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1 Basic math review

This class deals with differential equations (DEs). These are equation that contain functions
and their derivatives. To solve DEs, we will need a few basic concepts such as vectors and
complex numbers, most of which should be familiar from 18.01 and 18.02.

1.1 Vectors and matrices

For simplicity, we will focus on the case of the 2D plane R2. Let’s assume we have fixed a
coordinate frame spanned by two orthonormal unit vectors {e1, e2}, which we may represent
as column vectors

e1 =

(
1
0

)
, e2 =

(
0
1

)
.

Orthonormal means that e1 and e2 are orthogonal with respect to the standard Euklidean
scalar product,

e1 · e2 =

(
1
0

)
·
(

0
1

)
=
(
1 0

)(0
1

)
= 1 · 0 + 0 · 1 = 0,

and normalized

e1 · e1 =
(
1 0

)(1
0

)
= 1 , e2 · e2 =

(
0 1

)(0
1

)
= 1.

The two vectors {e1, e2} form a basis of R2 because any other two dimensional vector r in
the plane R2 can be represented as a superposition

r = xe1 + ye2 =

(
x
y

)
, (1)

where (x, y) are the Cartesian coordinates of r. The length |r| of r is given by the square
root of the Euklidean scalar product of r with itself

|r| = (r · r)1/2 =

[(
x y

)(x
y

)]1/2

=
(
x2 + y2

)1/2
.

The vectors constructed from {e1, e2} form a linear vector space, which means that the
sum s of any pair of 2D vectors r1 and r2 is again a 2D vector

s = r1 + r2 =

(
x1

y1

)
+

(
x2

y2

)
=

(
x1 + x2

y1 + y2

)
= (x1 + x2)e1 + (y1 + y2)e2

and that multiplying a 2D vector r by a scalar λ gives a new 2D vector

w = λr = λ(xe1 + ye2) = λxe1 + λye2 =

(
λx
λy

)
.

That is, the vector space R2 is closed under vector addition and scalar multiplication.
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Furthermore, recall that we can operate on a 2D vector with a 2× 2-matrix

A =

(
A11 A12

A21 A22

)
by applying the usual rules of matrix multiplication,

Ar =

(
A11 A12

A21 A22

)(
x
y

)
:=

(
A11x+A12y
A21x+A22y

)
,

where the symbol := means that the rhs defines the lhs. The matrix operation is linear,
since1

A(λ1r1 + λ2r2) = λ1Ar1 + λ2Ar2. (2)

That is, it does not matter in which order the scalar multiplication, vector addition and
matrix operation are performed. The trace trA and the determinant detA of a 2×2-matrix
A are defined by

trA = A11 +A22 , detA = A11A22 −A12A21

Stretching a vector r by a factor λ is achieved through multiplication with the matrix

Λ =

(
λ 0
0 λ

)
= λ

(
1 0
0 1

)
= λI

where I denotes the identity matrix that leaves all vectors unchanged. Another important
example is the rotation matrix

R(φ) =

(
cosφ − sinφ
sinφ cosφ

)
which rotates a vector counter-clockwise by an angle φ. Trace and determinant of R(φ) are
given by

trR = 2 cosφ , detR = (cosφ)2 + (sinφ)2 = 1.

For example, consider the vector r̂ obtained by first rotating the unit vector e1 by φ
and then stretching by λ, i.e.,

r̂ = ΛR(φ)e1 =

(
λ 0
0 λ

)(
cosφ − sinφ
sinφ cos

)(
1
0

)
= λ

(
cosφ
sinφ

)
=

(
x̂
ŷ

)
.

The last equality relates the Cartesian coordinates (x̂, ŷ) of r̂ to its polar coordinates (λ, φ).
If the above concepts appear unfamiliar, you may practice by trying to generalize them

to 3D.

1It’s a good exercise to check this explicitly.
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1.2 Complex numbers

Some polynomial equations, like

x2 = 1,

can be solved within the set of real numbers R, which can be identified with the 1D vector
space R1 spanned by e1. For others, like

z2 = −1 (3)

this is not possible and one needs to extend the solution space. A minimal extension of the
real numbers, which allows to find solutions of (3) are the complex numbers C, which can
be thought of as 2D generalizations of the real numbers. A complex number2 z ∈ C can be
written as

z = x+ iy ∈ C , i2 = −1

with real part <z = x ∈ R and imaginary part =z = y ∈ R representing the Cartesian
coordinates of z. Real numbers are complex numbers with y = 0. The conjugate of a
complex number z = x+ iy is given by

z̄ = x− iy

and corresponds to a reflection at the real axis or, equivalently, at the line =(z) = 0.
Addition of complex numbers is linear

z = z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) = x+ iy

equivalent to the addition of the two 2D vectors (x1, y1) and (x2, y2). In contrast, complex
multiplication mixes real and imaginary parts

z = z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2) = x+ iy.

Euler’s formula

eiφ = cosφ+ i sinφ , φ ∈ R (4)

relates the exponential function

exp(iφ) := 1 +
iφ

1!
+

(iφ)2

2!
+

(iφ)3

3!
+ . . . =

∞∑
k=0

(iφ)k

k!

to the trigonometric functions

sin(φ) :=
φ

1!
− φ3

3!
+
φ5

5!
− φ7

7!
+ . . .

cos(φ) := 1− φ2

2!
+
φ4

4!
− φ6

6!
+ . . .

2The symbol ∈ means ‘an element of’ or ‘in’.
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It is often advantageous to use the polar representation of a complex number

z = reiφ = r(cosφ+ i sinφ) = x+ iy (5a)

with

r = |z| =
√
zz̄ ≥ 0 , φ = arctan 2(y, x) ∈ [0, 2π). (5b)

Useful examples are

1 = 1ei0, i = 1eiπ/2, −1 = 1eiπ, −i = 1ei3π/2 = e−iπ/2.

In the last case, we have used that, for any integer n,

eiφ = ei(φ+2πn),

which follows directly from the periodicity of trigonometric functions in Eq. (5a).
From the properties of the exp-function, one sees directly that the multiplication of

complex numbers

z = z1z2 = r1e
iφ1r2e

iφ2 = r1r2e
i(φ1+φ2)

corresponds to a combined rotation and dilation. As a general rule, the Cartesian repre-
sentation of a complex number is advantageous for performing additions, while the polar
(exponential) representation is more convenient for multiplications.

To illustrate the usefulness of the polar representation, let’s consider the polynomial
equation

1 = z3,

which we would like to solve for z. Writing 1 = ei0 = ei2πn and z = |z|eiφ with |z| = 1, this
equation becomes

ei2πn = (eiφ)3 = ei3φ

so we find

φ =
2π

3
n , n = 0,±1,±2, . . . ,

implying three distinct solutions3

z0 = 1 , z± = e±i2π/3.

This is an illustration of the fundamental theorem of algebra which asserts that a polynomial
of order k with real coefficients has exactly k complex zeros, when counted with their
multiplicity. The non-real roots of polynomials with real coefficients come in conjugate
pairs. For example, the fourth-order polynomial

p(z) = (z − 1)2(z2 + 1)

has the four zeros z = 1 (multiplicity 2) and z = ±i. One of the main goals when dealing
with differential equations is to transform them into polynomial equations, which means
that we will see at lot of the above throughout this course.

3The other n = ±2,±3, . . . just repeat one of the three.
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2 Introduction to modeling and differential equations

In this course, we will mostly deal with ordinary differential equations (ODEs) and, in the
latter parts, also with simple partial differential equations (PDEs).

2.1 ODEs vs. PDEs

ODEs are equations that contain derivatives of scalar functions [such as planar curves y(x)
or particle traces x(t) in one space dimension], or vector-valued functions [such as particle
traces X(t) = (X1(t), X2(t)) in the plane] that only depend on a single position variable x
or time-variable t. Depending on context, we will denote derivatives of such functions by

dy

dx
= y′(x) ,

d2y

dx2
= y′′(x) ,

dny

dxn
= y(n)(x) ,

dx

dt
= ẋ(t) ,

d2x

dt2
= ẍ(t)

often omitting the arguments, simply writing y′ or ẍ.
The perhaps simplest non-trivial ODE is

y′ = αy (6a)

which for α 6= 0 is solved by

y(x) = y0e
αx. (6b)

Another important ODE is the 1D harmonic oscillator equation

ẍ = −ω2x, (7a)

where ω is the oscillator frequency, which is solved by

x(t) = A sin(ωt) +B cos(ωt). (7b)

Note the structural similarity with vectors, when we interpret {sin(ωt), cos(ωt)} as basis
functions and (A,B) as coordinates. As we will see later this analogy is not merely formal
but in fact crucial for our ability to solve arbitrary linear ODEs.

PDEs are equations that contain derivatives of scalar or vector-valued functions that
depend on more than one variable. Their properties are discussed in detail in 18.02. An
example of a scalar function that depends on two variables, is the time- and position-
dependent temperature along a thin rod, T (t, x), whose partial derivatives will be denoted
by

∂T

∂x
,

∂2T

∂x2
,

∂T

∂t

An important PDE, discussed (much) later in class, is the diffusion equation

∂T

∂t
= D

∂2T

∂x2
,

which relates the local time-change of T (t, x) to the spatial temperature variations (the
material parameter D is the temperature diffusion constant).
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2.2 Building ODE models

From now on, until stated otherwise, we consider ODEs for scalar functions, such as y(x) or
x(t). There exist many ways of constructing ODE models for natural and artificial systems.
In this course, we will only discuss a few basic ones that will help you to understand
the construction principles underlying more complex mathematical models that you will
encounter in your physics, engineering or biology classes.

2.2.1 Population growth

A key problem in biology is to understand how cell populations grow and compete under
different conditions. The most basic ODE model, which describes for example the growth
of bacterial colonies quite well, can be constructed as follows:

Denote by

∆N(t) = N(t+ ∆t)−N(t)

the net growth of the population during the small time-interval ∆t. To first approximation,
it is then plausible to assume that the ∆N is proportional to ∆t and the number of cells
N(t) present at time time t, i.e.

∆N(t) = αN(t)∆t

where α > 0 is a constant of proportionality which is expected to depend on the external
growth conditions (nutrient concentrations, temperature, etc.). Dividing by ∆t and letting
∆t→ 0, to replace discrete difference quotients by continuous derivatives, we find the ODE
growth model

Ṅ(t) = αN(t). (8)

We mentioned earlier that, in order to solve ODEs, one typically tries to transform them
into simpler algebraic equations by guessing a suitable trial solution, also called ansatz. To
illustrate this general recipe here, let’s rewrite Eq. (8) in standard form

Ṅ(t)− αN(t) = 0 (9)

and try the exponential ansatz

Nh(t) = Ceλt (10)

which contains two free parameters C and λ. Noting that Ṅh(t) = λCeλt, insertion of
Eq. (10) into (9) and subsequent division by Ceλt gives the algebraic equation

p(λ) = λ− α = 0, (11)

which determines one of the free parameter, λ = α. The function p(λ) is the characteristic
polynomial of Eq. (9). The solutions of Eq. (8) therefore describe exponential growth

Nh(t) = Ceαt. (12)

12



In particular, we have infinitely many of them, parameterized by C, unless we specify an
additional condition that fixes C. This is a generic feature of DE models: In order to specify
a unique solution, one needs to add extra information in the form of initial or boundary
conditions to the DE. In our population growth example, it is natural to specify the initial
cell population N(0) at time t = 0, N(0) = N0, which fixes C by

N0 = N(0) = Ceα0 = C.

The minimal model (13) can be made more realistic by also accounting for cell deaths.
This can be achieved by adding a constant rate term on the rhs. of Eq. (13),

Ṅ(t) = αN(t)− q , q > 0. (13)

The death rate q has dimensions4 of 1/Time. Equation (13) is linear in the sought-after
function N(t). As we shall see below, this means that the general solution of Eq. (13) can
be constructed by taking the general (homogeneous) solution for q = 0 and adding just
one (particular) solution of Eq. (13). This is an example of what’s called the superposition
principle for linear ODEs. A particular solution to Eq. (13) is readily found in the form of
the constant function

Np(t) =
q

α
.

which has Ṅp = 0. Hence, the general solution of Eq. (13) is given by

N(t) = Nh(t) +Np = Ceαt +
q

α
.

Moreover, if we again specify an initial condition N(0) = N0, then

N0 = N(0) = Nh(0) +Np = C +
q

α
⇒ C = N0 −

q

α
, (14)

and the solution takes the form

N(t) =
(
N0 −

q

α

)
eαt +

q

α
. (15)

Try to check by direct insertion that (15) does indeed solve (13).

2.2.2 Newton’s force law

The above example illustrates how to obtain an ODE model by thinking about the growth
and decay rates of certain biological, physical or chemical quantities. Another way of
constructing ODE models starts from Newton’s force law connecting force and acceleration,
which in 1D can be written as

F = ma (16)

where F the force acting on a particle of mass m at position x(t), and

a(t) = v̇(t) = ẍ(t) (17)

4More generally, the production or depletion rate of a quantity x has the units of ẋ.
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is the particle’s acceleration (v is the velocity).
For example, if the particle is attached to a linear spring with rest-position at x(t) = 0,

then according to Hooke’s law

Fs = −kx (18a)

where k > 0 is the spring constant. If the particle is moving in a medium that exerts
an approximately linear velocity-dependent friction, then there will be an additional force
contribution

Ff = −γv (18b)

where γ is the Stokes friction coefficient. We may also consider the case where we apply an
additional (e.g. electric) oscillatory force field

Fe = A sin(Ωt) (18c)

of amplitude A and frequency Ω.
Combining all these contributions, we obtain the ODE

mẍ = −γẋ− kx+A sin(Ωt). (19)

Dividing by m and moving x-dependent terms to the lhs., we can rewrite this in the standard
form

ẍ+ bẋ+ ω2x = ε sin(Ωt). (20)

where b = γ/m is the mass-rescaled friction coefficent, ω =
√
k/m is the intrinsic spring

frequency, and ε = A/m.
These ideas generalize in a straightforward manner to higher-dimensional forces. In fact,

you have seen already one example of a three-dimensional ODE system on the introductory
slides, when we glanced over gravitational systems.

2.3 Classification of ODEs: Linear vs. nonlinear equations

It’s time to introduce some important nomenclature that will allow us to classify ODEs
systematically. The order n of a DE is the highest derivative y(n)(x) or x(n)(t) appearing
in it. For example, the equation

etẍ+ 5ẋ+ t9x = 0 (21)

is a second order ODE, as is the damped harmonic oscillator equation (20).
From a theoretical and practical perspective, the perhaps most important classification

of ODEs is their separation into linear and nonlinear equations. While linear equations are
(relatively) straightforward to solve, nonlinear equations are notoriously hard and typically
require computer simulations and/or qualitative analysis. Unfortunately, the most relevant
real-world problems are described by nonlinear ODEs. Fortunately, however, they can
sometimes be approximated by linear ODEs.
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Intuitively, a linear ODE does not contain any products of the sought-after function and
its derivatives (we will also give a more formal definition below). The example in Eq. (21)
is linear in x(t), as is the harmonic oscillator equation (7a). By contrast,

(y′)2 − y = 0

or

y′ − y3 = 0

are examples of nonlinear differential equations in y(x).

3 Solving first-order ODEs

First-order ODEs for scalar functions y(x) or x(t) are somewhat special in that there exist
a number of technical tricks that work even for nonlinear equations.

3.1 Separation of variables

In general, nonlinear DEs are very difficult or impossible to solve analytically. However,
certain types of first-order nonlinear ODEs can be solved by a technique called separation
of variables. Let’s assume we can rewrite a given ODE in the form5

f(x)ẋ = q(t), (22)

where f(x) can be linear or nonlinear. We can solve Eq. (22) systematically as follows:

1. Rewrite the equation in differential form as

f(x)
dx

dt
= q(t). (23a)

2. Multiply by dt to obtain

f(x)dx = q(t)dt. (23b)

This step separates x and t, hence the name of the procedure.

3. Integrate both sides to get

F (x) = Q(t) + C. (23c)

These are implicit equations for the solutions x(t), in terms of a parameter C.

4. Solve for x if possible and desired. Optional: Check by insertion if x(t) solves the
original ODE.

5When divisions are necessary, ensure that you don’t divide by 0.
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Example. Solve

ẋ− 2tx = 0 (24)

1. Rewrite in differential form as

1

x

dx

dt
= 2t (25a)

2. Multiply by dt to obtain

dx

x
= 2tdt. (25b)

3. Integrate both sides to get

ln |x| = t2 + C. (25c)

4. Solving for x gives

x(t) = ±eCet2 = cet
2

(25d)

for some positive or negative constant c = ±eC .

You can check by insertion that x(t) = cet
2

solves Eq. (24).

3.2 Variation of parameters for inhomogeneous linear first-order ODEs

The most general form of a first-order linear ODE is

p1(t)ẋ+ p0(t)x = q(t). (26)

Assuming p1(t) 6= 0, we can rewrite this as

ẋ+ P (t)x = Q(t) (27)

where

P (t) =
p0(t)

p1(t)
, Q(t) =

q(t)

p1(t)
.

