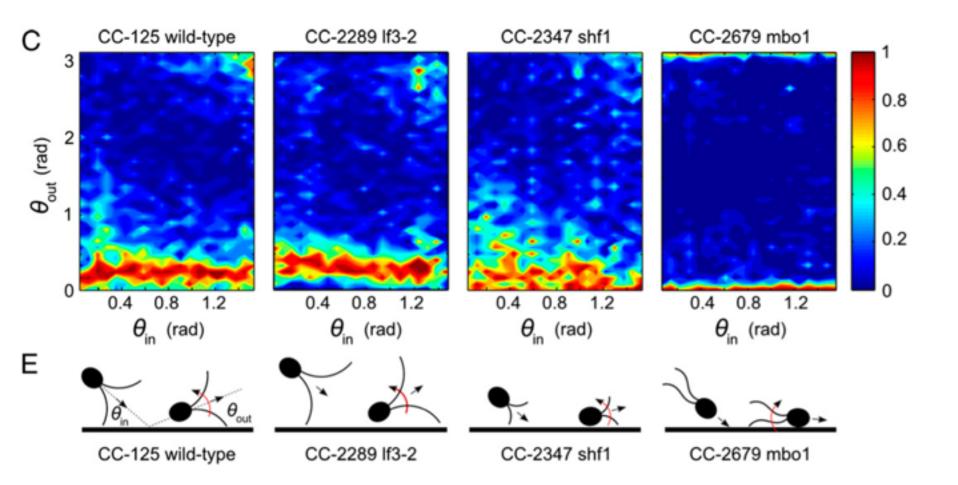
Mechanical control of algal locomotion



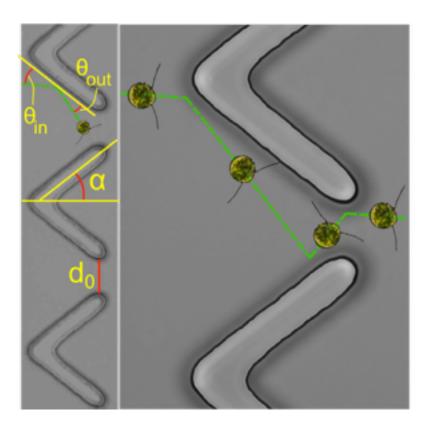


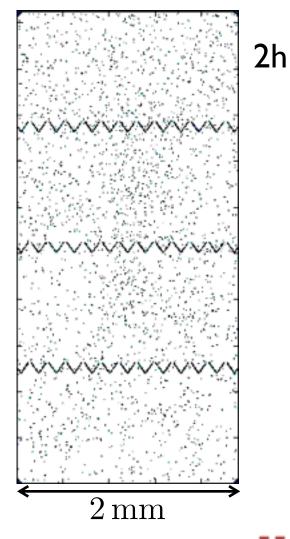
Kantsler, Dunkel, Polin, Goldstein (2012) PNAS

