18.354J Nonlinear dynamics II: Continuum systems

Jörn Dunkel dunkel@mit.edu

Office: E17-412

Mondays and Wednesdays 3.00-4.30pm

Office Hours Mondays 4.30-5.30pm (E17-412)

Prerequisites: 18.353J or permission from instructor

Q: What is Physical Applied Maths?

PAM is like cooking...

Often the ingredients (physical principles) are already known but not the way (mathematics/equations/couplings) to turn them into a nice dinner

With some creativity, many new dishes (novel phenomena) can be created (discovered/understood)

Why study Applied Maths?

- intellectual challenge
- obtain general understanding of physical phenomena and the world around us
- be able to make prediction about physical processes
- development of general tools to be applied to other fields

'Eureka, Eureka' (Archimedes)

c. 287 BC - c. 212 BC

'Mathematic is written for mathematicians' (Nicolaus Copernicus)

19 February 1473 - 24 May 1543

'It would be better for the true physics if there were no mathematicians on earth' (Daniel Bernoulli)

8 February 1700 - 17 March 1782

'Now I will have less distraction' (Leonhard Euler, upon losing the use of his right eye)

15 April 1707 – 18 September 1783

'I do not know' (Joseph-Louis Lagrange, summarizing his life's work)

25 January 1736 - 10 April 1813

'Nature laughs at the difficulties of integration' (Pierre-Simon Laplace)

23 March 1749 - 5 March 1827

'Mathematicians are born, not made' (Henri Poincaré)

29 April 1854 – 17 July 1912

'Prediction is very difficult, especially about the future' (Niels Bohr)

7 October 1885 - 18 November 1962

'It is more important to have beauty in one's equations than to have them fit experiment' and 'This result is too beautiful to be false' (Paul Dirac)

8 August 1902 – 20 October 1984

'To those who do not know mathematics it is difficult to get across a real feeling as to the beauty, the deepest beauty, of nature' (Richard Feynman)

May 11, 1918 - February 15, 1988

BSc 1939

Our course

1. 2. 3. 4.	W M W M W	Feb Feb Feb Feb Feb	5 10 12 17 19	Introduction & Kepler's Laws Random walkers Diffusion equation: Fourier method — PRESIDENTS DAY — Diffusion equation: Green's function method		1. Diffusion: From Micro to Macro
5.6.	M W	Feb Feb	$\begin{array}{ c c c } 24\\ 26\end{array}$	Towards hydrodynamics Navier-Stokes equations	PS1 due	2. Hvdrodvnamics.
7. 8	M	Mar		Impulsively moved boundary (Stokes' 1st probl.)		Navier-Stokes Eqns.
0. Q	M	Mar	10	Dimensional analysis	PS2 due	
10.	W	Mar	10 12	Scalings	1 52 due	3. Dimensional analysis
11.	M	Mar	17	Calculus of variations		
12.	W	Mar	19	Surface tension		4. Calculus of Variations:
	MW	Mar	24-28	— SPRING VACATION —		Surface tension
13.	М	Mar	31	Elasticity	Proposal & PS3 due	Elasticity
14.	W	Apr	2	Deformation of a thin beam		
15.	М	Apr	7	Singular perturbations	PS4 due	
16.	W	Apr	9	Towards airplane flight		5 Singular perturbations:
17.	M	Apr	14	Classical airfoil theory I		Theory of flight
18.	W	Apr	16	Classical airfoil theory II	Mid-term Posted	Boundary-Lavers
10	M	Apr	21	— MIT HOLIDAY (PATRIOTS DAY) —		
19.		Apr	$\begin{vmatrix} 23 \\ 20 \end{vmatrix}$	Classical airfoil theory III	Mid-term due	
20.	M	Apr	28	Boundary layers		
21.		Apr		Rotating flows		6. Rotating Flows
22.		May	5	Ekman layer and spin-down		7 Jastabilitias
23.		May	10	Final angiests, student angestations		7. Instabilities
24.		May	12	Final projects: student presentations	Project report due	7. Final Projects
20.	vv	wiay	14	r mai projects. student presentations	r roject report due	•

Ptolemy circa.85 (Egypt) -165 (Alexandria) <u>Greek geocentric view of the universe</u>

DE MOTIB. STELLÆ MARTIS

Tycho Brahe 1546 (Denmark) - 1601 (Prague)

last of the major <u>naked eye</u> astronomers

"geo-heliocentric" system Johannes Kepler 1571 - 1630 (Germany)

Kepler's 3 laws

Wednesday, February 5, 14

Isaac Newton 1643 - 1727 (England) $|\mathbf{F}_{12}| = G \frac{m_1 m_2}{r^2}$

Wednesday, February 5, 14

Friedrich Bessel

1784 (Germany) - 1846 (Prussia)

Cygni 61 d~10.3 ly

gravitational many-body problem: prediction of Sirius B, Bessel functions