We can solve Eq. (27) systematically through a method called variation of parameters,
which works as follows:

1. Use separation of variables to find a solution xh(t) to the homogenous problem with
Q(t) ≡ 0; that is, a function xh(t) satisfying

ẋh + P (t)xh = 0. (28)
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2. Insert the ansatz x(t) = u(t)xh(t) into (27) and determine the unknown function u(t)
by using that by product rule

ẋ+ P (t)x = u̇xh + uẋh + P (t)uxh

= u̇xh + u[ẋh + P (t)xh]

(28)
= u̇xh (29a)

Thus

u̇(t)xh(t) = Q(t). (29b)

For xh(t) 6= 0, we can find u(t) by integrating both sides of

u̇(t) =
Q(t)

xh(t)
. (29c)

Example. Let’s solve

tẋ+ 2x = t5 , t > 0.

First, we rewrite this equation as

ẋ+
2

t
x = t4 = Q(t)

Next we solve homogenous problem with Q(t) = 0 using variation of variables

dxh
xh

= −2dt

t

yielding

ln |xh| = −2 ln |t|+ C̃

and therefore

xh(t) = Ct−2

for some constant C. We may pick any solution xh, so let’s set C = 1. Then Eq. (29c) gives

u(t) = c+

∫
t6dt = c+

t7

7

Hence, the general solution x(t) = u(t)xh(t) is obtained as

x(t) =

(
c+

t7

7

)
t−2 = ct−2 +

t5

7
.
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3.3 Integrating factor

Another approach to solving the first order, linear, inhomogeneous ODE

ẋ+ p(t)x = q(t) (30)

is to use an integrating factor. This method works as follows.

1. Find an antiderivative P (t) of p(t).

2. Multiply both sides of the ODE by the integrating factor eP (t) in order to make the
left side of Eq. (30) the derivative of something:

eP (t)ẋ+ eP (t)p(t)x = eP (t)q(t)

⇔ d

dt

[
eP (t)x

]
= eP (t)q(t)

3. Integrate both sides

eP (t)x =

∫
dt eP (t)q(t)

⇔ x(t) = e−P (t)

∫
dt eP (t)q(t)

Here
∫
dt eP (t)q(t) represents all possible antiderivatives of eP (t)q(t), so there are infinitely

many solutions. If you fix one antiderivative, say R(t), then the others are R(t) + c for a
constant c, so the general solution is

x(t) = R(t)e−P (t) + ce−P (t). (31)

4 Complex exponential function

When solving linear ODEs, we will need complex exponential functions of the form

f(t) = ezt (32)

where t is any real number and z any complex number. We can define this complex expo-
nential function as unique solution of the ODE

d

dt
f(t) = zf(t) , f(0) = 1, (33)

where the second equation specifies the initial condition. This definition in terms of the
ODE (33) is consistent with other definitions you may have seen, such as for example

ezt =

∞∑
n=0

(zt)n

n!
= 1 + (zt) +

(zt)2

2!
+

(zt)3

3!
+

(zt)4

4!
+ . . . (34)

where
n! = n · (n− 1) · (n− 2) · · · 2 · 1.
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You can verify this by inserting the series expansion (34) into (33); by differentiating each
term of series you will find that it indeed solves the ODE. The complex exponential function
inherits useful properties of the real exponential function. For example, we have

ez+w = ezew (35a)

(ez)n = ezn (35b)

for all complex numbers z, w and integer numbers n. The special cases n = 0 and n = 1
yield

(ez)0 = e0+i0 = cos 0 + i sin 0 = 1 (36a)

and

1

ez
= (ez)−1 = e−z (36b)

Moreover, using the standard Euler formula (4), we find for z = x+ iy the generalized Euler
formula

ex+iy = ex(cos y + i sin y). (37)

4.1 Computing integrals

Complex exponentials are useful for computing integrals of the form

I =

∫
dt eαt cos t = <

∫
dt eαt(cos t+ i sin t)

where α is a real parameter and < denotes the real part. We will encounter integrals of this
type when dealing with damped oscillations. Using Euler’s formula

I = <
∫
dt eαteit = <

∫
dt e(α+i)t = <

[
e(α+i)t

α+ i

]
= eαt<

[
eit

α+ i

]
To compute the real part note that

eit

α+ i
=
α− i
α− i

1

α+ i
(cos t+ i sin t) =

α− i
α2 + 1

(cos t+ i sin t)

Hence

I = eαt<
[
eit

α+ i

]
=

eαt

α2 + 1
(α cos t+ sin t) (38)
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4.2 Roots of complex polynomials

Another important application concerns the finding of roots of a polynomial. The Funda-
mental Theorem of Algebra states:

Every degree n complex polynomial p(z) has exactly n complex roots when counted with
multiplicity.

A consequence is that we can rewrite a polynomial

p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0 (39a)

as a product

p(z) = an(z − zn)(z − zn−1) · · · (z − z1) (39b)

where {z1, z2, . . . , zn} are the roots.
We will make use of this fact when computing zeros of characteristic polynomial. As an

example, consider

p(z) = z5 − 32 (40)

which is the characteristic polynomial of the ODE

x(5)(t)− 32x(t) = 0, (41)

as one can see by inserting x = ezt. To find the five roots, use polar coordinates

z = reiφ

Then

p(z) = 0 ⇔ r5ei5φ = 32.

From this we find that the five distinct complex zeros are given by

r = 321/5 = 2 , 5φk = 2πk where k = 0, 1, 2, 3, 4. (42)

5 Second-order ODEs with constant coefficients and their
characteristic polynomials

We had seen in Sec. 2.2.2 that Newton’s force law for a damped oscillator can be written
in the form of a linear second-order ODE

mẍ = −γẋ− kx+ Fe(t), (43)

where γ is the friction coefficient, k the spring constant and Fe(t) a position-independent
external force. Dividing by m and moving x-dependent terms to the lhs., we can rewrite
this in the standard form6

ẍ+ bẋ+ ω2x = q(t), (44)

6See Eq. (20).
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where b = γ/m is the mass-rescaled friction coefficient and ω =
√
k/m is the intrinsic spring

frequency.
We would like to solve this equation for the homogeneous case q(t) ≡ 0, when there are

no external forces.

ẍ+ bẋ+ ω2x = 0, (45)

The inhomogeneous case q(t) 6= 0 will be discussed in detail later.

5.1 General superposition principle for homogeneous linear equations

Equation (45) is a special case of the general linear nth-order homogeneous ODE

pn(t)x(n) + pn−1(t)x(n−1) + . . .+ p1(t)ẋ+ p0(t)x = 0 (46)

For an ODE of the form (46), the following statements are true:

• The zero function x(t) ≡ 0 is a solution.

• If x(t) is a solution of Eq. (46), then any scalar multiple αx(t) is also a solution.

• If x1(t) and x2(t) both solve Eq. (46), then their sum x1(t) + x2(t) also a solution.

Thus, in short, all linear combinations of homogeneous solutions are homogeneous solutions.
We demonstrate this important and useful fact for the dashpot example.

5.2 Homogeneous linear 2nd-order ODE

5.2.1 Dashpot: Frictionless case

We first consider the frictionless case b = 0, when Eq. (45) reduces to

ẍ+ ω2x = 0. (47)

We plug in the exponential trial function

xλ(t) = eλt. (48)

This is what you should always do when facing a linear homogenous nth order ODE with
constant coefficients. Using

ẍλ(t) = λ2eλt

and dividing by eλt, we find that Eq. (47) reduces to the algebraic equation

p(λ) := λ2 + ω2 = 0. (49)

The quadratic function p(λ) is the characteristic polynomial of Eq. (47). Generally, for any
nth order linear ODE with constant coefficients, the characteristic polynomial will be of
degree n [we had already seen a first order example in Eq. (11)].

Solving (49) for λ, we find the two complex roots

λ± = ±iω, (50a)
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yielding the two solutions

x+(t) = eiωt , x−(t) = e−iωt. (50b)

As we had seen above in Sec. 5.1, these may be combined by linear superposition to find
the general solution of the undamped oscillator Eq. (47):

x(t) = C+e
iωt + C−e

−iωt, (51)

where C± are complex parameters. The physical requirement that the solution x(t) must
be real-valued, x(t) = x̄(t), implies that

C+e
iωt + C−e

−iωt = (C+eiωt + C−e−iωt) = C̄+e
−iωt + C̄−e

iωt.

Comparing the coefficients in front of e±iωt, we see that

C+ = C̄−.

This makes sense since a complex number corresponds to two real numbers, and we only
have to fix two real parameters specify a unique solution for a linear second-order ODE.
We can write the real solution of Eq. (47) in the complex form

x(t) = C̄−e
iωt + C−e

−iωt. (52)

It is convenient to reexpress this solution in terms of sin and cos. To this end, we write

C̄− = (c1 − ic2)/2

with real numbers c1 and c2, and use Euler’s formula to expand the exponentials

x(t) =
1

2
(c1 − ic2)(cosωt+ i sinωt) +

1

2
(c1 + ic2)(cosωt− i sinωt)

After collecting all the terms, we then recover the perhaps more familiar form of the oscil-
lator solution

x(t) = c1 cosωt+ c2 sinωt. (53)

Note that this solutions looks structurally similar to the vectors in Eq. (1), if we identify

e1 = cosωt , e2 = sinωt

as basis vectors and interpret c1 and c2 as the coordinates with respect to this basis. This
is no coincidence - as we will see soon.
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5.2.2 Dashpot: Strongly damped case

We next consider the case with damping b > 0. To make computations a bit easier, we
assume specific values b = 3 and ω2 = 2. In this case, Eq. (45) reduces to

ẍ+ 3ẋ+ 2x = 0. (54)

Inserting the trial function xλ(t) = eλt, we find the algebraic equation

p(λ) := λ2 + 3λ+ 2 = 0. (55)

We can rewrite the characteristic polynomial (55) as

p(λ) = (λ+ 2)(λ+ 1). (56)

Thus, the roots are given by

λ1 = −1 , λ2 = −2. (57)

The general solution of (54) is therefore given by

x(t) = c1e
λ1t + c2e

λ2t = c1e
−t + c2e

−2t. (58)

If we want to specify a solution uniquely, we have to fix two initial conditions. As an
example, let’s assume that the initial position x(0) and the initial velocity ẋ(0) are given
by

x(0) = 4 , ẋ(0) = −3.

From the solution

x(0) = c1 + c2 = 4 ⇒ c1 = 4− c2

Furthermore

ẋ(0) = −c1 − 2c2 = −(4− c2)− 2c2 = −4− c2 = −3 ⇒ c2 = −1

and c1 = 5, yielding the final result

x(t) = 5e−t − e−2t. (59)

Again, this solution looks structurally similar to the vectors in Eq. (1), if we identify

e1 = e−t , e2 = e−2t

as basis vectors and interpret 5 and −2 as the coordinates with respect to this basis.

23



5.3 Two complex roots

Now let’s consider the general case where a linear homogenous 2nd-oder ODE has a char-
acteristic polynomial

p(λ) = λ2 + bλ+ ω2 (60)

with roots

λ± = − b
2
±
√
b2

4
− ω2. (61)

When b < 2ω, we are in the strongly damped case discussed in the previous section and the
roots are real. In this case, the general solution reads

x(t) = c1e
λ+t + c2e

λ−t (62)

with real constants c1 and c2.
When b > 2ω, we have two complex roots 7

λ± = α± iβ , β 6= 0. (63)

where α and β are real numbers. Note that in this case

λ+ = λ−. (64)

Then a pair of basis solutions are

eλ±t = e(α±iβ)t = eαte±iβt = eαt(cosβt± i sinβt) (65)

Generally, if eλ+t and its complex conjugate eλ−t are complex-valued basis solutions, then
the real and imaginary parts

x1(t) = <x =
x+ x̄

2
= eαt cosβt , x2(t) = =x =

x− x̄
2i

= eαt sinβt (66)

form a pair of real-valued basis functions. Taking all real linear combinations

x(t) = c1e
αt cosβt+ c2e

αt sinβt (67)

of this real basis then gives all the real solutions to the ODE. Using the complex represen-
tation, we can also write

x(t) = Aeλ+t +Aeλ+t, (68)

where A = a1 + ia2. The conjugate coefficient pair A and Ā ensures that x(t) = x̄(t), which
is required for all real-valued functions (see also the lecture slides). Note that both (67)
and (68) depend on two real parameters.

7The degenerate case β = 0, where λ = α is a root of multiplicity 2 will be discussed in detail later; we
may anticipate that in this case the solution takes the form

x(t) = c1e
αt + c2te

αt , α = − b
2

with real constants c1 and c2.
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5.4 Linear independence

We have seen above that we can interpret functions as vectors. The concept of linear
independence provides an important characterization of geometric dependencies between
collections of vectors or functions. As a reminder, let’s first consider the two-dimensional
plane R2. Two vectors r1 = (x1, y1) and r2 = (x2, y2) are linearly dependent if one is the
multiple of the other, i.e., if there exists a real number α such that

r1 = αr2.

We restate this equivalently as follows: Two vectors r1 and r2 are linearly dependent if
there exists two non-zero real numbers α1, α2 such that

α1r1 + α2r2 = α1

(
x1

y1

)
+ α2

(
x2

y2

)
= 0. (69)

Conversely, we can say that r1 and r2 are linearly independent, if Eq. (69) can only be
fulfilled for α1 = α2 = 0. This definition can be generalized to collections of n vectors
{r1, r2, . . . , rn}, which are called linearly independent if

α1r1 + α2r2 + . . .+ αnrn = 0, (70)

can only be fulfilled for α1 = α2 = . . . = αn = 0; otherwise, the collection of vectors is
linearly dependent. From this definition, it is easy check that any three (or more) vectors
in the plane R2 are linearly dependent. Similarly, any four (or more) vectors in three-
dimensional position space R3 are linearly dependent.

These concepts translate into a straightforward manner to functions by identifying the
vectors r1, r2, . . . with functions f1(t), f2(t), . . .. For example, let’s consider the two func-
tions

f1(t) = 1 and f2(t) = t.

These two functions are linearly independent because, for arbitrary values of t, the equation

α11 + α2t = 0 (71)

can be satisfied only when α1 = α2 = 0. We can say the two functions {1, t} are basis
vectors that span the space of linear functions f(t) = α1 + βt. We write this compactly as

span{1, t} = {f(t) = α1 + βt} , α, β ∈ R

By contrast, the functions

f(t) = 2t and g(t) = 4t

are linearly dependent, since f = 2g. Similarly, the functions f1(t) = 1, f2(t) = t and
h(t) = 2 + 4t are linearly dependent since

2f1 + 4f2 − h = 0;
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that is, there exist non-zero constants α1, α2, and α3 such that

α1f1(t) + α2f2(t) + α3h(t) = 0

for all values t, namely (α1, α2, α3) = (2, 4,−1).
We can generalize this to higher-order polynomials, e.g.

span{1, t, t4} = {f(t) = α1 + βt+ γt4} , α, β, γ ∈ R (72)

The three basis functions {1, t, t4} are linearly independent, whereas any collection of four
(or more) functions of the form α1 + βt+ γt4 is linearly dependent. Instead of polynomial
basis functions, we can also consider trigonometric or exponential basis functions. For
example, Eq. (53) shows that {cosωt, sinωt} span the solution space of the undamped
harmonic oscillator of frequency ω. Similarly, Eq. (59) shows that {e−t, e−2t} span the
solution space of the damped harmonic oscillator described by Eq. (54).

6 Sinusoidal Functions

At the end of the previous section, we have seen that linear nth order ODEs can be ‘com-
plexified’. As we shall find later, it is often easier to solve the complexified version of a
linear ODE and subsequently transform back to a real solution space, by projecting on the
real or imaginary part. To utilize this technique, we will introduce basic concepts about
sinusoidal functions in this section.

6.1 Complex functions of a real variable

It is helpful to recall that a complex number z = x+ iy corresponds to a 2D vector in the
plane R2. Now let’s assume that x = x(t) and y = y(t) are continuous functions of time t.
Then, accordingly, the complex function

z(t) = x(t) + iy(t) (73)

describes a curve in the plane. We can differentiate a complex function by differentiating
real and imaginary parts separately

ż(t) = ẋ(t) + iẏ(t) , z̈(t) = ẍ(t) + iÿ(t) (74)

If we interpret z(t) as the trace of a particle moving in the plane, then ż(t) describes
particle’s velocity and z̈ its acceleration.