Surface scattering laws



Control of algal locomotion

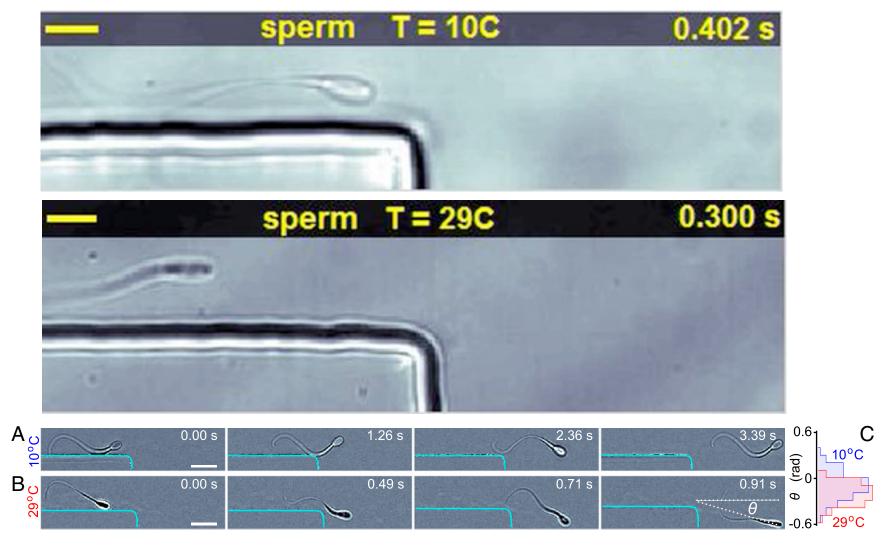




Pliī

Kantsler, Dunkel, Polin, Goldstein (2012) PNAS

Sperm near surfaces

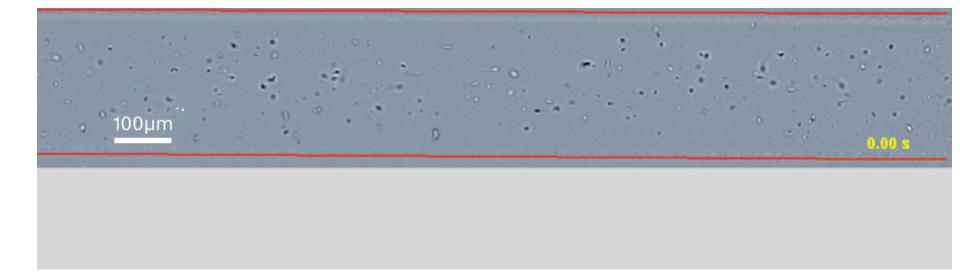


Kantsler, Dunkel, Polin, Goldstein (2012) PNAS

Sperm

Phir

Surface + shear flow

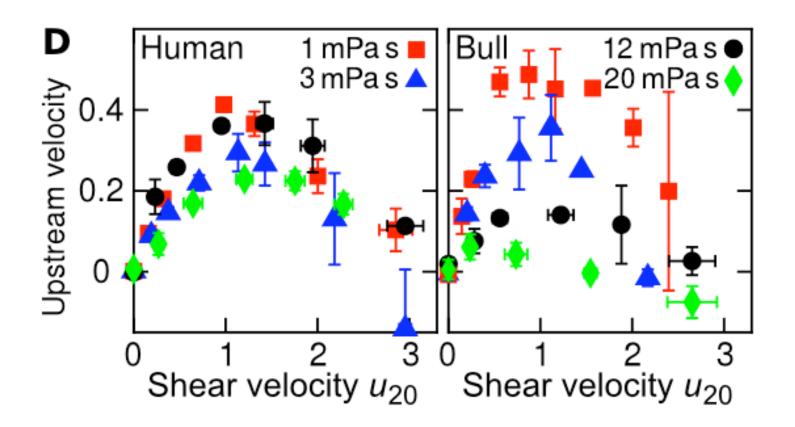


Kantsler et al 2014 (submitted)

Rheotaxis facilitates upstream navigation

В Shear flow $u_v = -\dot{\gamma}z$ х V Wall

Viscosity & shear dependence



long distance navigation by rheotaxis ?

2D minimal model

Resistive force theory

$$0 = F_i = \int_0^S ds \left\| \frac{d\hat{\boldsymbol{C}}(s)}{ds} \right\| f_i(s), \qquad \boldsymbol{f}(s) = \zeta_{||} \left\{ \begin{bmatrix} \boldsymbol{u}(\boldsymbol{C}(s)) - \dot{\boldsymbol{C}}(s) \end{bmatrix} \cdot \boldsymbol{t}(s) \right\} \boldsymbol{t}(s) + \zeta_{\perp} \left\{ \begin{bmatrix} \boldsymbol{u}(\boldsymbol{C}(s)) - \dot{\boldsymbol{C}}(s) \end{bmatrix} \cdot [\boldsymbol{I} - \boldsymbol{t}(s)\boldsymbol{t}(s)] \right\}$$
$$0 = \tau_i = \int_0^S ds \left\| \frac{d\hat{\boldsymbol{C}}(s)}{ds} \right\| \epsilon_{ijk} [C_j(s) - X_j^*] f_k(s) \qquad \zeta_{\perp} \left\{ \begin{bmatrix} \boldsymbol{u}(\boldsymbol{C}(s)) - \dot{\boldsymbol{C}}(s) \end{bmatrix} \cdot [\boldsymbol{I} - \boldsymbol{t}(s)\boldsymbol{t}(s)] \right\}$$

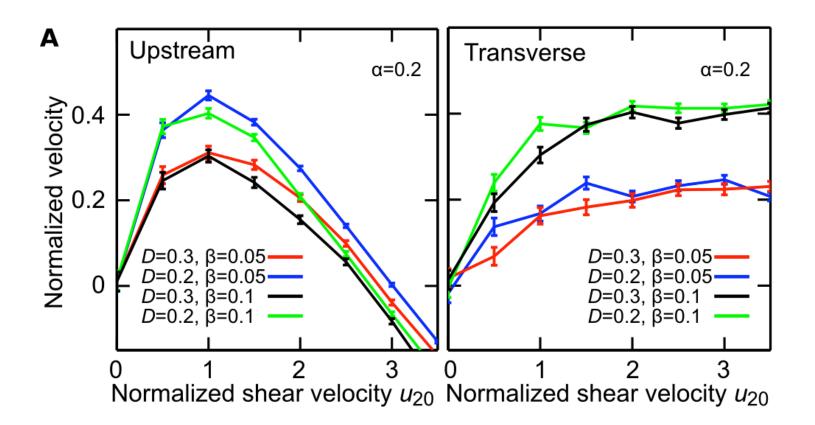
+ some approximations + noise gives to leading order

$$\dot{\boldsymbol{R}} = V\boldsymbol{N} + \sigma \overline{U}\boldsymbol{e}_{y},$$

$$\dot{\boldsymbol{N}} = \sigma \dot{\gamma} \alpha \begin{pmatrix} N_{x} N_{y} \\ N_{y}^{2} - 1 \end{pmatrix} + \sigma \dot{\gamma} \chi \beta \begin{pmatrix} N_{x}^{2} - 1 \\ N_{x} N_{y} \end{pmatrix} + (2D)^{1/2} (\boldsymbol{I} - \boldsymbol{N}\boldsymbol{N}) \cdot \boldsymbol{\xi}(t).$$

