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9 The coffee cup (Acheson, pp. 42-46)

Let’s try and apply our knowledge of fluid dynamics to a real observation, to test whether
the theory actually works. We shall consider the problem you have in the second problem
set: how long does it take a cup of coffee (or glass of water) to spin down if you start by
stirring it vigorously? To proceed, we need a model of a coffee cup. For mathematical
simplicity, let’s just take it to be an infinite cylinder occupying r ≤ R. Suppose that at
t = 0 the fluid and cylinder are spinning at an angular frequency ω, and then the cylinder
is suddenly brought to rest. Assuming constant density, we expect the solution to be
cylindrically symmetric

p(x, t) = p(r, t) , u(x, t) = uφ(r, t)eφ, (1)

with only a component of velocity in the angular direction eφ. This component will only
depend on r, not the angular coordinate or the distance along the axis of the cylinder
(because the cylinder is assumed to be infinite).

We shall just plug the assumed functional form into the Navier-Stokes equations and see
what comes out. Before tackling this, we need to deal with one mathematical complication;
how to write the equations in cylindrical coordinates. These equations are written out
completely in Acheson (p. 42). We will discuss their various features in due course. Before,
let us briefly recall how vector fields and derivatives can be decomposed in Cartesian and
cylindrical coordinate systems.

Cartesian coordinates In a global orthornormal Cartesian frame {ex, ey, ez}, the po-
sition vector is given by x = xex + yey + zez, and accordingly the flow field u(x) can be
represented in the form

u(x) = ux(x, y, z) ex + uy(x, y, z) ey + uz(x, y, z) ez. (2a)

The gradient vector is given by

∇ = ex∂x + ey∂y + ez∂z, (2b)

and, using the orthonormality ej · ek = δjk, the Laplacian is obtained as

∆ = ∇ · ∇ = ∂2x + ∂2y + ∂2z . (2c)

One therefore finds for the vector-field divergence

∇ · u = ∂iui = ∂xux + ∂yuy + ∂zuz (2d)

and the vector-Laplacian

∆u = ∂i∂iu =

∂2xux + ∂2yux + ∂2zux
∂2xuy + ∂2yuy + ∂2zuy
∂2xuz + ∂2yuz + ∂2zuz

 . (2e)
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Cylindrical coordinates The local cylindrical basis vectors {er, eφ, ez} are defined by

er = cosφex + sinφey , eφ = − sinφex + cosφey , φ ∈ [0, 2π) (3a)

and they form a orthonormal system ej · ek = δjk, where now i, j = r, φ, z. The volume
element is given by

dV = r sinφdr dφ dz. (3b)

In terms of cylindrical basis system, the position vector x can be expressed as

x = rer + zez , r =
√
x2 + y2 (3c)

and the flow field u(x) can be decomposed in the form

u(x) = ur(r, φ, z) er + uφ(r, φ, z) eφ + uz(r, φ, z) ez. (3d)

The gradient vector takes the form

∇ = er∂r + eφ
1

r
∂φ + ez∂z, (3e)

yielding the divergence

∇ · u =
1

r
∂r(rur) +

1

r
∂φuφ + ∂zuz. (3f)

The Laplacian of a scalar function f(r, φ, z) is given by

∇2f =
1

r
∂r(r∂rf) +

1

r2
∂2φf + ∂2zf (3g)

and the Laplacian of a vector field u(r, φ, z) by

∇2u = Lrer + Lφeφ + Lzez (3h)

where

Lr =
1

r
∂r(rur) +

1

r2
∂2φur + ∂2zur −

2

r2
∂φuφ −

1

r2
ur (3i)

Lφ =
1

r
∂r(ruφ) +

1

r2
∂2φuφ + ∂2zuφ +

2

r2
∂φur −

1

r2
uφ (3j)

Lz =
1

r
∂r(ruz) +

1

r2
∂2φuz + ∂2zuz (3k)

Compared with the scalar Laplacian, the additional terms in the vector Laplacian arise
from the coordinate dependence of the basis vectors.

Similarly, one finds that, the r-component of (u·∇)u is not simply (u·∇)ur, but instead

er · [(u · ∇)u] = (u · ∇)ur −
1

r
u2φ. (4)

Physically, the term u2φ/r corresponds to the centrifugal force, and it arises because u =
urer + uφeφ + uzez and some of the unit vectors change with φ (e.g., ∂φeφ = −er).
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Returning to the problem of the coffee cup, let’s put our ansatz p = p(r, t) and u =
(0, uφ(r, t), 0), which satisfies ∇ · u = 0, into the cylindrical Navier-Stokes equations. The
radial equation for er-component becomes

u2φ
r

=
∂p

∂r
. (5a)

Physically this represents the balance between pressure and centrifugal force. The angular
equation to be satisfied by the eφ-component is

∂uφ
∂t

= ν

(
∂2uφ
∂r2

+
1

r

∂uφ
∂r
−
uφ
r2

)
, (5b)

and the vertical equation is

0 =
1

ρ

∂p

∂z
. (5c)

The last equation of these three is directly satisfied by our solution ansatz, and the first
equation can be used to compute p by simple integration over r once we have found uφ.