Analogously, we can integrate z(t) by integrating real and imaginary parts separately

Z(t) =

∫ t

t0

ds z(s) =

∫ t

t0

ds x(s) + i

∫ t

t0

ds y(s) (75)
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6.2 Complex exponential, sine and cosine

We had already seen that complex exponential function exp(iφ) and the trigonometric
functions sinφ and cosφ, can be related by Euler’s formula

eiφ = cosφ+ i sinφ , φ ∈ R (76)

Let’s consider the two cases φ = +t and φ = −t. From Euler’s formula (76), we then find
that the functions eit and e−it are linear combinations of the functions cos t and sin t:

eit = cos t+ i sin t (77a)

e−it = cos t− i sin t. (77b)

Which curves do these functions describe? Computing the modulus of z(t) = eit gives

z(t)z̄(t) = eite−it = eit−it = e0 = 1. (78)

Furthermore, let’s compute the derivative of z(t) at t = 0, noting that

ż(t) =
d

dt
eit = ieit = i(cos t+ i sin t) = − sin t+ i cos t (79)

and therefore

ż(0) = 0 + i · 1. (80)

Thus, z(t) = eit describes a circle of radius 1, which is traversed in counterclockwise direc-
tion. Similarly, we find that the curve corresponding to z(t) = e−it describes a clockwise
circle.

If we view eit and e−it as known, and cos t and sin t as unknown, then this is a system
of two linear equations in two unknowns, and can be solved for cos t and sin t. This gives

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
. (81)

Thus cos t and sin t are linear combinations of eit and e−it. Explicitly,

sin t =
1

2i
eit +

−1

2i
e−it.

where ( 1
2i ,
−1
2i ) are the coordinates of sin t with respect to the basis vectors eit and e−it.

From a practical point of view, it is important that the function ez has nicer properties
than cos t and sin t, so it is often a good idea to use these formulas to replace cos t and sin t
by these combinations of eit and e−it, or to view cos t and sin t as the real and imaginary
parts of eit.

Similarly, replacing φ = ±ωt in the identities above leads to

eiωt = cosωt+ i sinωt

e−iωt = cosωt− i sinωt.

and

cosωt =
eiωt + e−iωt

2
, sinωt =

eiωt − e−iωt

2i
,

where ω is the angular frequency.

27



6.3 Sinusoidal functions

Sinusoidal functions are obtained from sines and cosines through stretching and shifting.

6.3.1 Construction

Start with the curve y = cosx. Then

1. Shift the graph φ units to the right (φ is phase lag, measured in radians). For example,
shifting by φ = π/2 gives the graph of sinx, which reaches its maximum π/2 radians
after cosx does.

2. Compress the result horizontally by dividing by a scale factor ω, called angular fre-
quency and measured in radians/s.

3. Amplify (stretch vertically) by a factor of A (amplitude).

Here, we assume that A,ω > 0, but φ can be any real number. The graph of the new
function f(t), called a sinusoid function. What is the formula for f(t)? According to the
instructions, each point (x, y) on y = cosx is related to a point (t, f(t)) on the graph of f
by

t =
x+ φ

ω
, f = Ay.

Solving for x gives x = ωt− φ; substituting into f = Ay = A cosx gives

f(t) = A cos(ωt− φ). (82a)

The period is

T =
2π

ω
. (82b)

We can also write

f(t) = A cos[ω(t− τ)] , τ = φ/ω. (83)

Remark: There is also frequency ν := 1/T , measured in Hz = cycles/s. It is the number
of complete oscillations per second. To convert from frequency ν to angular frequency ω,
multiply by (2π radians)/(1 cycle); thus ω = 2πν = 2π/T , which is consistent with the
formula T = 2π/ω above.

6.3.2 Three representations

There are three ways to write a sinusoid function:

(i) amplitude-phase form: A cos(ωt− φ)

(ii) complex form: <
[
ceiωt

]
, where c = a− ib = Ae−iφ is a complex number
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(iii) linear combination: a cosωt+ b sinωt, where a and b are real numbers

We convert between them as follows:

1. (ii)→ (i):

<
[
ceiωt

]
= <

[
Ae−iφ eiωt

]
= <

[
Aei(ωt−φ)

]
= A cos(ωt− φ).

2. (ii)→ (iii):

<
[
ceiωt

]
= < [(a− bi)(cosωt+ i sinωt)]

= < [a cosωt+ b sinωt+ i(· · · )]
= a cosωt+ b sinωt. (84)

3. (i)→ (iii): Using
cos(x− y) = cosx cos y + sinx sin y

shows that

A cos(ωt− φ) = A cosωt cosφ+A sinωt sinφ

= a cosωt+ b sinωt

since a = A cosφ and b = A sinφ, when A, φ are the polar coordinates of (a, b).

6.4 Example: Beats

Beats occur when two very nearby pitches are sounded simultaneously. As an example,
consider two sinusoid sound waves of angular frequencies ω+ε and ω−ε, say cos[(ω+ε)t] and
cos[(ω− ε)t], where ε is much smaller than ω. What happens when they are superimposed?

The sum is

cos((ω + ε)t) + cos((ω − ε)t) = <[ei(ω+ε)t] + <[ei(ω−ε)t]

= <[eiωt(eiεt + e−iεt)]

= <[eiωt(2 cos εt)]

= 2 cos(εt)<[eiωt]

= 2 cos(εt) (cosωt).

The function cosωt oscillates rapidly between ±1. Multiplying it by the slowly varying
function 2 cos εt produces a rapid oscillation between ±2 cos εt, so one hears a sound wave
of angular frequency ω whose amplitude is the slowly varying function |2 cos εt|.

7 Some linear algebra

In this section, we will summarize and review essential concepts of about vectors spaces and
matrices that will be important in the remainder of this course. A main goal of this part
is to provide a rigorous framework for some of the mathematical ‘tools’ that we have seen
and used in the earlier parts.

29



7.1 Vector spaces

Intuitively, vectors are objects that we can add and/or multiply by scalars (real or complex
numbers) to obtain new vectors. Sets of objects that are ‘closed’ under these operations
are called vector spaces. Here, closedness means that the operations ‘vector addition’ and
‘multiplication by scalars’ do not lead out of the set. In previous classes, we have already
seen two specific realizations of vector spaces. One frequently encountered example was the
plane R2 spanned by the vectors

e1 =

(
1
0

)
, e2 =

(
0
1

)
. (85)

This vector space is given by the set

R2 = {all v = c1e1 + c2e2 with c1, c2 ∈ R}. (86)

Another vector space example are the solutions of the harmonic oscillator

H = {all f(t) = c1 cos(ωt) + c2 sin(ωt) with c1, c2 ∈ R}. (87)

The general definition of a vector space V, which covers these two and many other
examples, is as follows:

A vector space over the real (complex) numbers is a set such that

(i) the zero vector 0 is in V.

(ii) if v is an element of V then cv is also an element of V for any real (complex) number c.

(iii) if v and w are elements of V then u = v +w is also an element of V.

If the set of numbers is chosen to be real (complex), then we say that V is a real (complex)
vector space. The last two conditions (ii) and (iii) ensure that the vector space is closed
under addition and scalar multiplication.

Note that the set of real numbers itself can be interpreted as a real vector space. The
set of polynomials of degree n will real coefficients is a real vector space. C2 = {(z1, z2) :
z1, z2 ∈ C} is complex vector space.

Subvector spaces are subsets of vector spaces that are by themselves vector spaces. For
example, any straight line through the origin is a subvector space of R2. Similarly, straight
lines through the origin or any plane including the origin form a subvector space of R2.

Recall that a linear combination of a collection of vectors {v1, . . . ,vn} is a vector of the
form

c1v1 + . . .+ cnvn. (88)

Examples are the solutions of ODEs. The span of the set {v1, . . . ,vn}, denoted by

Span({v1, . . . ,vn})

is the set of all linear combinations of {v1, . . . ,vn}. This set is always a vector space.
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A set of vectors {v1, . . . ,vn} is called linearly independent if one of them is a linear
combination of the others, or equivalently, if there exist scalars c1, . . . , cn not all zero so
that

c1v1 + . . .+ cnvn = 0. (89)

Vectors that are not linearly dependent are called linearly independent. For example, the
two vectors {sinx, cosx} are linearly independent but the three vectors {sinx, cosx, sinx+
137 cosx} are not.

The dimension dimV of a vector space is the largest number of linearly independent
elements one can find in V, for example

dimR = 1 , dim Span{sinx, cosx, sinx+ 137 cosx} = 2. (90)

Any set of d = dimV linearly independent vectors {b1, . . . , bd} forms a basis of V. The
components (c1, . . . , cn) of a vector v with respect to a given basis {b1, . . . , bd} are the
numbers required to express v as superposition of the basis vectors

v = c1b1 + . . .+ cnbn. (91)

We often write the components in column form

v =

c1
...
cd

 . (92)

It is important to keep in mind that this representation refers to a specific fixed basis system.
That is, if we pick another basis {b′1, . . . , b′d} then the same vector would be characterized
by a different set of components (c′1, . . . , c

′
n).

7.2 Matrices as functions between vector spaces

Any given n×m matrix

A =

A11 A12 · · ·A1m
...

...
...

An1 A12 · · ·Anm

 (93)

can be naturally interpreted as a map from an m-dimensional vector space V to an n-
dimensional vector space V̂. To see this, let’s assume we have fixed a basis {b1, . . . , bm}
for V and another basis {b̂1, . . . , b̂n} for V̂. Then vectors v ∈ V and v̂ ∈ V̂ correspond to
column vectors

v =

 c1
...
cm

 and v̂ =

ĉ1
...
ĉn
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respectively. The matrix A assigns to each vector v ∈ V another vector v̂ = Av ∈ V̂ with
components ĉ1

...
ĉn

 =

A11 A12 · · ·A1m
...

...
...

An1 A12 · · ·Anm


 c1

...
cm

 (94)

That is, the matrix defines a linear map from V to V̂. Conversely, Eq. (94) can be interpreted
as a linear equation that formalizes the following inverse problem:

Given the image vector v̂, can we find the original vector(s) v that are mapped by A
onto v̂?

In the next section, we will learn a systematic procedure for answering this question.
Beforehand, let’s briefly consider the special case V = V̂. Then any linear map V→ V

can be represented by a square matrix A. An example, is the rotation matrix

Rx(φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (95)

which keeps vectors along the x-axis fixed, thus describing rotations about this axis. The
determinant of this matrix is given by

detR(φ) = 1(cosφ)(cosφ)− (sinφ)(− sinφ) = 1. (96)

Linear maps of determinant ±1 are volume conserving. Volume conservation is intuitively
obvious for rotations, but in most cases it is not immediately obvious for a given matrix
A whether or not the associated map v̂ = Av is volume conserving - in these cases, the
determinant criterion is very useful.

8 Higher-order linear systems and superposition

Until stated otherwise, we will focus on linear ODEs for scalar functions from now on. In
Eq. (20) above, we had seen that Newton’s equations for a damped harmonic oscillator can
be written in the standard form

ẍ+ bẋ+ ω2x = ε sin(Ωt), (97)

where the rhs. represents an oscillatory driving signal (input) that determines the system
response x(t). We now generalize from this second-order ODE to linear nth order ODEs.

8.1 General case: Homogeneous vs. inhomogeneous linear equations

The most general form of an nth order linear ODE for a function x(t) with given t-dependent
coefficients pk(t) is8

pn(t)x(n) + pn−1(t)x(n−1) + . . .+ p2(t)ẍ+ p1(t)ẋ+ p0(t)x = q(t). (98)

8An ODE that cannot be expressed in this form is nonlinear.
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From an engineering perspective, it is natural to interpret the function q(t) on the rhs.
of Eq. (98) as an external input signal, while the sought-after solution x(t) describes the
system response. If the function q(t) is identically zero, q(t) ≡ 0, the linear ODE is called
homogeneous. For a non-vanishing function q(t) 6≡ 0, the equations is called inhomogeneous.

Thus, the example from Eq. (21),

etẍ+ 5ẋ+ t9x = 0,

is homogeneous, whereas

etẍ+ 5ẋ+ t9x = sin(3t) (99)

is inhomogeneous.

8.2 Existence and uniqueness of solutions

Using separation of variables (in the homogeneous case) and variation of parameters (in the
inhomogeneous case), we showed that every first-order linear ODE has a 1-parameter family
of solutions. To nail down a specific solution in this family, we needed one initial condition,
such as y(0). Similarly, it turns out that every second-order linear ODE has a 2-parameter
family of solutions. That is, to nail down a specific solution, we need two initial conditions
at the same starting time, y(0) and ẏ(0). The starting time could also be some number t0
other than 0. These are consequence of the following general theorem:

Let pn−1(t), . . . , p0(t), q(t) be continuous functions on an open interval I. Let t0 ∈ I,
and let b0, . . . , bn−1 be given numbers. Then there exists a unique solution y(t) to the nth
order linear ODE

y(n) + pn−1(t) y(n−1) + · · ·+ p1(t) ẏ + p0(t) y = q(t)

satisfying the n initial conditions

y(t0) = b0, ẏ(t0) = b1, . . . , y(n−1)(t0) = bn−1.

Here, existence means that there is at least one solution, while uniqueness means that
there is only one solution. For a linear ODE as above, the solution y(t) is defined on the
whole interval I where the functions pn−1(t), . . . , p0(t), q(t) are continuous. In particular,
if pn−1(t), . . . , p0(t), q(t) are continuous on all of R, then the solution y(t) will be defined
on all of R.

8.3 Superposition principle

During our above discussion of the population growth model in Sec. 2.2.1, we had seen
how one can construct the general solution to a linear inhomogeneous first-order ODE by
superposition. After looking at a few more examples in Sec. 8.3.1, we will generalize this
concept to linear nth order equations in Sec. (8.3.2).
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8.3.1 Examples

Let’s compare the solutions to a homogeneous equation and some inhomogeneous equations
with the same left hand side:

The general solution to tẏ + 2y = 0 is yh = ct−2

A particular solution to tẏ + 2y = t5 is yp = t5/7
The general solution to tẏ + 2y = t5 is y = ct−2 + t5/7

A particular solution to tẏ + 2y = 1 is yp = 1/2
The general solution to tẏ + 2y = 1 is y = ct−2 + 1/2

Furthermore, scaler-multiply the particular solutions above to obtain

A particular solution to tẏ + 2y = 9t5 is yp = 9t5/7
A particular solution to tẏ + 2y = 3 is yp = 3/2

and add to find

A particular solution to tẏ + 2y = 9t5 + 3 is yp = 9t5/7 + 3/2

8.3.2 General form

The general principle, which works for all linear ODEs, is this:

(i) Multiplying a solution to

pn(t) y(n) + · · ·+ p0(t) y = q(t) (100a)

by a number α gives a solution to

pn(t) y(n) + · · ·+ p0(t) y = αq(t). (100b)

(ii) Adding a solution y1(t) of

pn(t) y(n) + · · ·+ p0(t) y = q1(t) (101a)

to a solution y2(t) of

pn(t) y(n) + · · ·+ p0(t) y = q2(t) (101b)

gives a solution y = y1(t) + y2(t) of

pn(t) y(n) + · · ·+ p0(t) y = q1(t) + q2(t). (101c)

8.3.3 Outlook: Complexification

The properties (i) and (ii) can be combined to complexify a linear nth order ODE, which
means that if x(t) and y(t) solves

pn(t)x(n) + · · ·+ p0(t)x = u(t) (102a)

pn(t) y(n) + · · ·+ p0(t) y = v(t) (102b)

then z(t) = x(t) + iy(t) solves

pn(t) z(n) + · · ·+ p0(t) z = u(t) + iv(t) (102c)
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9 Operator notation and matrix analogy

Let us now generalize the approach of the previous section by considering the more general
case of an nth order linear ODE for a function x(t) with constant coefficients pk

pnx
(n) + pn−1x

(n−1) + . . .+ p2ẍ+ p1ẋ+ p0x = q(t). (103)

To write this equation compactly, we introduce the differential operator

D :=
d

dt

which acts on a time-dependent function x(t) by producing a new function9

Dx(t) =
d

dt
x(t) = ẋ(t) = v(t)

It follows from the usual rules of differentiation that for any two functions x(t) and y(t)
and any two constants α and β

D[αx(t) + βy(t)] =
d

dt
[αx(t) + βy(t)] = α

d

dt
x(t) + β

d

dt
y(t) = αDx(t) + βDy(t),

which means that the operator D is called linear. Please check that the operator Dn =
dn/dtn is also linear. Using D and its powers, we can define a more complicated linear
operator

L = pnD
n + pn−1D

n−1 + . . .+ p2D
2 + p1D + p0D

0 (104a)

which explicitly reads

L = pn
dn

dtn
+ pn−1

dn−1

dtn−1
+ . . .+ p2

d2

dt2
+ p1

d

dt
+ p0, (104b)

In terms of L, we can rewrite Eq. (103) compactly as

Lx(t) = q(t). (105)

It is no coincidence that Eq. (105) bears formal resemblance to the linear matrix equation

Ax = b (106)

where A is an n× n square matrix, and x and b are n-dimensional row vectors

x =

x1

. . .
xn

 , b =

 b1
. . .
bn


Matrix multiplication is a linear operation on vectors

A(αv + βu) = αAv + βAu (107)

9That is, an operator is a map from functions to functions, just as a function is a map from number to
numbers.
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just as L is a linear operator on functions.
Given Eq. (105), we would like to find x(t) for given L and q(t), while in the case of

Eq. (106) we would like to find x for given A and b. Both Eq. (105) and Eq. (106) are
linear, which for example means that their general solutions are given by

x(t) = xh(t) + xp(t) , x = xh + xp (108)

where the subscript h indicates the general solution of the associated homogeneous problems
(with q ≡ 0 and b = 0, respectively), and subscript p indicates a particular solution of the
full inhomogeneous equation.