Kantsler et al 2014 (submitted)

2D minimal model



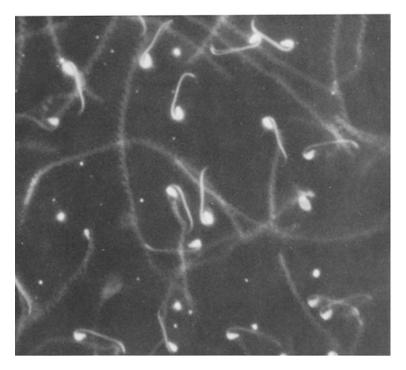
Collective motion

Broken reflection-symmetry at surfaces

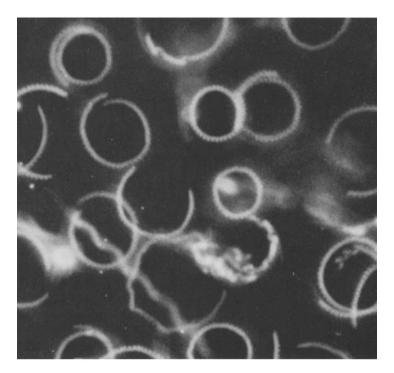
Sea urchin sperm

Gibbons (1980) JCB

in bulk (dilute)



near surface (dilute)



similar for bacteria (E. coli): Di Luzio et al (2005) Nature

2d Swift-Hohenberg model

reflection-symmetry

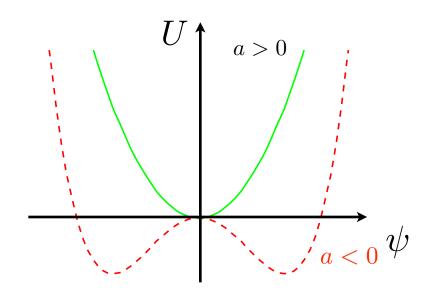
b = 0

 $\psi \mapsto -\psi$

$$\partial_t \psi = -U'(\psi) + \gamma_0 \nabla^2 \psi - \gamma_2 (\nabla^2)^2 \psi$$

$$U(\psi) = \frac{a}{2}\psi^{2} + \frac{b}{3}\psi^{3} + \frac{c}{4}\psi^{4}$$

$$\psi(t, \boldsymbol{x}) = \nabla \times \boldsymbol{v}$$



arxiv: 1208.4464

2d Swift-Hohenberg model

$$\partial_t \psi = -U'(\psi) + \gamma_0 \nabla^2 \psi - \gamma_2 (\nabla^2)^2 \psi$$

$$U(\psi) = \frac{a}{2} \psi^2 + \frac{b}{3} \psi^3 + \frac{c}{4} \psi^4$$

$$(t, \mathbf{x}) = \nabla \times \mathbf{v}$$

$$U(t, \mathbf{x}) = \nabla \times \mathbf{v}$$

reflection-symmetry

$$b = 0$$

$$\psi \mapsto -\psi \quad \psi/\psi_{m}$$

$$\int_{0}^{1} \int_{0}^{a=-0.2, b=0} \int_{0}^{a=-0.2, b=0} \int_{0}^{1} \int_{0}^$$

arxiv: 1208.4464 2d Swift-Hohenberg model broken reflection-symmetry $b \neq 0$ $\partial_t \psi = -U'(\psi) + \gamma_0 \nabla^2 \psi - \gamma_2 (\nabla^2)^2 \psi$ $\psi \mapsto -\psi$ a > 0 $U(\psi) = \frac{a}{2}\psi^2 + \frac{b}{3}\psi^3 + \frac{c}{4}\psi^4$ $\psi(t, \boldsymbol{x}) = \nabla \times \boldsymbol{v}$

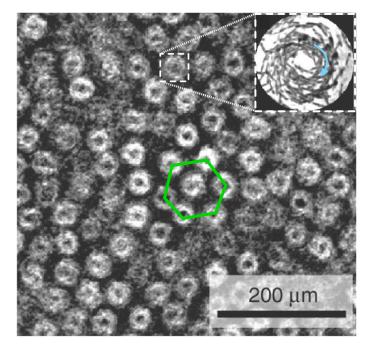
arxiv: 1208.4464 2d Swift-Hohenberg model broken reflection-symmetry $b \neq 0$ $\partial_t \psi = -U'(\psi) + \gamma_0 \nabla^2 \psi - \gamma_2 (\nabla^2)^2 \psi$ $\psi \mapsto -\psi$ $\psi/\psi_{\rm m}$ 1 $U(\psi) = \frac{a}{2}\psi^2 + \frac{b}{3}\psi^3 + \frac{c}{4}\psi^4$ 0 $\frac{1}{M}$ 0.5 -1 $\psi(t, \boldsymbol{x}) = \nabla \times \boldsymbol{v}$ -2 $a = 0.2, b = 0.5, L = 18\pi, \gamma_0 = -1$ 0 0.50 x/L

arxiv: 1208.4464

2d Swift-Hohenberg model

y/L

Sea urchin sperm cells near surface (high concentration)



