18.095 IAP Maths Lecture Series

Over-damped dynamics of small objects in fluids

Jörn Dunkel

Thursday, February 27, 14

Typical length scales

http://www2.estrellamountain.edu/faculty/farabee/BIOBK/biobookcell2.html

Reynolds numbers

$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu}$$

dunkel@math.mit.edu

Laminar (low-Re) flow

For Re→0 fluid flow becomes reversible !

... except for thermal fluctuations

Thursday, February 27, 14

Brownian motion

"Brownian" motion

Jan Ingen-Housz (1730-1799)

1784/1785:

über betrügen könnte, darf man nur in den Brennpunct eines Mikrostops einen Tropfen Weingelst fammt etwas gestoßener Kohle setzen; man wird diese Körperchen in einer verwirrten beständigen und heftigen Bewegung er= blicken, als wenn es Thierchen wären, die sich reissend unter einander fortbewegen.

http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

Robert Brown (1773-1858)

Linnean Society (London)

1827: irregular motion of pollen in fluid

http://www.brianjford.com/wbbrownc.htm

Brownian motion

Mark Haw

David Walker

Ineury of Drowinal motion

W. Sutherland (1858-1911)

Source: www.theage.com.au

 $D = \frac{RT}{6\pi\eta aC}$

A. Einstein (1879-1955)

Source: wikipedia.org $\langle x^2(t) \rangle = 2Dt$ $D = \frac{RT}{N} \frac{1}{6\pi kP}$

M. Smoluchowski (1872 - 1917)

Source: wikipedia.org

 $D = \frac{32}{243} \frac{mc^2}{\pi \mu R}$

Phil. Mag. 9, 781 (1905) Ann. Phys. 17, 549 (1905)

Ann. Phys. 21, 756 (1906)

Jean Baptiste Perrin (1870-1942, Nobel prize 1926)

Mouvement brownien et réalité moléculaire, Annales de chimie et de physique VIII 18, 5-114 (1909)

Les Atomes, Paris, Alcan (1913)

experimental evidence for atomistic structure of matter

- colloidal particles of radius 0.53µm
- successive positions every 30 seconds joined by straight line segments
- mesh size is 3.2μ m

Norbert Wiener

(1894-1864)

Reynolds numbers

$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu}$$

dunkel@math.mit.edu

Nano-spheres in water

Polymer in a fluid

Dogic lab (Brandeis)

Ring-polymer in a fluid

Dogic lab (Brandeis)

Vesicles in a shear flow

model for blood cells dynamics

Vasily Kantsler

Relevance in biology

- intracellular transport
- intercellular transport
- microorganisms must beat BM to achieve directed locomotion
- tracer diffusion = important experimental "tool"

Flow in cells

Flow & transport in cells

Drosophila embryo

Goldstein lab (Cambridge)

Flow & transport in cells

Drosophila embryo

Goldstein lab (Cambridge)

Intracellular transport

http://damtp.cam.ac.uk/user/gold/movies.html

Flow around cells

Swimming bacteria

movie: V. Kantsler

Berg (1999) Physics Today

Chen et al (2011) EMBO Journal

dunkel@math.mit.edu

E.coli (non-tumbling HCB 437)

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNAS

E.coli (non-tumbling HCB 437)

weak 'pusher' dipole

Drescher, Dunkel, Ganguly, Cisneros, Goldstein (2011) PNAS

Volvox (dancing)

Goldstein lab (Cambridge)

Drescher et al (2010) PRL

dunkel@math.mit.edu

Volvox

Meta-chronal waves

Brumley et al (2012) PRL

Thursday, February 27, 14

Brownian tracer particles in a bacterial suspension

Bacillus subtilis

Tracer colloids

PRL 2013

Ecological implications & technical applications

Colloidal gel formation via spinoidal decomposition

Peter Lu

Sedimentation

NASA Earth Observatory

Sedimentation

Particle separation

Plii

Falk Renth

Water knots

Irvine lab (Chicago)