In the remainder of this section, we will outline deeper structural similarities between
Eqs. (105) and (106).

9.1 Eigenvalues and eigenvectors of matrices

We start by considering the matrix equation Ax = b. For any square matrix A, we can find
a certain number of special vectors v, satisfying

Av = λv (109)

for some real or complex constant λ. These vectors are called the eigenvectors of A and
λ is called the corresponding eigenvalue. The collection of all eigenvalues λ is called the
spectrum of the matrix A, and typically denoted by

spec(A).

Intuitively, eigenvectors are special because application of A merely stretches or shrinks an
eigenvector v by λ; in general, applying A to some non-eigenvector w produces a new vector
u := Aw that does not point in the same direction as w.

To illustrate, how one can find the eigenvectors of a given matrix A, we consider as a
specific example the 2× 2-matrix

A =

(
1 2
2 1

)
and rewrite the eigenvector condition (109) in the equivalent form

(A− λI)v = 0 (110)

by subtracting λIv on both sides of Eq. (109), where

I =

(
1 0
0 1

)
is the 2 × 2 identity matrix that leaves every vector unchanged. Equation (110) features
the matrix

A− Iλ =

(
1− λ 2

2 1− λ

)
(111)
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which is just the matrix A with λ subtracted on the diagonal. Equation (110) is always
solved by v = 0, but this is a trivial uninteresting solution. To find nontrivial solutions v
we must demand that the determinant of the matrix A− Iλ vanishes10

p(λ) := det(A− λI) = 0. (112)

The function p(λ) is the characteristic polynomial of A, and its roots are the eigenvalues
of A. For our example,

p(λ) = det

(
1− λ 2

2 1− λ

)
= (1− λ) · (1− λ)− 2 · 2 = λ2 − 2λ− 3,

which has roots

λ1 = −1 , λ2 = 3.

Inserting the eigenvalues into Eq. (110) gives(
1− λ1 2

2 1− λ1

)
v1 =

(
2 2
2 2

)
v1 = 0(

1− λ2 2
2 1− λ2

)
v2 =

(
−2 2
2 −2

)
v2 = 0

which is satisfied by the eigenvectors

v1 =

(
1
−1

)
, v2 =

(
1
1

)
.

Note that the eigenvectors are linearly independent and in fact even orthogonal11, so that
any other two-dimensional real vector x can be expressed as

x = c1v1 + c2v2 , c1, c2 ∈ R.

In general, the eigenvalues and eigenvectors of a real matrix can be complex (see 18.06
for more on this).

9.2 Eigenvalues and eigenfunctions of linear operators

Let’s now compare this to differential operators, by considering the homogeneous nth order
ODE

Lx(t) =

(
pn

dn

dtn
+ pn−1

dn−1

dtn−1
+ . . .+ p2

d2

dt2
+ p1

d

dt
+ p0

)
x(t) = 0 (113)

Inserting the trial function xλ = eλt, we find

p(λ) := pnλ
n + pn−1λ

n−1 + . . .+ p2λ
2 + p1λ+ p0 = 0

10Otherwise, v = 0 would be the only possible solution.
11For sufficiently nice (e.g., Hermitean) matrices, this is always the case/achievable.
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where now p(λ) is the now the characteristic polynomial of the ODE. First, let us note that
we can express the operator L in terms of the characteristic polynomial

L = p(D) , D =
d

dt
.

Secondly, we see that the differential operator L plays a role analogous to that of the matrix
A− λI in Eq. (110), and that we can interpret the roots λ1, . . . , λn of p(λ) as ‘eigenvalues’
and the corresponding solutions eλ1t, . . . , eλnt as ‘eigenfunctions’. If all eigenvalues λi are
distinct, then we say the spectrum of L is non-degenerate. Assuming that all the roots λi
are distinct and real, the general homogeneous solution of Eq. (113) can then be written as

xh(t) = c1e
λ1t + . . .+ cne

λnt , c1, . . . , cn ∈ R. (114)

or, equivalently, in compact sum notation

xh(t) =
n∑
i=1

eλitci , ci ∈ R. (115)

9.3 Basis solutions for repeated roots

If some of the eigenvalues λi are repeated, i.e., have a multiplicity greater than 1, then
the spectrum is called degenerate. In the degenerate case, we have to modify the basis
functions as follows: Let’s assume we have k ≤ n distinct real roots λα of multiplicity mα,
which means that we can write the characteristic polynomial as

p(λ) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λk)mk . (116)

For an nth order ODE, there must n roots in total so that

m1 +m2 + . . .+mk = n. (117)

In this case, the general solution can be written as

xh(t) = eλ1t
(
c11 + c12t

1 + . . .+ c1m1t
m1−1

)
+ . . .+

eλkt
(
ck1 + ck2t

1 + . . .+ c1mkt
mk−1

)
, cαs ∈ R.

or, equivalently, in compact sum notation

xh(t) =
k∑

α=1

eλαt

(
mα∑
s=1

cαst
s−1

)
, cαs ∈ R. (118)

To see how we can construct these solutions, let’s consider the case where r is a double-root
of p(λ). In this case, we can write

p(λ) = (λ− r)2g(λ). (119)

Obviously, ert is a solution, since

p(D)ert = p(r)ert = 0. (120)
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If we find another nonzero solution y(t) satisfying y(0) = 0, then it is definitely not a
nonzero multiple of ert, so it’s a viable candidate. We find this solution by moving a root
slightly. Let

ps(λ) = (λ− s)(λ− r)g(λ)

which is related to p(λ) by
p(λ) = pr(λ) = (λ− r)2g(λ)

If s 6= r, then both ys = est and yr = ert solve ps(D)y = 0. It follows that

y = ys − yr = est − ert

solves ps(D)y = 0 and satisfies y(0) = 0. Now this solution does not help in the limit as
s→ r because it tends to zero for all values of t. But if we multiply by the constant 1/(s−r)
we get a solution that has a nonzero limit. Indeed,

lim
s→r

est − ert

s− r
=

d

ds
est
∣∣∣∣
s=r

= tert

is the limit as s→ r of solutions to ps(D)y = 0. Hence, in conclusion,

p(D)(tert) = 0.

Of course once we know that tert works, we don’t need this derivation any more. We can
plug it in to check that it solves the equation. We leave it as an exercise to check that

(D − r)2(tert) = 0.

It then follows that p(D)(tert) = 0 because p(D) = g(D)(D − r)2. The same works for
higher powers:

(D− r)k(t`ert) = 0, ` = 0, 1, . . . , k − 1.

10 Inhomogeneous ODEs and exponential response formula

Thus far, we have mostly focused on homogeneous linear nth order ODEs

Lx(t) = p(D)x =
(
pnD

n + pn−1D
n−1 + . . . p1D + p0

)
x ≡ 0. (121)

and we have seen how to find the general solution for these types of problems. In this part,
we introduce a systematic procedure for constructing particular solutions for an important
class of inhomogeneous problems

Lx(t) = q(t). (122)

As noted earlier, we interpret the driving function q(t) as an external input signal and x(t)
the system response.

For a wide range of practically important problems, the driving function q(t) falls in the
class of sinusoidal functions. The most basic examples are q(t) = sin(Ωt) or q(t) = cos(Ωt).
The key idea for tackling these types of problems is to complexify Eq. (122), by replacing
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x(t) on the lhs. by the complex function z(t) = x(t) + iy(t) and by replacing q(t) on the
rhs. by

Q(t) = eiΩt = cos(Ωt) + i sin(Ωt). (123)

Once we have solved the complexified problem

Lz(t) = eiΩt, (124)

we can recover the sought-after particular solution from the real or imaginary part of the
complex solution z(t), depending on whether the driving function q(t) is a cosine or sine
function.

10.1 Time Invariance

In the remainder of this course, we will continue to focus on polynomial differential operators
with constant coefficients, that is operators of the form

p(D) = pnD
n + pn−1D

n−1 + . . . p1D + p0,

where all of the coefficients pk are numbers (opposed to functions of t). Clearly all operators
of this form are linear. In addition to being linear operators, they are also time-invariant
operators, which means:

• If x(t) solves p(D)x = f(t), then y(t) = x(t− t0) solves p(D)y = f(t− t0).

All that this says is that delaying the input signal f(t) by t0 seconds delays the output
signal x(t) by t0 seconds. Another way to put this is that if we know that x(t) is a solution
to p(D)x = f(t), we can solve p(D)y = f(t − t0) by replacing t by t − t0 in x(t). This is
a useful property because gives us the solutions to many differential equations for free. In
particular, it means that it is sufficient to consider the cases q(t) = sin(Ωt) or q(t) = cos(Ωt),
instead of q(t) = sin(Ωt−φ) or q(t) = cos(Ωt−φ) since the phase shift φ can be transformed
into a time shift t0 = φ/Ω.

10.2 Exponential response formula (ERF)

We would like to find a particular solution of

Lz(t) = ert, (125)

which includes Eq. (124) when r = iΩ.

10.2.1 Example: Undamped harmonic resonance

Consider the driven harmonic oscillator

Lx = ẍ+ ω2x = cos(Ωt) (126)
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The complexified equation is

Lz = z̈ + ω2z = ert , r = iΩ (127)

Using D = d/dt, we can write

L = p(D) , p(λ) = λ2 + ω2. (128)

Try the solution

z(t) = f(r)ert (129)

Then

p(D)z = p(D)f(r)ert =

(
d2

dt2
+ ω2

)
f(r)ert = (r2 + ω2)f(r)ert = ert (130)

Hence, dividing by ert and inserting r = iΩ

(−Ω2 + ω2)f = 1 (131)

If ω 6= Ω, then

f =
1

ω2 − Ω2
=

1

p(iΩ)
(132)

and

z(t) =
eiΩt

ω2 − Ω2
, (133)

and the particular real solution of Eq. (126) is given by the real part

xp(t) = <
[

eiΩt

ω2 − Ω2

]
=

cos(Ωt)

ω2 − Ω2
(134)

We see that the solution blows up as ω → Ω, that is when r = iΩ approaches a root of the
characteristic polynomial p(λ). This phenomenon is called resonance. Such resonances can
be used to amplify weak input signals, and they can have devastating effects in engineering
applications. Equation (134) tells you that things blow up as ω → Ω, but it doesn’t tell you
how things blow up when ω = Ω.

To see what happens at ω = Ω, we cannot use the exponential trial function ert because
Eq. (131) becomes unlovable in this case. So let’s try

z(t) = g(r)tert (135)

instead. Inserting this into Eq. (127), a calculation analogous to that in Eq. (130), gives(
d2

dt2
+ ω2

)
g(r)tert = g(r)

(
2r + r2t+ ω2t

)
ert = ert (136)
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Substituting r = iΩ = iω and dividing by ert, we find

g(r)
[
2iω + (iω)2t+ ω2t

]
= 1, (137)

so

g(r) =
1

2iω
=

1

p′(iω)
(138)

and

z(t) =
teiωt

2iω
(139)

The sought-after particular solution is then as before given by the real part

xp(t) = <
[
teiωt

i2ω

]
= <

[
t(cosωt+ i sinωt)

i2ω

]
=
t sin(ωt)

2ω
. (140)

This is an oscillation with linearly growing amplitude, i.e., we have a linear blow-up.

10.2.2 General formulation

Generally, we want to find a particular solution of

p(D)z(t) = ert , D =
d

dt
(141)

As in the oscillator example, we try

z = f(r)ert,

yielding
p(D)z = p(D)f(r)ert = p(r)f(r)ert = ert.

Hence, if p(r) 6= 0, then

f(r) =
1

p(r)

and

z(t) =
ert

p(r)
(142)

solves Eq. (141). This is known as the Exponential Response Formula, abbreviated as
ERF from now on.

42



10.3 Generalized ERF

The ERF (142) relies on the assumption that we are off-resonance, i.e., that the driving
parameter r is not a root of the characteristic polynomial p(λ). If r is a root of multiplicity
k of p(λ), then the following generalization of Eq. (142) holds

z(t) =
tkert

p(k)(r)
, p(k)(λ) =

dk

dλk
p(λ). (143)

We next derive this generalized ERF for simple roots (k = 1); the derivation for repeated
roots (k ≥ 2) works similarly. To solve the equation

p(D)z = ert

in the exceptional case when the number r is a root of the characteristic equation, that is,
p(r) = 0, we first note that

p(D)ert = p(r)ert = 0,

so that the exponential can’t work. On the other hand, for s 6= r, but very near r, we still
have p(s) 6= 0, so that by the ordinary ERF,

zs =
est

p(s)
solves p(D)zs = est.

We would like to pass to the limit s→ r and get a solution to p(D)z = ert using zs, but as
s→ r, we find

zs =
est

p(s)
−→ ert

p(r)
=
ert

0
,

which is undefined. To find an acceptable solution, we can make use of the fact that, if we
add c times p(D)ert = 0 to the equation p(D)zs = est, we see that for any c,

z = zs + cert solves p(D)z = est.

Now we choose the constant c, so that we get well defined limit. Namely, if

c = −1/p(s),

then

zs + cert =
est − ert

p(s)
−→ ert − ert

p(r)
=

0

0

which is an indeterminate form, to which L’Hôpital’s rule applies. Indeed,

lim
s→r

est − ert

p(s)
= lim

s→r

(d/s)[est − ert]
(d/ds)p(s)

= lim
s→r

test

p′(s)
=

tert

p′(r)

In summary, we have found that z = (est − ert)/p(s) solves

p(D)z = est
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Moreover, taking the limit as s→ r, we have

z(t) −→ tert

p′(r)
, est −→ ert =⇒ p(D)

tert

p′(r)
= ert.

This is the generalized ERF (143) for k = 1, sometimes also denoted as ERF’: if p(r) = 0,
but p′(r) 6= 0, then

z =
tert

p′(r)
solves p(D)z = ert.

10.4 Complex replacements

Complex replacements are helpful also with other real input signals, with any real-valued
function that can be written as the real (or imaginary) part of a reasonably simple complex
input signal. Here are some examples:

real input signal complex replacement

cos Ωt eiΩt

A cos(Ωt− φ) Ae−iφeiΩt

a cos Ωt+ b sin Ωt (a− bi)eiΩt
eat cos Ωt e(a+iΩ)t

10.5 Complex gain, (real)gain, and phase lag for an ODE

Our goal is to explain how the amplitude and phase lag of the system response depend
on system parameters and the input frequency. To do so, we will use our method of
complex replacement and introduce the complex gain first. We use the method of complex
replacement to solve the ODE

ẋ+ kx = A cos(Ωt). (144)

The complex replacement ODE is

ż + kz = AeiΩt

with input signal AeiΩt. The response determined by ERF is

z(t) =
A

iΩ + k
eiΩt.

The complex gain is the ratio of the complex system response to the complexified system
input:

G :=
complexified system response

complexified system input
=

A
iΩ+ke

iΩt

AeiΩt
=

1

iΩ + k
.

Observe that G is a complex number that depends on the frequency of the input signal Ω,
as well as the system parameter k.
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The original ODE has output signal

xp(t) = A<
[
GeiΩt

]
.

Working this out we find that12

G =
1

iΩ + k
=

k − iΩ
Ω2 + k2

and

xp(t) = A <
[
GeiΩt

]
= A

[
k

Ω2 + k2
cos(Ωt) +

Ω

Ω2 + k2
sin(Ωt)

]
(145)

Observe that the amplitude of the response is different than the amplitude of the input.
That difference in amplitude is the (real) gain g, which is the magnitude of the complex
gain

g := |G|. (146)

The phase lag is

φ = − argG. (147)

For our example system,

gain = |G| = 1

|k + iΩ|
=

1√
k2 + Ω2

and

phase lag = − argG = − arg
1

k + iΩ
.

A few summarizing remarks

• Given an LTI system with system input f(t), the complexified input is the complex
valued function F (t) such that <[F (t)] = f(t).

• The complex gain depends only on the system and the input angular frequency (that
is, on p and Ω), not on the specific sinusoid used as input.

• The gain and phase lag depend only on the system and the input angular frequency.
(This is because gain and phase lag are determined by complex gain.)

• Note that in applications, gain is usually defined in terms of how the input physical
variable is related to the output physical variable. That is, if I and O are complexified
versions of the input and output, and O = GI, with G a complex number, then G is
the complex gain.

In actual applications the relationship between the equation and the input-output phys-
ical variables can be more complicated than this, so that calculating the gain could end up
being more complicated than in the simple example above.

12In the MITx mathlet, the complex gain is depicted in the Nyquist Plot. The (real) gain and phase lag
are depicted in the Bode Plot. Click on the buttons at the bottom to see these plots in the mathlet.
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11 RLC circuits

In the previous sections, we frequently referred to the damped harmonic oscillator model
as an example to illustrate general solution strategies for linear ODEs. In this part, we
will show that a damped mechanical oscillator is, in fact, mathematically equivalent to the
ODE that describes a basic electronic circuit. That is, the results derived earlier for the
mechanical oscillator can also be used to understand how an electronic circuit functions!