Riedel et al (2007) Science

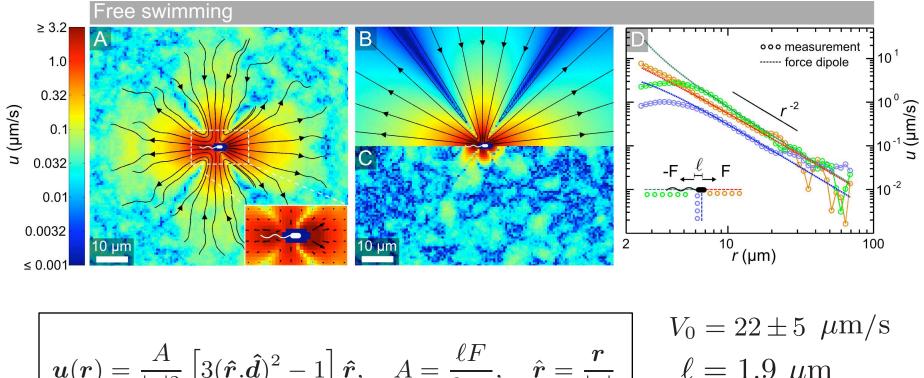
odel		
	broken	
reflection-symmetry		
	$b \neq 0$	
	$\psi \not\mapsto -\psi$	$\psi/\psi_{ m m}$
$1 \simeq c$		1
		0 0
0.5		C · · -1
a = 0	2, $b = 0.5$, $L = 18\pi$, $\gamma_0 =$	
$0 \frac{a - 0.2}{0}$		
0	0.5	1
	x / L	

Active polar fluids

(things with a head and tail)

E.coli (non-tumbling HCB 437)





$$\boldsymbol{\iota}(\boldsymbol{r}) = \frac{A}{|\boldsymbol{r}|^2} \begin{bmatrix} 3(\boldsymbol{\hat{r}}.\boldsymbol{\hat{d}})^2 - 1 \end{bmatrix} \boldsymbol{\hat{r}}, \quad A = \frac{\kappa r}{8\pi\eta}, \quad \boldsymbol{\hat{r}} = \frac{\boldsymbol{r}}{|\boldsymbol{r}|}$$

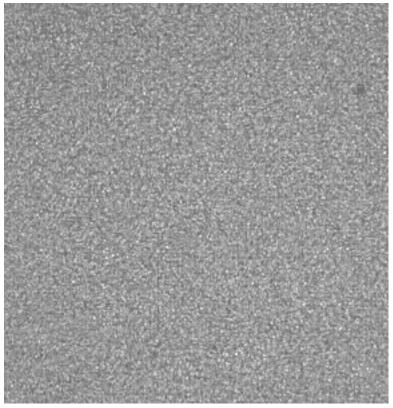
 $\ell = 1.9 \ \mu \mathrm{m}$ F = 0.42 pN

'pusher' dipole

Drescher et al (2011) PNAS

Active polar fluids

B. subtilis



bright field

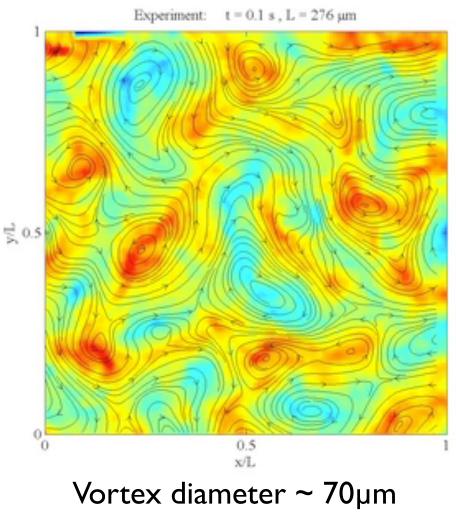
Wensink et al PNAS 2012

fluorescence

Dunkel et al PRL 2013

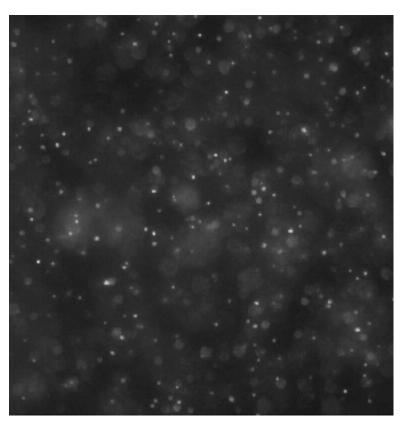
Bacterial 'turbulence'