We want to solve these equation (5b) with the initial condition

uφ(r, 0) = ωr, (6a)

and the boundary conditions that, for all t > 0,

uφ(0, t) = 0 , uφ(R, t) = 0. (6b)

This is done using separation of variables. Since the lhs. of Eq. (5b) features first-order
time derivative, let’s guess a solution of the form

uφ = e−k
2tF (r). (7)

Putting this into the governing equation (5b) gives the ODE

−k2F = ν

(
F ′′ +

F ′

r
− F

r2

)
(8)

This equation looks complicated. However, note that if the factors of r weren’t in this
equation we would declare victory. The equation would just be F ′′ + k2/νF = 0, which
has solutions that are sines and cosines. The general solution would be Asin(k/

√
νr) +

Bcos(k/
√
νr). We would then proceed by requiring that (a) the boundary conditions were

satisfied, and (b) the initial conditions were satisfied.
We rewrite the above equation as

r2F ′′ + rF ′ +

(
k2

ν
r2 − 1

)
F = 0, (9)

and make a change of variable,
ξ = kr/

√
ν.
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Figure 1: The Bessel function of the first order J1(ξ).

The equation becomes
ξ2F ′′ + ξF ′ +

(
ξ2 − 1

)
F = 0. (10)

Even with the factors of ξ included, this problem is not more conceptually difficult, though
it does require knowing solutions to the equation. It turns out that the solutions are called
Bessel Functions. You should think of them as more complicated versions of sines and
cosines. There is close form of the solution in terms of elementary functions. However,
people usually denote the solution to the Eq. (10) as J1(ξ), named the Bessel function
of first order1. This function is plotted in Fig. 1, satisfies the inner boundary conditions
J1(0) = 0. For more information, see for example the book Elementary Applied Partial
Differential Equations, by Haberman (pp. 218-224).

Now let’s satisfy the boundary condition uφ(R, t) = 0. Since we have that

uφ = AJ1(ξ) = AJ1(kr/
√
ν), (11)

this implies that AJ1(kR/
√
ν) = 0. We can’t have A = 0 since then we would have nothing

left. Thus it must be that J1(kR/
√
ν) = 0. In other words, kR/

√
ν = λn, where λn is the

nth zero of J1 (morally, J1 is very much like a sine function, and so has a countably infinite
number of zeros.) Our solution is therefore

uφ(r, t) =
∞∑
n=1

Ane
−νλ2nt/R2

J1(λnr/R). (12)

1Bessel functions Jα(x) of order α are solutions of

x2J ′′ + xJ ′ +
(
x2 − α

)
J = 0
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To determine the An’s we require that the initial conditions are satisfied. The initial con-
dition is that

uφ(r) = ωr. (13)

Again, we now think about what we would do if the above sum had sines and cosines instead
of J1’s. We would simply multiply by sine and integrate over a wavelength. Here, we do the
same thing. We multiply by rJ1(λmr/R) and integrate from 0 to R. This gives the formula

An

∫ R

0
rJ1(λnr/R)J1(λmr/R) dr =

∫ R

0
ωr2J1(λmr/R)dr. (14)

Using the identities ∫ R

0
rJ1(λnr/R)J1(λmr/R) dr =

R2

2
J2(λn)2δnm, (15)

and ∫ R

0
ωr2J1(λmr/R)dr =

ωR3

λm
J2(λm), (16)

we get

An = − 2ωR

λnJ0(λn)
, (17)

where we have used the identity J0(λn) = −J2(λn). Our final solution is therefore

uφ(r, t) = −
∞∑
n=1

2ωR

λnJ0(λn)
e−νλ

2
nt/R

2
J1(λnr/R). (18)

Okay, so this is the answer. Now lets see how long it should take for the spin down to
occur. Each of the terms in the sum is decreasing exponentially in time. The smallest value
of λn decreases the slowest. It turns out that this value is λ1 = 3.83. Thus the spin down
time should be when the argument of the exponential is of order unity, or

t ∼ R2

νλ21
. (19)

This is our main result, and we should test its various predictions. For example, this says
that if we increase the radius of the cylinder by 4, the spin down time increases by a factor
of 16. If we increase the kinematic viscosity ν by a factor of 100 (roughly the difference
between water and motor oil) then it will take roughly a factor of 100 shorter to spin down.
Note that for these predictions to be accurate, one must start with the same angular velocity
for each case.

In your second problem set you are asked to look at the spin down of a coffee cup. From
our theory we have a rough estimate of the spin down time, which you can compare with
your experiment. Do you get agreement between the two?
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