11.1 Simple series circuit

Let’s model a RLC circuit with a voltage source, resistor, inductor, and capacitor attached
in series, as shown in Fig. 1A. The relevant variables and functions (with units) are:

t time (s)

R resistance of the resistor (ohms)
L inductance of the inductor (henries)
C capacitance of the capacitor (farads)

Q(t) charge on the capacitor (coulombs)
I(t) current (amperes)
V (t) voltage source (volts)
VR(t) voltage drop across the resistor (volts)
VL(t) voltage drop across the inductor (volts)
VC(t) voltage drop across the capacitor (volts).

The independent variable is t. The quantities R, L, C are constants parameters character-
izing the components of the circuit. Everything else is a function of t. The electric current

Figure 1: Basic electronic circuits. (A) RLC series circuit: The sum of the voltage drops
across the resistor (resistance R), inductor (inductance L) and capacitor (capacitance C)
must equal the externally applied voltage V (t), so that V (t) = VR(t) + VL(t) + VC(t).
(B) RL parallel circuit: At each junction, ingoing currents must equal outgoing currents
I = IR + IL.
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I(t) in a circuit is defined as a time-derivative of the electric charge

I(t) := Q̇. (148)

From physics, we know that the voltage drops across the different components are given by

VR(t) = RI(t) (Ohm’s law) (149a)

VL(t) = L İ(t) (Faraday’s law) (149b)

VC(t) =
1

C
Q(t) (149c)

Moreover, Kirchoff’s voltage law tells us that the sum of the voltage drops across the
resistor, inductor and capacitor in Fig. 1A must equal the externally applied voltage V (t),

VR(t) + VL(t) + VC(t) = V (t). (150)

Inserting the expressions from Eq. (149), the last equation can be written as follows:

LQ̈+RQ̇+
1

C
Q = V (t). (151)

This second-order inhomogeneous linear ODE with unknown function Q(t) is mathemati-
cally equivalent to the damped spring-mass-dashpot ODE

mẍ+ γẋ+ kx = Fext(t), (152)

with the following table of analogies:13

Spring-mass-dashpot system RLC circuit

displacement x Q charge
velocity ẋ I current
mass m L inductance
damping constant γ R resistance
spring constant k 1/C 1/capacitance
external force Fext(t) V (t) voltage source

To demonstrate the practical usefulness of the ERF, let’s consider an applied AC voltage
V = V0 cos(Ωt), so that

Q̈+ bQ̇+ ω2Q = A cos(Ωt). (153)

where

b =
R

L
, ω2 =

1

LC
, A0 =

V0

L
(154a)

13Similarly, an undamped driven harmonic oscillator with b = 0 is analogous to an LC circuit (no resistor,
R = 0).
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The characteristic polynomial and its roots are

p(λ) = λ2 + bλ+ ω2 , λ± =
1

2

(
−b±

√
b2 − 4ω2

)
(155)

Lets consider a strongly damped circuit with

b > 2ω ⇔ R

L
>

2√
LC

⇔ R > 2

√
L

C
.

In this case the roots are real and negative, λ± < 0, and the general solution of Eq. (153)
will take the form

Q(t) = c1e
λ−t + c2e

λ+t +Qp(t), (156)

where the particular solution is obtained from the ERF formula

Qp(t) = A<
[
eiΩt

p(iΩ)

]
=
V0

L

{
<
[

1

p(iΩ)

]
cos(Ωt)−=

[
1

p(iΩ)

]
sin(Ωt)

}
. (157)

In particular, we see that for long times t > min(λ−1
± ), any solution approaches rapidly the

particular solution Qp(t), because the contributions from the homogeneous solution become
exponentially damped. This demonstrates the practical importance of the ERF formula for
predicting the asymptotic behavior of driven mechanical and electronic systems!

11.2 Simple parallel circuit

We still briefly discuss a basic parallel circuit, shown in Fig. 1B, with a resistor of resistance
R and an inductor of inductance L attached in parallel. A voltage source provides the
combination with AC voltage of angular frequency Ω. We would like to find the gain and
phase lag of the resistor current relative to the total current through the voltage source.

Let V (t) be the sinusoidal voltage provided. The unknown functions are the resistor
current IR(t), the inductor current IL(t) and the total current I(t). Physics and Kirchoff’s
current law tell us that

V (t) = RIR(t) = LİL(t) , I(t) = IR(t) + IL(t). (158)

The same relationships hold between the complex replacements,

Ṽ = R ĨR = L
˙̃
IL , Ĩ = ĨR + ĨL, (159)

because taking real parts is compatible with real scalar multiplication and with taking
derivatives. Suppose that Ṽ = eiΩt. (In general, Ṽ = γeiΩt for some γ ∈ C, but then
everything will be multiplied by γ, so when we take a ratio to get complex gain, γ will
disappear.) How do we solve for the other three functions ĨR, ĨL, Ĩ? The ERF suggests
steady-state solutions of the form

ĨL = αRe
iΩt , ĨR = αLe

iΩt , Ĩ = βeiΩt
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for some unknown complex numbers αR, αL, β. To find αR, αL, β, substitute into the three
complex replacement equations (159) and divide by eiΩt, to get

1 = RαR = LαLiΩ , β = αR + αL.

So

αR =
1

R
, αL =

1

iLΩ
, β =

1

R
+

1

iLΩ
.

The complex gain of IR relative to I is the complex constant

G =
ĨR

Ĩ
=
αR
β

=
1/R

1/R+ 1/(iLΩ)
. (160)

The real gain is |G|, and the phase lag is − argG.

12 Nonlinear first-order ODEs

Thus far, our focus has been primarily on linear ODEs. Many real-world problems, however,
are described by nonlinear differential equations. Examples range from gravitational sys-
tems, gases and fluids to biological systems and chemical reactions. Nonlinear equations are
typically not exactly solvable and therefore must be tackled with approximative analytical
or numerical techniques, to extract useful information from them. In this part, we focus
on qualitative methods that allow us to infer something about the long-time asymptotic
behavior of a nonlinear ODEs. To this end, we consider autonomous first-order equations
of the form

ẋ(t) = f(x(t)) (161)

where f is a given nonlinear real-valued function of x. Here, autonomous means that f
does not explicitly depend on t, and nonlinear means that

f(αx+ βy) 6= αf(x) + βf(y). (162)

Examples of nonlinear functions are xn with n 6= 1, exp(αx), log(x), etc. To understand
intuitively, why nonlinear ODEs are generally difficult or impossible to solve analytically,
let’s assume f(x) 6= 0 and try separation of variables, which gives∫ x(t)

x0

dx

f(x)
= t− t0. (163)

Clearly, if f is sufficiently complicated, then we cannot solve the integral in closed form and
have to resort to other, more qualitative approaches. We will illustrate the key ideas using
the logistic equation as an example.
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12.1 Logistic equation

The simplest model for a population x(t) assumes that population growth is proportional
to the size of the current population. This is modeled by the linear ODE

ẋ = ax (164)

where a > 0 is the growth rate. If food or space are scarce, competition will limit the
population growth. A simple generalization of Eq. (164) describing such effects is the
logistic model

ẋ = ax− bx2, (165)

where the second term on the rhs. accounts for pair interactions. Equation 165 is a nonlinear
ODE.

12.2 Solution curves, slope fields and blow-up

The graph γ(t) = (t, x(t)) of a function x(t) solving Eq. (161), or more generally, a nonlinear
non-autonomous ODE

ẋ = f(t, x) (166)

is called a solution curve. The vector field

γ̇ =

(
1
ẋ

)
=

(
1

f(t, x)

)
(167)

is called the slope field. Isoclines14 are curves in the (t, x) plane that have constant slope
ẋ = f = C, where C is a constant. As an example, let’s consider the logistic equation with
a = 0 and b = −1,

ẋ = x2. (168)

In this case, f(t, x) = x2, and the slope field is

γ̇ =

(
1
x2

)
, (169)

which is depicted in Fig. 2. The nonlinear ODE (168) is in fact still exactly solvable. One
solution is the constant function x(t) ≡ 0 (yellow curve in Fig. 2). To find non-constant
solutions with x(t) 6= 0, we use separation of variables [Eq. (163) with f(x) = x2], yielding∫ x(t)

x0

dx

x2
=
−1

x(t)
−
(
−1

x0

)
= t− t0, (170)

where x0 = x(t0). Hence,

x(t) =

[
1

x0
− (t− t0)

]−1

(171)

14Greek: isos=same, klisi=slope.

50



0 1 2 3 4 5
-1

0

1

2

3

4

t

x(
t)

Figure 2: Slope field γ̇ and solutions for Eq. (168). The solution with x0 = x(0) = −1
(green line) approaches the hyperbola −1/t (orange) at large times t → ∞. The constant
solution x(t) ≡ 0 (yellow) exists for all times, whereas the solution with x0 = 1 (blue) blows
up in finite time at t = 1.

Let’s assume t0 = 0, then

x(t) =
x0

1− x0t
. (172)

For initial conditions x0 < 0, the denominator is always positive for t > 0 and for t� 1/|x0|
the solutions approach the same hyperbola (orange curve in Fig. 2),

x(t) ' −1

t
. (173)

By contrast, for x0 > 0, the denominator becomes zero when t = 1/x0; that is, the solution
blows up in finite time.

12.3 Fixed points and linear stability analysis

Fixed points (FPs) of are constant solutions x(t) ≡ x∗, which satisfy ẋ∗ = 0 and, hence, the
FP criterion15

f(x∗) = 0. (174)

Such FPs, if they exist, correspond to 0-isoclines (curves of slope zero) in the (t, x)-plane.
FPs are extremely useful for understanding the asymptotic behavior of solutions x(t) of a
given nonlinear ODE. In fact, whenever you encounter a nonlinear ODE, the first thing you
should do is to look for FPs and study their stability. To see how this is done in practice,
let’s consider the logistic equation (165) with a = b = 1,

ẋ = x− x2 = f(x). (175)

15Given a non-autonomous ODE ẋ = f(t, x), we call curves x∗(t) satisfying f(t, x∗) = 0 also critical curves
or critical points. According to this definition, fixed points are exactly the critical points of autonomous
ODEs.
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According to the criterion (174), the FPs of Eq. (175) satisfy

x∗ − x2
∗ = 0, (176)

implying that there are two of them

x0 = 0 , x1 = 1. (177)

To understand how solutions behave in the vicinity of a FP x∗, let’s consider ‘nearby’
solutions of the form

x(t) = x∗ + ε(t), (178)

where ε(t) is small. We first note that

ẋ = ε̇. (179)

Moreover, we can Taylor expand

f(x) = f(x∗ + ε) = f(x∗) + f ′(x∗)ε+
1

2
f ′′(x∗)ε

2 + . . .

= 0 + f ′(x∗)ε+ . . . (180)

Here, we have used that f(x∗) = 0 for FPs x∗. Keeping only terms up to linear order in ε,
we can approximate the original nonlinear ODE ẋ = f(x) by the linear ODE

ε̇ = f ′(x∗)ε. (181a)

Since f ′(x∗) is a constant, this linearized equation has the exponential solution

ε(t) = ε(0) ef
′(x∗)t ⇒ x(t) = x∗ + ε(0) ef

′(x∗)t. (181b)

This result shows that, for f ′(x∗) > 0, any solution starting near x∗ will diverge exponen-
tially from x∗; in this case, the FP x∗ is called linearly unstable. On the other hand, when
f ′(x∗) < 0, any solution starting near x∗ will converge towards x∗; in this case, the FP x∗
is called linearly stable.16 Equations (181) demonstrate why understanding linear ODEs is
important for understanding nonlinear ODEs.

Let’s check the stability of the FPs (177) of the logistic equation (175). To Taylor
expand f(x) = x− x2, we note that

f ′(x) = 1− 2x

so that

f ′(x0) = f ′(0) = 1 > 0 , f ′(x1) = f ′(1) = −1 < 0. (182)

Consequently the FP x0 is linearly unstable, whereas x1 = 1 is linearly stable. Assuming
that the initial population size is positive, x(0) > 0, this means that any solution will
converge to the stable FP x1 = 1; see Fig. 3. Thus, even though we do not know the exact
time-dependent solution, the FP analysis reveals the stationary behavior of the biological
system described by the nonlinear ODE (175).

16If f ′(x∗) = 0, then the quadratic term of the Taylor expansion has to be considered.
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Figure 3: (A) Slope field and numerical solutions of the logistic equation (175) in the (t, x)-
plane. Linearly stable and unstable fixed points correspond to the green and blue lines
(0-isoclines) respectively. The red and yellow solution curves converge to the stable fixed
point x1 = 1. (B) Phase portrait in the (x, ẋ)-plane for the solutions in panel A.

12.4 Bifurcation diagrams

In the previous section, we have seen that linear stability analysis of FPs x∗ offers qualitative
understanding of nonlinear autonomous ODEs. If the ODE features a number parameters
b = (b1, b2, . . .),

ẋ = f(x; b), (183)

then the FPs become functions of these parameters, x∗(b) and their stability can change
depending on the parameter values. To illustrate this, let’s consider the logistic equation
with harvesting

ẋ = 3x− x2 − h =: f(x;h), (184)

where h > 0 is the harvesting rate. To find FPs, we have to find the real roots of f(x;h) =
3x− x2 − h. Solving

0 = 3x∗ − x2
∗ − h (185)

gives

x±∗ (h) =
1

2

(
3±
√

9− 4h
)

(186)

Obviously these two FPs only exist when

h ≤ 9

4
. (187)

At the critical value hc = 9/4, the two FPs meet at the value x∗(hc) = 3/2. To analyze the
stability of x±∗ (h) when 0 < h < 9/4, we note that

f ′(x;h) =
df

dx
= 3− 2x, (188)

53



Figure 4: Bifurcation diagram for the logistic equation with harvesting, Eq. (184), in the
(h, x)-plane. Colored curves show the fixed points x±∗ (h) from Eq. (186). Arrows indicate
stability through the flow directions of the solutions x(t;h).

so that

f ′(x−∗ ;h) =
√

9− 4h > 0 , f ′(x+
∗ ;h) = −

√
9− 4h < 0. (189)

This means that x+
∗ (h) is stable whereas x−∗ (h) is unstable. The critical FP x∗(hc) = 3/2

is called semi-stable.
The information about the parameter dependence of FPs is typically summarized in

a bifurcation diagram, as shown in Fig. 4. Unstable FPs (orange curve in Fig. 4) is also
referred to as separatrix, because they separate qualitatively different solutions. In our
example, a population described by Eq. (184) with h < 9/4 goes extinct only when

x(t = 0) < x−∗ (h).

For x(t = 0) < x−∗ (h), the population will always stabilize at x+
∗ (h) after a sufficiently long

time t→∞. By contrast, when h > 9/4, the population goes always extinct.

13 Numerical solution of first-order ODEs

Highly nonlinear ODEs describing real-world problems cannot be solved by hand in most
cases. One then has to resort to numerical solution techniques. The basic idea of numerical
solvers is to discretize a given ODE efficiently, so that numerical solutions converge rapidly
as the time-step is decreased. In general, one can discretize ODEs in many different ways.
In this part, we illustrate the general approach for the nonlinear first-order ODE

ẋ(t) = f(t, x(t)) (190)
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with initial condition x(0) = x0 The algorithms sketched below can be generalized to more
complicated ODEs in a fairly straightforward manner.

13.1 Euler’s method

Euler’s method is simplest algorithms for solving an ODE by discretizing time t into equidis-
tant intervals ∆t by considering discrete time-points

tn = n ∆t , n = 0, 1, . . . .

The goal is to compute the values of the solutions at these time-points, xn = x(tn) where
x0 = x(0) is the given initial condition.

The time derivative on the lhs. of Eq. (190) can be approximated by the forward
difference quotient

ẋ(tn) ≈ x(tn+1)− x(tn)

∆t
=
xn+1 − xn

∆t
, (191)

while the rhs. of Eq. (190) is given by

fn = f(tn, x(tn)) = f(tn, xn). (192)

The discretized version of the ODE (190) thus becomes

xn+1 − xn
∆t

= f(tn, xn). (193)

This can be solved for xn+1, yielding the first-order recursion relation

xn+1 = xn + f(tn, xn) ∆t. (194)

Let’s write this explicitly for the first few steps

t0 = 0∆t : x0 = x(0)

t1 = 1∆t : x1 = x0 + f(0, x0) ∆t

t2 = 2∆t : x2 = x1 + f(t1, x1) ∆t

t3 = 3∆t : x3 = x2 + f(t2, x2) ∆t

and so on. A graph of the approximate numerical solution is then obtained by plotting the
points (0, x0), (t1, x1), (t2, x2), etc.