PIV



Vortex life time ~ 1 sec

tracers

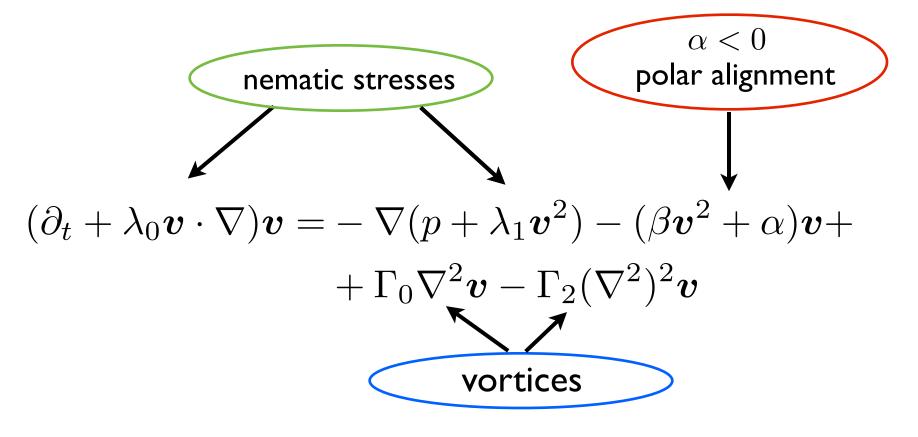


fluorescence

Dunkel et al PRL 2013

Minimal continuum theory for bacterial velocity field

incompressibility $abla \cdot oldsymbol{v} = 0$



PNAS 2012

New J Phys 2013

Isotropic fixed-point $(p, v) = (p_0, 0)$

$$0 = \mathbf{k} \cdot \boldsymbol{\varepsilon}$$

$$\sigma \boldsymbol{\varepsilon} = -i\mathbf{k}\eta - \alpha \boldsymbol{\varepsilon} - \Gamma_0 k^2 \boldsymbol{\varepsilon} - \Gamma_2 k^4 \boldsymbol{\varepsilon}$$

$$(\eta, \varepsilon) = (\hat{\eta}, \hat{\varepsilon}) e^{i\mathbf{k} \cdot \mathbf{x} + \sigma t}$$
$$\sigma(\mathbf{k}) = -(\alpha + \Gamma_0 k^2 + \Gamma_2 k^4)$$

Polar fixed-point $(p, v) = (p_0, v_0)$

$$\begin{array}{rcl} 0 & = & \boldsymbol{k} \cdot \hat{\boldsymbol{\varepsilon}}, & & |\boldsymbol{v}_0| = \sqrt{|\alpha|/\beta} \\ \sigma \ \hat{\boldsymbol{\varepsilon}} & = & -i(\hat{\eta} - 2v_0\lambda_1\hat{\varepsilon}_{||})\boldsymbol{k} + \boldsymbol{A}\hat{\boldsymbol{\varepsilon}}, & \lambda_0 = 1 - S_1 \end{array}$$

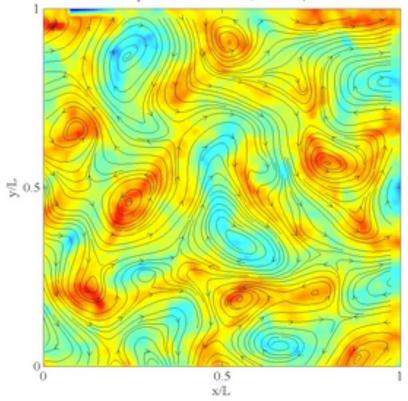
$$\boldsymbol{A} = \begin{pmatrix} 2\alpha & 0\\ 0 & 0 \end{pmatrix} - (\Gamma_0 k^2 + \Gamma_2 k^4 + i\lambda_0 k_x v_0) \boldsymbol{I}$$

Eigenvalues of $A_{\perp} = \Pi(k)A$ determine stability

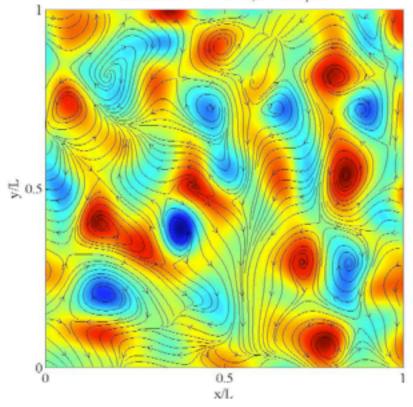
$$\sigma(\boldsymbol{k}) \in \left\{ 0, -\left(\Gamma_0 k^2 + \Gamma_2 k^4 - 2\alpha \frac{k_x^2}{k^2}\right) - i\lambda_0 v_0 k_x \right\}.$$

