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14 Surface Tension

Moving on, we shall now use our knowledge of variational principles to investigate the shape
of water droplets and soap films. The surface S of a droplet has energy

E[S] = γ

∫
dS (1)

with the coefficient of proportionality γ being the surface tension. The questions we now
want to answer are: What are the equilibrium shapes predicted by this energy? How can
we incorporate constraints, such as fixed volume, into the problem? Is the solution stable?
First we will look at the problem in one dimension, and then extend our analysis to many
dimensions.

14.1 Two-dimensional bubble

Consider a two-dimensional bubble, corresponding to an areaB confined by a non-intersecting
closed path ∂B in the plane. The surface energy is

E[y] = γ

∫
∂B
ds = γ

∫
∂B

√
1 + y′2dx. (2)

We have already solved the problem to determine the curve that connects two points while
satisfying δE/δy = 0, the solution being a straight line. Now we need to introduce the
constraint of a fixed volume, and this is done by adding a Lagrange multiplier. Thus we
consider the functional

E[y] = γ

∫
∂B

√
1 + y′2dx− λ

∫
B
y dx (3)

the second integral being the volume of the bubble. We consider a deformation of the
surface y + δy and determine that

δE = E[y + δy]− E[y] ∼ γ
∫
δy

(
y′√

1 + y′2

)′
dx− λ

∫
δydx. (4)

Since δy is arbitrary, the condition for energy minimisation (δE = 0) is(
y′√

1 + y′2

)′
= λ. (5)

The term on the left hand side is called the mean curvature of the surface, and the solution
is readily shown to be a circle (as we expect). You can test this yourself since you know the
equation of a circle is just x2 + y2 = r2.
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14.2 Soap film between two hoops

Now lets be a little more ambitious and consider a cylindrically symmetric two dimensional
surface, confined by two parallel rings located at x = −a and x = a. Given the axi-symmetry
of the problem, we may express the surface energy is

E = γ

∫
A
dA = γ

∫
A

2πr ds. (6)

The arclength ds is simply
√

1 + r′2dx, and we see that through symmetry we have reduced
this to a one dimensional problem. The problem to be solved is now

E[r] = 2πγ

∫ a

−a
r
√

1 + r′2 dx
!

= min. (7)

Putting the integrand into the Euler-Lagrange equation gives√
1 + r′2 − d

dx

(
rr′√

1 + r′2

)
= 0 (8)

which can be simplified to
rr′′ − r′2 = 1 (9)

We can see immediately that a particular solution of this equation is given by the catenoid1

r = a cosh(x/a), (10)

which corresponds to the special case R/a = cosh(1). For other ratios, we need to solve (9)
numerically.

14.3 Rayleigh-Plateau Instability

In the previous section, we considered the shape of a soap film, stretched between two
hoops. We know, however, that the film breaks after a certain extension, but it is not clear
that there is anything in our problem to account for this. What is wrong? To answer this
question we must analyze the stability of the solution we have found. This is a topic that
we will address in more detail later on in the course, but shall touch upon now.

In one-dimensional calculus we check if our extremum is a maximum or a minimum, and
if it is the former it is unstable. We now adopt the same approach in variational calculus,
and consider the instability of a thin cylinder of fluid. This was studied by Plateau in the
1870’s, who was interested in the formation of droplets from a jet. In cylindrical coordinates
y(x) = r0 for the perfect cylinder. The cylinder has surface energy and we look for an
extremum by considering the functional

E[r] = γ

∫
2πr

√
1 + r′2 dx− λ

∫
πr2 dx, (11)

1You can find more soap film solutions at http://www.susqu.edu/brakke/evolver/examples/cat/cat

enoids.html. There, you will also download a surface evolver code to investigate minimal surfaces in more
detail.
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where the second part is just the volume constraint.
We shall perturb the shape and show that if the wavelength of disturbance is greater

than 2πr0, the energy of the system decreases. Using the analysis from above, we know
that an extremum is required to satisfy the Euler-Lagrange equations

γ

(
1√

1 + r′2
− r r′′

(1 + r′2)
3
2

)
= λr. (12)

For the perfect cylinder y(x) = r0 is a solution with λ = γ/r0. Note that λ has dimensions
of force/area, and is in fact the pressure. We now consider a perturbation such that

r(x) = r0 + ε cos kx. (13)

This perturbation is in some sense arbitrary, because any perturbation can be decomposed
into sines and cosines. Thus

E[r] = γ

∫ [
2π(r0 + ε cos kx)

√
1 + ε2k2 sin2 kx− π

r0
(r0 + ε cos kx)2

]
dx. (14)

Assuming that ε is small, we can expand the square root, yielding

E[r] = γ

∫ [
2π(r0 + ε cos kx)

(
1 +

1

2
ε2k2 sin2 kx

)
− π

r0
(r0 + ε cos kx)2

]
dx. (15)

Expanding everything out, we find that terms linear in ε cancel out, and we are left with

E[r] = γ

∫
πr0dx+ ε2γπ

∫ [
r0k

2 sin2 kx− cos2 kx

r0

]
dx. (16)

The first term corresponds to the energy of the undeformed problem, so we are really
interested in the sign of the second integral. If it is positive then the energy is increased
as a result of the perturbation, and the system will be stable. However, if the integral is
negative, then by perturbing the system the energy is decreased, and the system must be
unstable.

Since the disturbance is periodic, we integrate over one wavelength, 2π/k, to determine
the energy per wavelength. We know that∫ 2π

0
dx sin2 kx =

∫ 2π

0
dx cos2 kx =

π

k
, (17)

so that the energy change, δE, is

δE = ε2γπ2
(
r0k −

1

r0k

)
. (18)

So now we see that if r0k > 1 the system is stable, because δE is positive. However, if r0k < 1
then δE is negative and the system is unstable. Since k = 2π/λ this can be rearranged
to say that the system is unstable to wavelengths λ greater 2πr0, the circumference of
the cylinder. This was Plateau’s results, which Rayleigh found to be wrong by a factor
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of
√

2, due to hydrodynamic effects within the cylinder (i. e.λ = 2
√

2πr0 is the correct
answer). The physical reasoning arises from the fact that by perturbing the cylinder you
may be increasing the length of the surface along the cylinder, but you are reducing the
cross sectional area. It is the trade off between these two that determines the stability.

So does this answer our question of why the soap film breaks? Perhaps. You see, if
the distance between the two hoops is less than the 2πr0, then the system is not open to
long wavelength perturbations, and is therefore stable. As soon as the separation exceeds
the critical wavelength, instability sets in and the bubble breaks. Note, however, that a
critical part of our stability analysis relied on the constraint of constant volume to determine
instability. With the soap film this is not present, so perhaps an alternative mechanism is
responsible (e.g., possibly the shape of the soap film between the two hoops becomes so
eccentric that surfaces in the middle touch, and there is a pinch off?). What would happen
if the ends of the two hoops were closed, so that the volume constraint did then apply? Our
stability analysis would now seem more relevant. The only way to check is to now go do
some experiments (a good course project!).
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