13.2 Reliability checks

To test, whether or not a numerical algorithm converges to the correct solution, one can
check certain heuristic reliability criteria17. These include:

• Self-consistency: Solution curves should not cross! If numerically computed solution
curves appear to cross, a smaller step size ∆t is needed.18

17‘Heuristic’ means that these tests seem to work in practice, but they are not proved to work always.
18Try the mathlet Euler’s Method with ẏ = y2 − t, step size 1, and starting points (0, 0) and (0, 1/2).
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• Convergence as ∆→ 0: The estimate for y(t) at a fixed later time t should converge
to the true value as ∆ → 0. If shrinking h causes the estimate to change a lot, then
∆t is probably not small enough yet.

• Structural stability: If small changes in the ODE’s parameters or initial conditions
change the outcome completely, the answer probably should not be trusted. However,
one should also keep in mind that one reason for this could be a separatrix, a curve
such that nearby starting points on different sides lead to qualitatively different out-
comes; this is not a fault of the numerical method, but is an instability in the answer
nevertheless.

In general, the quality of numerically determined solution depends on the function f
and on the details of the numerical method. In the next section, we still look at a slightly
more sophisticated algorithm that produces better results than the Euler scheme.

13.3 Runge-Kutta scheme

When computing
∫ b
a f(t) dt numerically, the most primitive method is to use the left Rie-

mann sum: divide the range of integration into subintervals of width ∆t, and estimate the
value of f(t) on each subinterval as being the value at the left endpoint. More sophisticated
methods are the trapezoid rule and Simpson’s rule, which have smaller errors. There are
analogous improvements to Euler’s method; see Table 1.

The widely applied Runge-Kutta methods “look ahead” to get a better estimate of what
happens to the slope over the course of the interval [t0, t0 + ∆t]. Here is how one step of
the second-order Runge-Kutta method (RK2) goes:

1. Starting from (t0, x0), look ahead to see where one step of Euler’s method would land,
say (t1, x1), but do not go there!

2. Instead sample the slope at the midpoint
(
t0+t1

2 , x0+x1
2

)
.

3. Now move along the segment of that slope: the new point is(
t0 + ∆t, x0 + f

(
t0 + t1

2
,
x0 + x1

2

)
∆t

)
.

Repeat, reassessing the slope after each step. RK2 is also called midpoint Euler.

Integration Differential equation Error

left Riemann sum Euler’s method O(∆t)
trapezoid rule second-order Runge-Kutta method (RK2) O(∆t2)
Simpson’s rule fourth-order Runge-Kutta method (RK4) O(∆t4)

Table 1: The big-O notation O(∆t4) means that there is a constant C (depending on
everything except for ∆t) such that the error is at most C∆t4, assuming that ∆t is small.
The error estimates in the table are valid for reasonable functions.
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The fourth-order Runge-Kutta method (RK4) is similar, but more elaborate, averaging
several slopes. It is probably the most commonly used method for solving ODEs numerically.
Some people simply call it the Runge-Kutta method. The mathlets use RK4 with a small
step size to compute the ‘actual’ solution to an ODE.

14 Introduction to ODE systems

So far we focuses on ODEs for a single scalar function, such as x(t) or y(x). However,
any time a quantity and its derivative depend not just on themselves but also on other
quantities, we get a system of DEs. Below are some examples.

• Physics: To navigate the Juno spacecraft to Jupiter, NASA scientists needed to un-
derstand gravity. Like many other important quantities in nature, gravity is governed
by ODEs that constrain vector-valued functions; that is, by a system of differential
equations.

• Electrical systems: We have seen that an RLC circuit can be described by a single
second order ODE. More complex circuits with numerous loops, present in computers,
cell phones, amplifiers, require systems of DEs to describe.

• Chemical reactions: The time derivative of the concentration of a chemical species
is a function of the reaction rates and concentrations of other species. These relations
give systems of DEs.

• Engineering: A simulation of a car crash test is a system that comprises millions
of masses, springs, and dashpots. Simulation of cloth uses a 2D networks of springs.
Simulations of fire, smoke, water, snow in movies are all systems of DEs.

• Gene expression network: The time derivatives of mRNA and protein concentra-
tions are functions of their degradation rates and transcription factors of the proteins.
These relations constitute systems of ODEs.

• Network dynamics: How a virus spreads in a population, the flow of traffic, and
information flow in a social network can all be described by systems of ODEs.

14.1 Brewery example

Let’s consider the basic two-tank system in Fig. 5, to demonstrate how we can construct
ODE systems for specific physical, chemical or biological systems. Let Q1→2 be the flow
rate (fluid volume per time) moving from tank 1 to tank 2. Then

Q1→2 ∝ (h1 − h2)

or equivalently

Q1→2 = c(h1 − h2),
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Figure 5: If the pipes have a small diameter relative to the overall size of the tanks, we
can model the flow linearly, and the flow rate will be proportional to the difference in fluid
height.

where the proportionality constant c encodes pipe geometry (diameter, etc.). The change
in fluid volume in tank 1 during the small time-interval ∆t is then

∆V1 = A∆h1 = Q1→2∆t.

Dividing by ∆t and taking the limit ∆t→ 0, we find

A
dh1

dt
= c(h2 − h1). (195a)

Analogously, assuming the two tanks have the same geometry, we find for tank 2

A
dh2

dt
= c(h1 − h2). (195b)

Defining a new constant a = c/A, we have the ODE system

ḣ1 = a(h2 − h1), (196a)

ḣ2 = a(h1 − h2). (196b)

Note that this system has a conserved quantity h(t) = h1(t)+h2(t). To check this explicitly,
let’s verify

ḣ = ḣ1 + ḣ2 = a(h2 − h1) + a(h1 − h2) = 0. (197a)

That is if h1(0) and h2(0) are given, then

h(t) = h1(0) + h2(0) (197b)

at all times t.
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The ODE system (196) is a linear system. To see this, let’s define the vector of functions
h(t) = (h1(t), h2(t)) and the constant matrix

A =

(
−a a
a −a

)
.

We can then rewrite the ODE system (196) in the form

ḣ =

(
ḣ1

ḣ2

)
= Ah. (198)

14.2 Lotka-Volterra system

This model is standard model in ecology and describes a simple predator-prey dynamics.
The prey population u(t) and the predator population v(t) are governed by

u̇ = Au−Buv, (199a)

v̇ = −Cv + Euv (199b)

with positive rate (coupling) parameters A,B,C,E > 0. The model is a nonlinear ODE
system and has two fixed points

(u0, v0) = (0, 0) , (u∗, v∗) = (C/E,A/B). (200)

Later in class, we will learn how to analyze the stability of such fixed points.

14.3 Newton’s equations and companion matrix

Any nth order ODE for a function x(t) with can be rewritten as ODE system. The trick
is to interpret the derivatives ẋ, ẍ,

...
x , . . . as independent variables. Let’s illustrate this for

the damped oscillator system, described by Newton’s law

mẍ = −γẋ− kx. (201)

Defining momentum

p = mv = mẋ (202)

we can rewrite Eq. (201) as a system for the two-component vector of functions ξ = (x, p),

ẋ =
1

m
p, (203a)

ṗ = − γ
m
p− k x. (203b)

Let us consider the function

H(x, p) =
p2

2m
+
kx2

2
= Ekin + Epot (204)
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and compute its time-derivative

d

dt
H =

d

dt

(
p2

2m

)
+
d

dt

(
kx2

2

)
=

( p
m

)
ṗ+ (kx) ẋ

=
( p
m

)(
− γ
m
p− k x

)
+ (kx)

(
1

m
p

)
= − γ

m2
p2.

That is, when there is no friction, γ = 0, then H is conserved in time and fixed by the
initial conditions

H(x, p) =
p(t)2

2m
+
kx(t)2

2
=
p(0)2

2m
+
kx(0)2

2
=: E0 , ∀ t > 0. (205)

H is called the total energy (or also the Hamiltonian) of the harmonic oscillator. If there
is damping, γ > 0, then the energy H decreases and the oscillator will eventually come to
rest.

Using the two-component vector of functions ξ = (x, p), we can rewrite Eq. (203) in
matrix form

ξ̇ = Aξ (206a)

with the companion matrix

A =

(
0 1

m
−k − γ

m

)
, (206b)

because (
ẋ
ṗ

)
=

(
0 1

m
−k − γ

m

)(
x
p

)
=

(
1
mp

−kx− γ
mp

)
is the same as (203). We rewrote (201) as a system using the momentum variable p = mv =
mẋ, which is the common approach in physics, because momentum is more fundamental19

than velocity. Of course, from a purely mathematical perspective, we could have also used
x and v instead – you may try this yourself as an exercise.

14.4 General companion systems

The above procedure allows us to rewrite any linear nth order inhomogeneous ODE of the
form

anx
(n) + an−1x

(n−1) + . . .+ a1ẋ+ a0x = q(t) (207)

as linear first-order system. To see this explicitly, let’s define n functions zi(t) by

z1(t) = x , z2(t) = ẋ , z3(t) = ẍ , . . . zn(t) = x(n−1).

19Mostly, because momentum is conserved in elastic collisions whereas velocity isn’t.
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Noting that

zi+1(t) = żi(t) , i = 1, . . . , n− 1

and that

żn = −a0

an
z1 −

a1

an
z2 − . . .−

an−2

an
zn−1 −

an−1

an
zn +

1

an
q(t), (208)

we can rewrite (207) as
ż1

ż2
...

żn−1

żn

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
− a0
an
− a1
an
− a2
an

. . . −an−1

an




z1

z2
...

zn−1

zn

+


0
0
...
0
q(t)
an

 . (209)

This can be compactly expressed as

ż(t) = Az + b(t) (210)

with A being the companion matrix and vector b(t) representing the inhomogeneity.
More generally, if we are given a nonlinear nth order ODE of the form

x(n)(t) = F (t, x, ẋ, ẍ, . . . , x(n−1))

then we can always rewrite this as nonlinear first-order system
ż1

ż2
...

żn−1

żn

 =


z2

z3
...
zn

F (t, z1, z2, . . . , zn).


This form is often used to represent ODEs in numerical solvers.

15 Solving linear 2×2 homogeneous systems

The two-dimensional examples (the coupled tanks and the damped oscillator) discussed
above are of the form

ẋ = ax+ by, (211a)

ẏ = cx+ dy. (211b)

Defining ξ(t) = (x(t), y(t)), we can rewrite this as a matrix equation

ξ̇ = Aξ , A =

(
a b
c d

)
. (212)

We would like to use this 2×2 case to demonstrate the general solution procedure for linear
first-order systems.
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15.1 Exponential ansatz, eigenvectors and eigenvalues

To solve an ODE system of the form (212) for a constant matrix A, we can try the expo-
nential ansatz

ξ = eλtv

where the constant vector v and λ are to be determined. Using

ξ̇ = λeλtv,

inserting into (212) and dividing by eλt gives

λv = Av ⇔ 0 = (A− λI)v (213)

where I is the identity matrix. We thus see that eλtv is a solution if λ is an eigenvalue of A
and v = (v1, v2) the corresponding eigenvector of A, as introduced in Sec. 9.1. Let’s write
the last equation explicitly (

0
0

)
=

(
a− λ b
c d− λ

)(
v1

v2

)
(214)

This is a linear system for the two unknown eigenvector components (v1, v2). We immedi-
ately see that (v1, v2) = (0, 0) is a trivial solution. For other non-trivial solutions to exist,
the determinant of the coefficient matrix

M(λ) =

(
a− λ b
c d− λ

)
(215)

must vanish – otherwise, as we know from linear algebra, (v1, v2) = (0, 0) would be the only
solution. The requirement of a zero-determinant means that

p(λ) := detM(λ) = (a− λ)(d− λ)− bc !
= 0. (216)

Here, p(λ) is the characteristic polynomial of A. The eigenvalues are the two roots λ1 and
λ2 of this polynomial.20 We list two important facts about eigenvalues:

(i) Let’s assume all eigenvalues are distinct. If v1 is an eigenvector of, say, eigenvalue
λ1 then v′1 = αv1 is also an eigenvector of λ1 for any real α. This means that we
can always normalize v1 to length 1 and that the eigenvectors form a 1-dimensional
(sub-)vector space.

(ii) Eigenvectors associated with different eigenvalues are linearly independent. This
means that the set of two eigenvectors v1 and v2 associated with λ1 and λ2 respec-
tively, forms a basis of R2.

It then follows that, when λ1 6= λ2, the general solution of the linear Eq. (212) can be
expressed as a superposition

ξ(t) = C1e
λ1tv1 + C2e

λ2tv2, (217)

where C1 and C2 are determined by the initial conditions. This is pretty much the same
solution formula that we had for homogeneous nth order system, with the slight difference
that we now need to multiply each term eλit by the corresponding eigenvector vi.

20For any upper or lower triangular square matrix, the eigenvalues are simply the entries on the diagonal.
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15.2 Brewery example continued

To illustrate the solution procedure step-by-step, let’s return to the brewery example and
assume a = 1 for simplicity. Then the dynamics of the height levels in the two tanks is
described by the system (

ḣ1

ḣ2

)
=

(
−1 1
1 −1

)(
h1

h2

)
. (218)

We would like to solve this equation for the initial condition(
h1(0)
h2(0)

)
=

(
1
0

)
(219)

corresponding to the second tank being initially empty.
The characteristic polynomial of the coefficient matrix is

p(λ) = det

(
−1− λ 1

1 −1− λ

)
= (−1− λ)2 − 1 = λ(2 + λ). (220)

The eigenvalues are therefore λ1 = 0 and λ2 = −2, and the solution can be written as(
h1

h2

)
= C1e

0tv1 + C2e
−2tv2. (221)

From this general form we can already see that at large times t→∞, the stationary solution
will be proportional to v1, as the second term decays.

To fully specify the solution, we still need to find the eigenvectors v1 and v2. To find
the components of v1, we must solve(

−1− λ1 1
1 −1− λ1

)(
v1

v2

)
=

(
−1 1
1 −1

)(
v1

v2

)
= 0. (222)

It is not difficult to see that

v1 =

(
1
1

)
(223)

is an eigenvector of λ1 = 0. This make sense and we could have guessed this without
calculation, since it is intuitively clear that the tanks should approach equal filling levels in
the long-time limit.

To find the components of v2, we must solve(
−1− λ2 1

1 −1− λ2

)(
v1

v2

)
=

(
1 1
1 1

)(
v1

v2

)
= 0. (224)

We see that

v2 =

(
1
−1

)
(225)
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is an eigenvector for λ2 = −2.
The general solution can therefore be written as(

h1(t)
h2(t)

)
= C1

(
1
1

)
+ C2

(
1
−1

)
e−2t (226)

The constants C1 and C2 need to be determined from the initial conditions. At time t = 0(
h1(0)
h2(0)

)
=

(
1
0

)
= C1

(
1
1

)
+ C2

(
1
−1

)
. (227)

The second line implies C1 = C2 and the first C1 = C2 = 1/2, so that the time-dependent
solution is given by(

h1(t)
h2(t)

)
=

1

2

(
1
1

)
+

1

2

(
1
−1

)
e−2t =

1

2

(
1 + e−2t

1− e−2t

)
. (228)

The same sequence of steps can be applied to find the general solution of n× n first-order
ODE systems with constant coefficients.

15.3 Phase portrait revisited

As an example, we again consider the damped harmonic oscillator

ẍ+ bẋ+ kx = 0, (229)

where we have set the mass m = 1 to simplify subsequent formulas a bit.21 Setting y(t) =
ẋ(t), the companion system is given by

d

dt

(
x
y

)
=

(
0 1
−k −b

)(
x
y

)
(230)

The characteristic polynomial of the companion matrix is

p(λ) = det

(
−λ 1
−k −b− λ

)
= λ(b+ λ) + k = λ2 + bλ+ k (231)

This is the same characteristic polynomial that we found earlier in Eq. (60). This illustrates
the general fact that the characteristic polynomial of an LTI operator p(D) is the same (up
to a constant multiple) as that of its companion matrix.

The eigenvalues (roots of p) are then given by

λ± = − b
2
± 1

2

√
b2 − 4k. (232)

and, if λ+ 6= λ−, the general solution can be written as(
x
y

)
= C+e

λ+tv+ + C−e
λ−tv− (233)

21To obtain the results for arbitrary m, simply replace b→ b/m and k → k/m everywhere.
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where v± are eigenvectors of λ±, which satisfy(
−λ± 1
−k −b− λ±

)
v± = 0. (234)

We only need to solve one of the two equations in the system (since otherwise there is only
the trivial solution and we know that is not true). We choose the first and easier equation
to solve and get

v± =

(
1
λ±

)
. (235)

We know from our earlier discussion in Sec. 5.2 that, depending on the values of b and k,
the eigenvalues can be real (overdamped case), purely imaginary (undamped case) or com-
plex (underdamped case). We illustrate these three cases again in ‘eigenvector language’.

15.3.1 Overdamped case b2 > 4k

In this case, the eigenvalues λ± are real and negative so that the solutions asymptotically
decay (

x
y

)
= C+e

λ+t

(
1
λ+

)
+ C−e

λ−t

(
1
λ−

)
→
(

0
0

)
as t→∞, (236)

see blue curve in Fig. 6.