experiment vs. theory

Experiment: t = 0.1 s, L = 276 µm



Simulation: t = 8.7 s, L = 300 µm

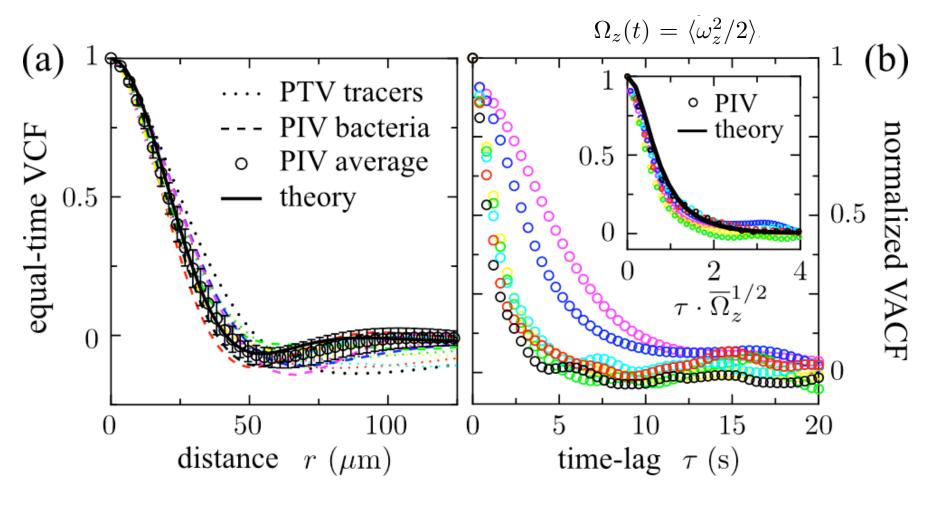


quasi-2D slice

2D slice from 3D simulation

Dunkel et al PRL 2013

Velocity correlations



Vortex diameter ~ 70µm

Vortex life time ~ seconds

Dunkel et al PRL 2013

Continuum theory for bacterial velocity field

incompressibility $\nabla \cdot \boldsymbol{v} = 0$ non-conservative $(\partial_t + \lambda_0 \boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\nabla (p + \lambda_1 \boldsymbol{v}^2) - (\beta \boldsymbol{v}^2 + \alpha) \boldsymbol{v} + \Gamma_0 \nabla^2 \boldsymbol{v} - \Gamma_2 (\nabla^2)^2 \boldsymbol{v}$

Conserved dynamics ?

Flow equations

$$egin{array}{rcl} 0 &=&
abla \cdot oldsymbol{v} \ \partial_t oldsymbol{v} + (oldsymbol{v} \cdot
abla) oldsymbol{v} &=& -
abla p +
abla \cdot oldsymbol{\sigma} \end{array}$$

with stress tensor

$$\boldsymbol{\sigma} = [\Gamma_0 - \Gamma_2(\nabla^2) + \Gamma_4(\nabla^2)^2](\nabla^\top \boldsymbol{v} + \nabla \boldsymbol{v}^\top)$$

Interpretation: effective flow-field for passive solvent + active component that creates non-local stresses

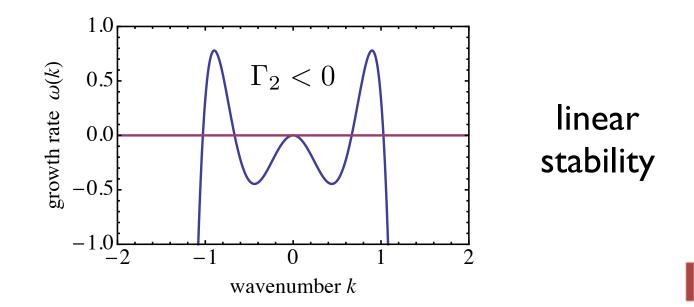
Conserved dynamics ?

Flow equations

 $0 = \nabla \cdot \boldsymbol{v}$ $\partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\nabla p + \nabla \cdot \boldsymbol{\sigma}$

with stress tensor

$$\boldsymbol{\sigma} = [\Gamma_0 - \Gamma_2 (\nabla^2) + \Gamma_4 (\nabla^2)^2] (\nabla^\top \boldsymbol{v} + \nabla \boldsymbol{v}^\top)$$



Conserved dynamics ?

Flow equations

$$\begin{array}{rcl} 0 &=& \nabla \cdot \boldsymbol{v} \\ \partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} &=& -\nabla p + \nabla \cdot \boldsymbol{\sigma} \end{array}$$

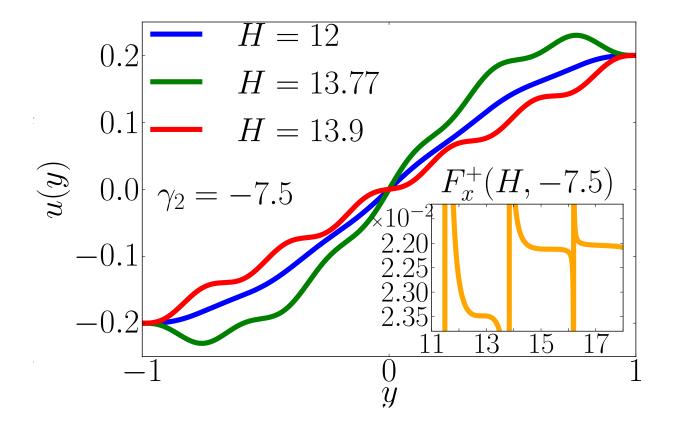
with stress tensor

$$\boldsymbol{\sigma} = [\Gamma_0 - \Gamma_2(\nabla^2) + \Gamma_4(\nabla^2)^2](\nabla^\top \boldsymbol{v} + \nabla \boldsymbol{v}^\top)$$