15.3.2 Undamped case b2 = 0

In this case, the eigenvalues are purely imaginary

λ± = ±1

2

√
−4k = ±i

√
k =: ±iω, (237)

and the solution is given by(
x
y

)
= c+e

iωt

(
1
iω

)
+ c−e

−iωt
(

1
−iω

)
. (238)

The coefficients c± are complex and satisfy c+ = c− to ensure that the solutions are real.
For instance, let c+ = c− = 1, then(

x
y

)
= eiωt

(
1
iω

)
+ e−iωt

(
1
−iω

)
=

(
eiωt + e−iωt

iω(eiωt − e−iωt)

)
= 2

(
cos(ωt)
−ω sin(ωt)

)
(239)

which describes an ellipse in the (x, y)-phase plane (orange curve in Fig. 6).
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Figure 6: Phase plane trajectories of the damped harmonic oscillator. Blue curve: over-
damped case b = 5, k = 4. Orange: undamped case b = 0, k = 1. Green: underdamped
case b = 1, k = 1.

15.3.3 Underdamped case 0 < b2 < 4k

In this case, the eigenvalues are complex

λ± = − b
2
± i 1

2

√
4k − b2 = −s± iω (240)

and the solution is given by(
x
y

)
= c+e

−st+iωt
(

1
−s+ iω

)
+ c−e

−st−iωt
(

1
−s− iω

)
= e−st

[
c+e

iωt

(
1

−s+ iω

)
+ c−e

−iωt
(

1
−s− iω

)]
which produces an inward spiral in the (x, y)-phase plane (green curve in Fig. 6).
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16 Stability and trace-determinant plane of 2×2 systems

In this section, we will continue to study the stability of the 2×2 matrix ODE

ξ̇ = Aξ , A =

(
a b
c d

)
, (241)

where ξ(t) = (x(t), y(t)). In particular, we would like to classify the behavior of its solutions
in terms of the matrix invariants trA and detA. Here, the word ‘invariant’ means that the
two numbers trA and detA do not change under transformations of the form SAS−1, where
S is any invertible 2×2 matrix.

16.1 Trace and determinant

Recall that the trace of a n× n matrix is defined as the sum of its diagonal elements

trA := Aii :=

n∑
i=1

Aii = A11 +A22 +A33 + . . . (242)

Here, we have introduced Einstein’s summation conventions which implies a summation
over indices that appear twice. Using this notation, we have

SS−1 = I ⇔ SijS
−1
jk = δik,

where δij is the Kronecker-delta defined by

δij =

{
1, i = j

0, i 6= j

We then find

tr(SAS−1) = (SAS−1)ii = SijAjkS
−1
ki = S−1

ki SijAjk = δkjAjk = Akk = trA, (243)

as started above.
Similarly, the determinants of any two matrices satisfy22

det(AB) = detA detB,

from which it follows that

det(SAS−1) = detS detA detS−1

= detS−1 detS detA

= det(S−1S) detA

= det I detA

= detA (244)

These two results demonstrate the usefulness of tr and det for the characterization of
matrices.

22This will be shown in 18.06

67



16.2 Trace-determinant plane

Let’s consider the matrix A from Eq. (241) with

trA = a+ d , detA = ad− bc. (245)

The eigenvalues λ and eigenvectors v of A satisfy the condition

λv = Av ⇔ 0 = (A− λI)v (246)

where I is the identity matrix. For non-trivial solutions to exist, the eigenvalues λ of A
must be roots of the characteristic polynomial

p(λ) = det(A− λI) = det

(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc

= λ2 − aλ− dλ+ ad− bc
= λ2 − (a+ d)λ+ ad− bc

which can be rewritten as

p(λ) = λ2 − (trA)λ+ detA (247)

On the other hand, we can rewrite p(λ) in terms of its roots (the eigenvalues) as

p(λ) = (λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2. (248)

Comparing the last two equations, we see that

trA = λ1 + λ2 , detA = λ1 · λ2 (249)

These are special cases of the more general formula

trA =
n∑
i=1

λi = λ1 + λ2 + λ3 + . . .+ λn (250a)

detA =
n∏
i=1

λi = λ1 · λ2 · λ3 · . . . · λn (250b)

The roots of (247) can be written as

λ1,2 =
trA

2
±
√

(trA)2

4
− detA. (251)

As we have seen in the previous class, the expression under the square root is essential for
the qualitative behavior of the solutions. It is therefore often useful to classify solutions of
2× 2 systems in terms of the trace-determinant plane (Fig. 7).

An obviously important curve in the trace-determinant plane is the critical parabola
(red line Fig. 7)

detA =
(trA)2

4
. (252)
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Figure 7: Qualitative different behaviors of 2 × 2 systems summarized in the trace-
determinant plane. The upper left quadrant represents stable solutions, where for all initial
conditions the system approaches the fixed point at (x, y) = (0, 0). The structurally stable
cases are those corresponding to the large regions in the trace-determinant plane, not the
borderline cases.

Above this parabola, we have detA > (trA)2

4 and the system possesses imaginary eigenvalues,

leading to spiraling solutions. Below it, we have detA < (trA)2

4 and the two eigenvalues are
real, leading to non-spiraling inwards our outwards flowing solutions. Moreover, if detA < 0
then at least on of the eigenvalues will be positive, and the system will have at least one
unstable direction. Stable solutions can therefore only be found in the upper left quadrant.

For companion matrices of second-order ODEs from Newtonian dynamics (such as the
damped harmonic oscillator), we have

A =

(
0 1
−det tr

)
(253)

In this case, the stability regimes can be directly read off the matrix.

16.3 Stability of solutions

Consider a system ξ̇ = Aξ with fixed point ξ∗ = 0. We distinguish three possibilities

(i) If all trajectories tend to 0 as t→∞, the system is called stable.

(ii) If some trajectories are unbounded as t→∞, then the system is called unstable.

(iii) In the borderline case in which all solutions are bounded, but do not all tend to 0,
the system is called neutrally stable (example: a center, as found in the undamped
oscillator).

Stable systems require that all eigenvalues have negative real parts. For 2× 2 systems, this
means that trA < 0 and detA > 0 (i.e., the characteristic polynomial has only positive
coefficients).
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16.4 Structural stability

Structural stability concerns the qualitative changes of the ODE system ξ̇ = Aξ when the
matrix A is modified, and is defined as follows:

• If the phase portrait type is robust in the sense that small perturbations in the entries
ofA cannot change the type of the phase portrait, then the system is called structurally
stable.

The structurally stable cases are those corresponding to the large regions in the trace-
determinant plane, not the borderline cases (Fig. 7). For a 2 × 2-matrix A, the system
ξ̇ = Aξ is structurally stable if and only if A has either

(i) distinct nonzero real eigenvalues (saddle, repelling node, or attracting node), or

(ii) complex eigenvalues with nonzero real part (spiral).

16.5 Romeo and Juliet

Let’s assume the affection dynamics can be described by(
Ṙ(t)

J̇(t)

)
= A

(
R(t)
J(t)

)
(254)

where R is Romeo’s affection for Juliet, and J Juliet’s affection for Romeo. Effects from
the outside world are neglected, so the system is homogeneous.

As an example, consider the matrix

A =

(
0 4
1 0

)
⇒ trA = 0 , detA = −4. (255)

In this case, Juliet is responsive to Romeo. If he likes her, then she likes him more. But
Romeo is hypersensitive: if Julia likes him, he likes her 4 times more than before. However,
this dynamics is generally not stable as it corresponds to a saddle. For example, if Julia
starts do dislike Romeo (J < 0), then things go downhill. Other relationship scenarios are
discussed on MITx.

17 Nonlinear systems

Thus far we have focussed on solving linear systems

ẋ = Ax+ q(t). (256)

But ‘real life’ is usually highly nonlinear. Realistic models of complex physical, biological
and chemical systems are therefore often based on nonlinear ODE systems

ẋ = f(t,x), (257)

where f is some given vector-valued function.
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An important example are gravitational systems23

ṙi = vi , v̇i = −
∑
i 6=j

Gmj

|ri − rj |2
(258)

where ri and vi are the position and velocity vectors of, for example, the stars in our galaxy.
If there are N stars then the gravitational system has 6N equations, since the collection of
all the position and velocity coordinates of the particles forms a 6N dimensional vector

x =



r1

v1

r2

v2
...
rN
vN


=



x1

y1

z1

vx1

vy1
vz1
...
xN
yN
zN
vxN
vyN
vzN



. (259)

Solving such systems for large N numerically, may become a prohibitively ‘expensive’ task
even for the fastest super-computers, which is why clever people have invented coarse-
grained continuum models (which are then governed by PDEs as in the next classes).

Another much simpler example of a two-dimenionsal ODE system is the Lotka-Volterra
population model introduced in Sec. 14.2, which is a standard model in ecology. This model
describes a simple predator-prey dynamics, with the prey population u(t) and predator
population v(t) governed by

u̇ = Au−Buv, (260a)

v̇ = −Cv + Euv. (260b)

This set of coupled nonlinear ODEs can be rewritten in the form (257) by identifying

x =

(
u
v

)
, f(x) = f(u, v) =

(
Au−Buv
−Cv + Euv

)
. (260c)

In this example f is nonlinear map from R2 to R2.
When facing such nonlinear systems, one usually has to resort to computer simulations

or linear stability analysis. In this section, we briefly illustrate the main ideas underlying
these two approaches. If you are interested in learning more about nonlinear ODE systems,
then you should think about taking 18.353.

23|x| denotes the Euklidean distance (length) of the vector x = (x, y, z), defined by |x| =
√
x2 + y2 + z2.
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17.1 Euler’s method for systems

The simplest numerical scheme for solving a nonlinear equation

ẋ = f(t,x) (261)

is the Euler method. The main steps of this algorithm are a straightforward generalization
of those for scalar first-order ODEs discussed in Sec. 13.1: We first discretize time t into
equidistant intervals ∆t by considering discrete time-points

tn = n ∆t , n = 0, 1, . . . .

The goal is to compute the values of the solutions at these time-points, xn = x(tn) where
x0 = x(0) is the given vector of initial conditions.

The time derivative ẋ = (ẋ1, . . . ẋN ) is approximated by the forward difference quotient

ẋ(tn) ≈ x(tn+1)− x(tn)

∆t
=
xn+1 − xn

∆t
. (262)

The rhs. of Eq. (261) is computed as

fn = f(tn,x(tn)) = f(tn,xn). (263)

The discretized version of Eq. (261) thus becomes

xn+1 − xn
∆t

= f(tn,xn). (264)

Solving for xn+1 yields the first-order recursion relation

xn+1 = xn + f(tn,xn) ∆t. (265)

A graph of the approximate numerical solution is then obtained by plotting and interpolat-
ing the points (0,x0), (t1,x1), (t2,x2), etc.

The Euler method is not a very efficient numerical scheme, and in practice one usually
uses more sophisticated methods such as Runge-Kutta algorithms (see 18.330 or 18.335J
for more on this).

17.2 Linear stability analysis

We still demonstrate how linear stability analysis, as introduced in Sec. 12.3 for nonlinear
scalar autonomous ODEs ẋ = f(x), generalizes to ODE systems. We use the Lotka-Volterra
system with E = B = 1

u̇ = Au− uv =: f1(u, v), (266a)

v̇ = −Cv + uv =: f2(u, v). (266b)

as an example. Just as in the scalar case, we start by looking for fixed points x∗ =
(u∗, v∗) corresponding to solutions that do not change in time. The fixed points must be
simultaneous zeros of the functions f1 and f2, i.e., more generally

f(x∗) = 0. (267)
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For the Lotka-Volterra system, we find two fixed points

(u0, v0) = (0, 0) , (u1, v1) = (C,A). (268)

We then linearize Eq. (266) by Taylor-expanding f near the fixed points x∗. Since f(x∗) =
0, this gives to linear order

f(x) ' J(x∗)(x− x∗) (269a)

where in the 2× 2 case the Jacobian matrix is given by

J(x) =

(∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)
(269b)

In the general case, abbreviating ∂i = ∂/∂xi, we have J = (Jij) = (∂jfi). Writing ε(t) =
x(t)− x∗, we see that a small perturbation is governed by the linear system

ε̇ = J(x∗)ε. (270)

We can now apply our knowledge of linear systems to understand how the system behaves
in the vicinity of the fixed point x. In particular, the stability of the FP is determined by
the eigenvalues of J . For the Lotka-Volterra system (266), we find

J(x) = J(u, v) =

(
A− v −u
v u− C

)
, (271)

so that

J0 = J(u0, v0) =

(
A 0
0 −C

)
, J1 = J(u1, v1) =

(
0 −C
A 0

)
(272)

The eigenvalues of J0 are A and −C, which means that the fixed point (0, 0), corresponding
to both species being extinct, is always unstable since A > 0. The eigenvalues of J1 are
±i
√
AC, implying that there exist stable oscillatory solutions for the population dynamics!

18 Solving linear equations

In this section, we intro a standard algorithm for solving linear systems

Ax = b ⇔

A11 A12 · · ·A1m
...

...
...

An1 An2 · · ·Anm


x1

...
xm

 =

b1...
bn

 (273)

where the matrix A and the vector b are given, and we would like to find all vectors x
satisfying this equation.
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18.1 Balancing a chemical reaction: linear systems in matrix form

Let’s consider the simple problem of balancing a chemical reaction. Suppose that we need
to find the smallest positive integers a, b, c, and d that balance the reaction

aNO2 + bH2O −→ cHNO2 + dHNO3. (274)

The reuirement that the number of nitrogen atoms on the left and right hand sides of the
reaction must be equal gives us the mathematical constraint

a = c+ d, (275)

which can be rewritten as a− c− d = 0. Similarly, the same constraint on the oxygen and
hydrogen atoms yield the equations

2a+ b− 2c− 3d = 0 (276)

and
2b− c− d = 0, (277)

respectively. These equations constitute a linear system
a − c− d = 0

2a+ b− 2c− 3d = 0

2b− c− d = 0

(278)

Any linear system can be written in the matrix form (273). For the chemical reaction
example, we can write the system as:

1 0 −1 −1
2 1 −2 −3
0 2 −1 −1


A


a
b
c
d


x

=

0
0
0


b

(279)

and can be represented by the augmented matrix

(A|b) =

1 0 −1 −1 0
2 1 −2 −3 0
0 2 −1 −1 0

 (280)

(augmented with an extra column containing the right hand sides). Each row corresponds
to an equation. Each column except the last one corresponds to a variable (and contains
the coefficients of that variable).

A linear system is homogeneous if the right hand sides (the constants) are all zero, and
inhomogeneous otherwise. So a linear system is homogeneous if and only if the zero vector
is a solution.

A linear system is called consistent if it has at least one solution, and inconsistent if
there are no solutions.
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18.2 Equation operations and row operations

A good way to solve a linear system is to perform the following operations repeatedly, in
some order:

• Multiply an equation by a nonzero number.

• Interchange two equations.

• Add a multiple of one equation to another equation.

The solution set is unchanged at each step. The equation operations correspond to
operations on the augmented matrix, called elementary row operations:

• Multiply a row by a nonzero number.

• Interchange two rows.

• Add a multiple of one row to another row (while leaving the first row as it was).

18.3 Row-echelon form and pivots

To solve the linear systems (273) systematically, we use the following sequence of steps:

1. Use row operations to convert the augmented matrix (A|b) to a particularly simple
form, called row-echelon form.

2. Solve the new system by back-substitution.

Before explaining row-echelon form, we need a few preliminary definitions. A zero row
of a matrix is a row consisting entirely of zeros. A nonzero row of a matrix is a row with
at least one nonzero entry. In each nonzero row, the first nonzero entry is called the pivot.
The following 4× 5 matrix has one zero row, and three pivots shown in red

0 −5 4 4 3
2 0 0 1 7
0 0 0 0 0
0 0 0 0 3

 .

A matrix is in row-echelon form if it satisfies both of the following conditions:

1. All the zero rows (if any) are grouped at the bottom of the matrix.

2. Each pivot lies farther to the right than the pivots of higher rows.

Some books require also that each pivot be a 1. We are not going to require this for
row-echelon form, but we will require it for reduced row-echelon form later on.
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18.4 Gaussian elimination

Gaussian elimination is an algorithm for converting any matrix into row-echelon form by
performing row operations. Here are the steps:

1. Find the leftmost nonzero column, and the first nonzero entry in that column (read
from the top down).

2. If that entry is not already in the first row, interchange its row with the first row.

3. Make all other entries of the column zero by adding suitable multiples of the first row
to the others.

4. At this point, the first row is done, so ignore it, and repeat the steps above for the
remaining submatrix (with one fewer row). In each iteration, ignore the rows already
taken care of. Eventually the whole matrix will be in row-echelon form.

As an example, let us convert the 4× 7 matrix
0 0 6 2 −4 −8 8
0 0 3 1 −2 −4 4
2 −3 1 4 −7 1 2
6 −9 0 11 −19 3 0


to row-echelon form. 24

Step 1. The leftmost nonzero column is the first one, and its first nonzero entry is the 2:
0 0 6 2 −4 −8 8
0 0 3 1 −2 −4 4
2 −3 1 4 −7 1 2
6 −9 0 11 −19 3 0

 .