6th order PDE

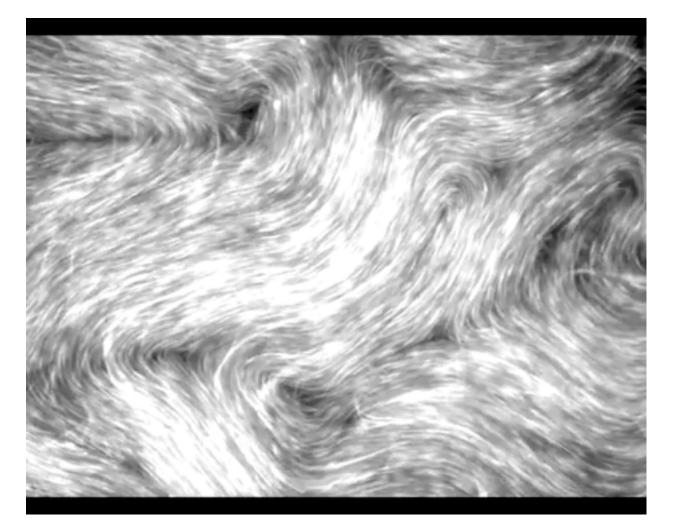
S-type: First and second-order derivatives vanish. W-type: Second and fourth-order derivatives vanish.

Mean field prediction for shear flow between two plates

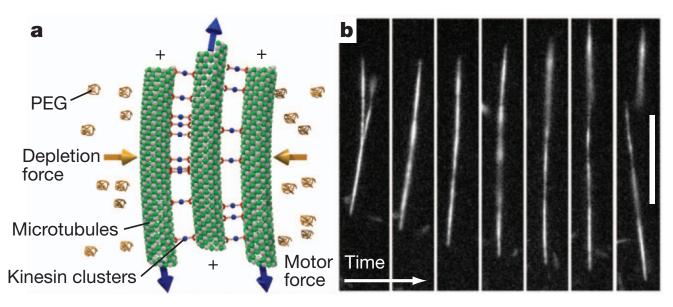


 $u'(\pm H/2) = u''(\pm H/2) = 0$

+ periodic BCs in other directions



Dogic lab (Brandeis) Nature 2012

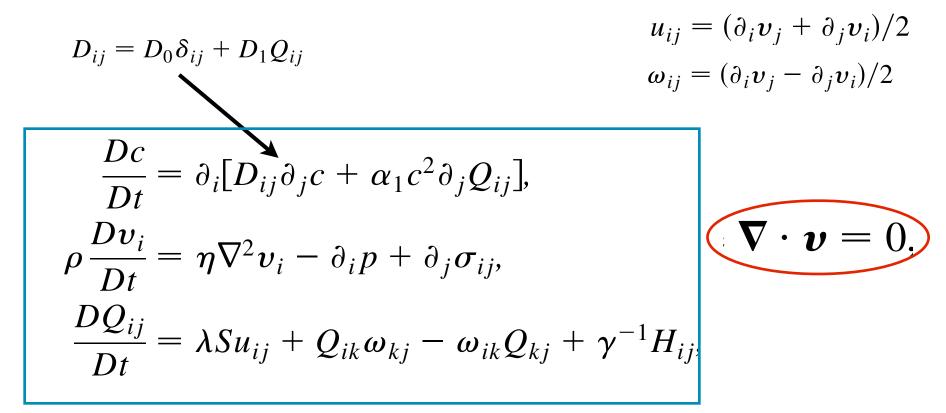


Dogic lab (Brandeis) Nature 2012

no head or tail \Rightarrow Q-tensor order-parameter

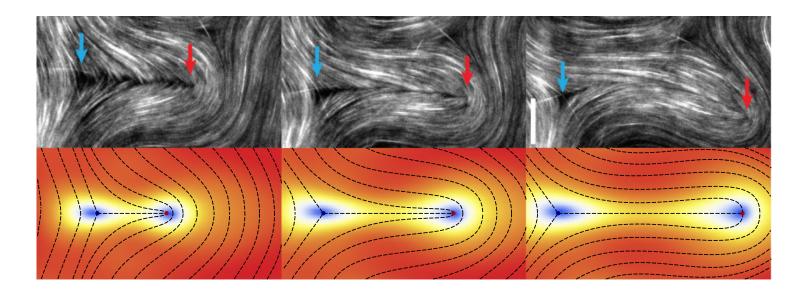
$$Q_{ij} = Q_{ji}$$
, $\operatorname{Tr} Q = 0$ $Q = \begin{pmatrix} \lambda & \mu \\ \mu & -\lambda \end{pmatrix}$

$$\Delta = \sqrt{\lambda^2 + \mu^2}, \qquad \Lambda^{\pm} = \pm \Delta$$



$$H_{ij} = -\delta F / \delta Q_{ij}, \qquad F / K = \int dA \left[\frac{1}{4} (c - c^*) \mathrm{tr} Q^2 + \frac{1}{4} c (\mathrm{tr} Q^2)^2 + \frac{1}{2} |\nabla Q|^2 \right],$$

Giomi et al PRL 2012



$$\nabla \cdot \boldsymbol{v} = 0,$$

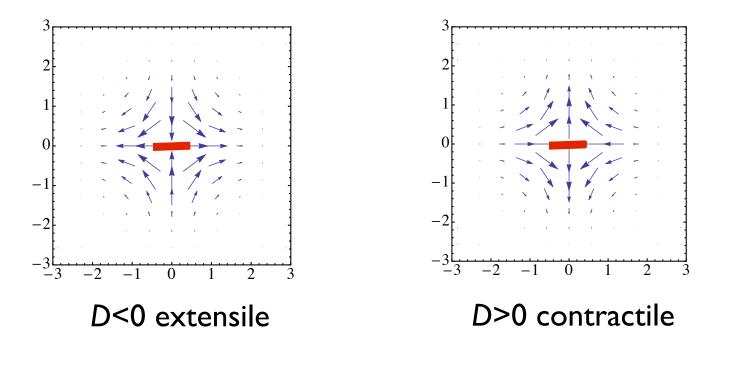
not consistent with experimental setup

Giomi et al PRL 2012

Alternative approach

 $\frac{\delta \mathcal{F}}{\delta Q_{ij}}$ $\partial_t Q_{ij} + v_k \partial_k Q_{ij} =$

$v_k = D \partial_n Q_{nk}$



Alternative approach

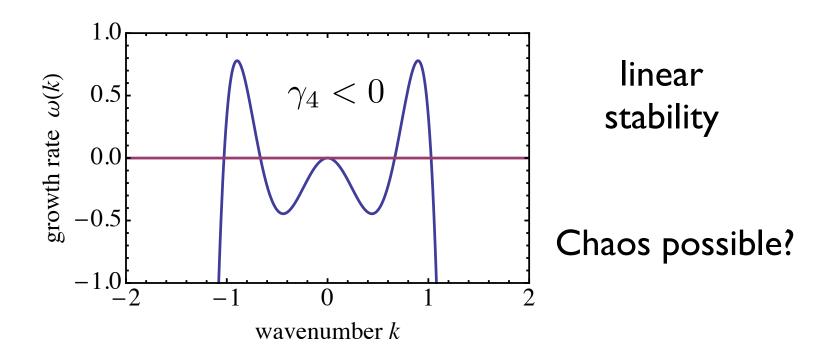
$$\partial_t Q_{ij} + v_k \partial_k Q_{ij} = -\frac{\delta \mathcal{F}}{\delta Q_{ij}}$$

 $v_k = D \partial_n Q_{nk}$

$$\partial_t Q + D[(\nabla \cdot Q) \cdot \nabla]Q = -aQ - bQ^3 + \gamma_2 \nabla^2 Q - \gamma_4 (\nabla^2)^2 Q + \gamma_6 (\nabla^2)^3 Q$$

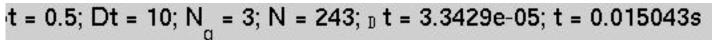
Alternative approach

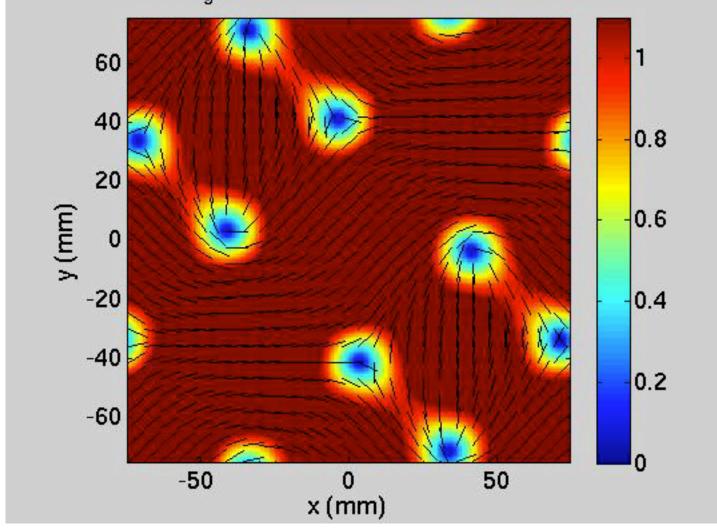
$$\partial_t Q + D[(\nabla \cdot Q) \cdot \nabla]Q = -aQ - bQ^3 + \gamma_2 \nabla^2 Q - \gamma_4 (\nabla^2)^2 Q + \gamma_6 (\nabla^2)^3 Q$$



Prelim. simulation results

D<0 extensile





Prelim. simulation results D>0 contractile

t = 0.5; Dt = -5; N_a = 3; N = 243; $_{D}$ t = 6.6857e-05; t = 0.030086s 1 60 40 0.8 20 y (mm) 0.6 0 -20 0.4 -40 0.2 -60 50 -50 0 x (mm)