Step 2. The 2 is not in the first row, so interchange its row with the first row:
2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 6 2 −4 −8 8
6 −9 0 11 −19 3 0

 .

Step 3. To make all other entries of the column zero, we need to add −3 times the first
row to the last row (the other rows are OK already):

2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 6 2 −4 −8 8
0 0 −3 −1 2 0 −6

 .

24his example is taken from Hill, Elementary linear algebra with applications, p. 17.)
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Step 4. Now the first row is done. Start over with the 3 × 7 submatrix that remains
beneath it: 

2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 6 2 −4 −8 8
0 0 −3 −1 2 0 −6

 .

Step 1. The leftmost nonzero column in that submatrix is now the third column, and its
first nonzero entry is the 3:

2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 6 2 −4 −8 8
0 0 −3 −1 2 0 −6

 .

Step 2. The 3 is already in the first row of the submatrix (we are ignoring the first row of
the whole matrix), so no interchange is necessary.
Step 3. To make all other entries of the column zero, add −2 times the (new) first row to
the (new) second row, and 1 times the (new) first row to the (new) third row:

2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 0 0 0 0 0
0 0 0 0 0 −4 −2

 .

Step 4. Now the first and second row of the original matrix are done. Start over with the
2× 7 submatrix beneath them:

2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 0 0 0 0 0
0 0 0 0 0 −4 −2

 .

Step 1. The leftmost nonzero column in that submatrix is now the penultimate column,
and its first nonzero entry is the −4 at the bottom:

2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 0 0 0 0 0
0 0 0 0 0 −4 −2

 .

Step 2. The −4 is not in the first row of the submatrix, so interchange its row with the
first row of the submatrix: 

2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 0 0 0 −4 −2
0 0 0 0 0 0 0

 .
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Step 3. The other entry in this column of the submatrix is already 0, so this step is not
necessary.

The matrix is now in row-echelon form:
2 −3 1 4 −7 1 2
0 0 3 1 −2 −4 4
0 0 0 0 0 −4 −2
0 0 0 0 0 0 0

 .

18.5 Reduced row-echelon form and Gauss-Jordan elimination

With even more row operations, one can simplify a matrix in row-echelon form to an even
more special form:

A matrix is in reduced row-echelon form (RREF) if it satisfies all of the following con-
ditions:

1. It is in row-echelon form.

2. Each pivot is a 1.

3. In each pivot column, all the entries are 0 except for the pivot itself.

Gauss-Jordan elimination is an algorithm for converting any matrix into RREF by
performing row operations. Here are the steps:

1. Use Gaussian elimination to convert the matrix to row echelon form.

2. Divide the last nonzero row by its pivot, to make the pivot 1.

3. Make all entries in that pivot’s column 0 by adding suitable multiples of the pivot’s
row to the rows above.

4. At this point, the row in question (and all rows below it) are done. Ignore them,
and go back to Step 2, but now with the remaining submatrix, above the row just
completed.

Eventually the whole matrix will be in RREF.

18.6 Back-substitution

Matrices in row-echelon form correspond to systems that are ready to be solved immediately
by back-substitution: solve for each variable in reverse order, while introducing a parameter
for each variable not directly expressed in terms of later variables, and substitute values
into earlier equations once they are known. We illustrate this procedure for the chemical
reaction example (274), which led to the linear system

a − c− d = 0

2a+ b− 2c− 3d = 0

2b− c− d = 0,
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represented by the augmented matrix

A =

1 0 −1 −1 0
2 1 −2 −3 0
0 2 −1 −1 0

 .

We use Gauss-Jordan elimination to put the matrix in reduced row-echelon form

A =

1 0 −1 −1 0
2 1 −2 −3 0
0 2 −1 −1 0

 −→
1 0 −1 −1 0

0 1 0 −1 0
0 2 −1 −1 0

 −→
1 0 −1 −1 0

0 1 0 −1 0
0 0 −1 1 0


−→

1 0 −1 −1 0
0 1 0 −1 0
0 0 1 −1 0

 −→
1 0 0 −2 0

0 1 0 −1 0
0 0 1 −1 0

 = RREF(A).

Back-substituting the original variables, we are left with the equations

a− 2d = 0 (281a)

b− d = 0 (281b)

c− d = 0. (281c)

Setting d = c1, we see that 
a
b
c
d

 = c1


2
1
1
1

 ,

for some parameter c1. The smallest positive integers a, b, c, and d that balance the reaction
occur when c1 = 1, so the balanced chemical reaction is

2NO2 + H2O −→ HNO2 + HNO3. (282)

This method can be used in general to balance chemical reactions.
Analogy with solutions to differential equations. If p(D) is a linear differential

operator, then the general solution to p(D)x = f is x = xp + xh, where xp is any particular
solution, and xh is the general solution to the homogeneous equation p(D)x = 0. The
general solution to a linear system Ax = b has the form x = xp + xh, where xp is a
particular solution and xp is the general solution to the homogeneous system. In this sense
a matrix A can be thought of as the analog of the a differential operator p(D).

19 Null space, column space and determinants

19.1 Nullspace

Here is what happens in general for homogeneous linear systems:

Theorem: For any homogeneous linear system Ax = 0, the set of all solutions is a vector
space, called the nullspace of the matrix A, and denoted NS(A).
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The analogy to solutions of ODEs is as follows: If p(D) is a linear differential operator,
the space of solutions to a homogeneous ODE p(D)x = 0 is analogous to the nullspace of a
matrix A.

The nullspace of a matrix arises in many physical, chemical or biological scenarios. For
example, suppose that we want to balance the chemical reaction

aC8H18 + bO2 −→ cCO2 + dH2O,

that is, find the smallest positive integers a, b, c, and d that make the number of each atom
on both sides of the reaction equal. This constraint make this problem equivalent to finding
the vector with the smallest integer coefficients in the nullspace of the matrix

S =

 8 0 −1 0
18 0 0 −2
0 2 −2 −1

 .

It’s easy to see how a matrix like this could be constructed for a general reaction. Note
that, just as in the previous section, the system has one free variable since there are many
possible ways to balance the reaction, but any vector of coefficients a, b, c, and d that make
the number of atoms on both sides of the reaction equal is an integer multiple of the vector
with the smallest positive integer coefficients.

Suppose that the result of putting a matrix A in row-echelon form is B. Then NS(A) =
NS(B), since row reductions do not change the solutions, and

dim NS(A) = #non-pivot columns ofB

= #free variables. (283)

Sometimes dim NS(A) is called the nullity of A. To summarize, here are the steps to find
the dimension of the space of solutions to a homogeneous linear system Ax = 0:

1. Perform Gaussian elimination on A to convert it to a matrix B in row-echelon form.

2. Identify the pivots of B

3. Count the number of non-pivot columns of B; that number is dim NS(A).

Warning: You must put the matrix in row-echelon form before counting non-pivot columns!
And here are the steps to find a basis of the space of solutions to a homogeneous linear

system Ax = 0:

1. Perform Gaussian elimination on A to convert it to a matrix B in row-echelon form.

2. Use back-substitution to find the general solution to Bx = 0.

3. The general solution will be expressed as the general linear combination of a list of
vectors; that list is a basis for NS(A).
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19.2 Inhomogeneous linear systems: theory and algorithms

For an inhomogeneous linear system
Ax = b,

there are two possibilities:

1. There are no solutions.

2. There exists a solution. In this case, if xp is a particular solution to Ax = b, and xh
is the general solution to the homogeneous system Ax = 0, then x := xp + xh is the
general solution to Ax = b.

Here is why: Suppose that a solution exists; let xp be one, so Axp = b. If xh satisfies
Axh = 0, adding the two equations gives

A(xp + xh) = b, (284)

so adding xp to xh produces a solution x to the inhomogeneous equation. Every solution
x to Ax = b arises this way from some xh. Specifically, from xh := x− xp, which satisfies

Axh = Ax−Axp = b− b = 0.

Remark: To solve Ax = b in practice, however, don’t use x = xp + xh. Instead use
Gaussian elimination and back-substitution. The above is just to describe the shape of the
solution.

19.3 Column space and rank

The column space of a matrix A is the span of its columns. The notation for it is CS(A).
It is also called the image of A, and written im(A); the reason will be clearer when we talk
about the geometric interpretation. Since CS(A) is a span, it is a vector space.

Here is what happens in general for (possibly inhomogeneous) linear systems:

Theorem: The linear system Ax = b has a solution if and only if b is in CS(A).

For example, for the matrix

A =

(
1 2 3
2 4 6

)
we have

CS(A) = the span of

(
1
2

)
,

(
2
4

)
,

(
3
6

)
,

which is 1-dimensional vector, since the column vectors are all constant multiples of the

vector

(
1
2

)
. The span of the vector (

1
2

)
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is the line y = 2x in R2. The statement of the theorem becomes obvious, when we rewrite
the equation Ax = b in component form as

(
1 2 3
2 4 6

)xy
z

 =

(
1
2

)
x+

(
2
4

)
y +

(
3
6

)
z = b

which shows that a solution (x, y, z) exists only if b lies in the span CS(A) of the columns
of A.

In general, the steps to compute a basis for CS(A) are: 25

1. Perform Gaussian elimination to convert A to a matrix B in row-echelon form.

2. Identify the pivot columns of B.

3. The corresponding columns of A are a basis for CS(A).

In particular,
dim CS(A) = # pivot columns of B.

Warning: Usually CS(A) 6= CS(B).
The rank of A is defined by

rank(A) := dim CS(A).

Theorem: For any m× n matrix A,

dim NS(A) + rank(A) = n. (285)

This theorem is sometimes called the Rank-Nullity Theorem. The proof is straightforward

dim NS(A) + rank(A) = (# non-pivot columns of B) + (# pivot columns of B)

= # columns of B

= n.

25Proof: Let C be the reduced row-echelon form of A. If

fifth column = 3(first column) + 7(second column)

is true for a matrix, it will remain true after any row operation.
Similarly, any linear relation between columns is preserved by row operations. So the linear relations

between columns of A and the same as the linear relations between columns of C. The condition that
certain numbered columns (say the first, second, and fourth) of a matrix form a basis is expressible in terms
of which linear relations hold. So if certain columns form a basis for CS(C), the same numbered columns
will form a basis for CS(A).

Also, performing Gauss-Jordan reduction on B to obtain C in reduced row-echelon form does not change
the pivot locations. Thus it will be enough to show that the pivot columns of C form a basis of CS(C). Since
C is in reduced row-echelon form, the pivot columns of C are the first r of the m standard basis vectors for
Rm, where r is the number of nonzero rows of C. These columns are linearly independent, and every other
column is a linear combination of them, since the entries of C below the first r rows are all zeros. Thus the
pivot columns of C form a basis of CS(C).
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19.4 Computing a basis for a span

The Gauss algorithm is of immense practical importance. Consider, for example, the fol-
lowing common question: Given vectors v1, . . . ,vn ∈ Rm, how can one compute a basis of
Span(v1, . . . ,vn)?

This problem can by solved by the following algorithm:

1. Form the matrix A whose columns are v1, . . . ,vn.

2. Obtain a new matrix B by putting A in row-echelon form.

3. Find the pivot columns of B by putting A in row-echelon form.

4. The associated columns of A form a basis for CS(A).

19.5 Determinants

Recall that to each square matrix A is associated a number called the determinant :

det
(
a
)

:= a

det

(
a b
c d

)
:= ad− bc

det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 := a1b2c3 + a2b3c1 + a3b1c2 − c1b2a3 − c2b3a1 − c3b1a2.

An alternative notation for the determinant is

|A| =
∣∣∣∣a b
c d

∣∣∣∣ .
This is a (pseudo-)scalar, not a matrix. Geometrically, the absolute value of detA is the
volume spanned by the columns of A.

19.5.1 Laplace expansion for determinants

The Laplace expansion (along the first row) for a 3× 3 determinant is obtained as follows:∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = +a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ .
The general rule leading to the formula above is this:

1. Move your finger along the entries in a row.

2. At each position, compute the minor, defined as the smaller determinant obtained by
crossing out the row and the column through your finger; then multiply the minor by
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the number you are pointing at, and adjust the sign according to the checkerboard
pattern

+ − +
− + −
+ − +

The pattern always starts with + in the upper left corner.

3. Add up the results.

There is a similar expansion for a determinant of any size, computed along any row or
column.

19.5.2 Properties of Determinants

We summarize some key properties of the determinant.

1. Interchanging two rows changes the sign of detA.

2. Multiplying an entire row by a scalar c multiples detA by c.

3. Adding a multiple of a row to another row does not change detA.

4. If one of the rows is all 0, then detA = 0.

5. det(AB) = det(A) det(B), assuming A,B are square matrices of the same size.

In particular, row operations multiply detA by nonzero scalars, but do not change whether
detA = 0.

19.5.3 Diagonal matrices

The diagonal of a matrix consists of the entries aij with i = j. A diagonal matrix is a
square matrix that has zeros everywhere outside the diagonal26a11 0 0

0 a22 0
0 0 a33


An upper triangular matrix is a matrix whose entries strictly below the diagonal are all 0:a11 a12 a13

0 a22 a23

0 0 a33


The entries on or above the diagonal may or may not be 0. In particular, any square matrix
in row-echelon form is upper triangular.

Theorem: The determinant of an upper triangular matrix equals the product of the diag-
onal entries.

26It may have some zeros along the diagonal too.
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For example,

det

a11 a12 a13

0 a22 a23

0 0 a33

 = a11 a22 a33.

Why is the theorem true in general? The Laplace expansion along the first column
shows that the determinant is a11 times a upper triangular minor with diagonal entries
a22, . . . , ann. We can repeat this argument successively for all minors to proof the theorem
by induction.

19.6 Identity matrix and matrix inversion

The linear transformation f : R3 → R3 that does nothing to its input, f(x, y, z) := (x, y, z),
is called the identity. The corresponding matrix, the 3× 3 identity matrix I, is given by

I =

1 0 0
0 1 0
0 0 1

 .

The n × n identity matrix is similar, with 1s along the diagonal. It has the property that
AI = A and IA = A whenever the matrix multiplication is defined. Thus, the identity
matrix I is the analog for matrix multiplication of the number 1 for multiplication of real
(or complex) numbers.

The inverse of an n× n matrix A is another n× n matrix A−1 such that

AA−1 = I and A−1A = I.

It exists if and only if detA 6= 0.
Suppose that A represents the linear transformation f . Then A−1 exists if and only if

an inverse function f−1 exists; in that case, A−1 represents f−1. As an example, consider
the rotation matrix

R :=

(
cos θ − sin θ
sin θ cos θ

)
Its determinant is detR = 1 6= 0 and the inverse linear transformation is rotation by −θ, so

R−1 =

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
=

(
cos θ sin θ
− sin θ cos θ

)
.

As a check, try multiplying R by this matrix, in either order.
Suppose that detA 6= 0. In 18.02, you learned one algorithm to compute A−1, using the

cofactor matrix. Now that we know how to compute RREF, we can give a faster algorithm
(faster for big matrices, at least):

1. Form the n× 2n augmented matrix [A|I].

2. Convert to RREF; the result will be [I|B] for some n× n matrix B.

3. Then A−1 = B.

This is a special case of solving a matrix equation AX = B, since A−1 is the solution to
AX = I.

Finding inverse matrices rapidly is essential for solving complicated ODEs and PDEs
numerically. This corroborates the practical importance of the Gauss-Jordan scheme.
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20 Eigenthings

In this part, we will review important aspects of eigenvalues and eigenvectors for general
n× n square matrices.

20.1 Characteristic polynomials

The characteristic polynomial of a n× n square matrix A can be defined as

p(λ) = det(A− λI) (286)

or equivalently as

p+(λ) = det(λI −A) (287)

instead.27 The two definitions are related by

p(λ) = (−1)np+(λ). (288)

That is, they coincide when n is even and differ by an overall minus sign when n is odd.
Since we are only interested in the zeros of the characteristic polynomial, which are identical
for p(λ) and p+(λ), you may choose whichever definition you prefer. As we have mentioned
earlier, although the characteristic polynomial of matrix per se is not the exactly same
concept as the characteristic polynomial of a constant-coefficient linear ODE, there exists
a close connection, arising when such a DE is converted to a first-order system of linear
ODEs.

We have seen that, if A is a 2× 2 matrix, then the characteristic polynomial of A is

p+(λ) = λ2 − (trA)λ+ (detA).

Suppose that n > 2. Then, for an n × n matrix A, the characteristic polynomial has the
form

p+(λ) = λn − (trA)λn−1 + · · · ± detA

where the ± is + if n is even, and − if n is odd. So knowing trA and detA determines some
of the coefficients of the characteristic polynomial, but not all of them.

20.2 Eigenvalues, eigenvectors and eigenspaces

Suppose that A is an n× n matrix.

• An eigenvector of A is a nonzero28 vector v such that Av = λv for some scalar λ.

• An eigenvalue of A is a scalar λ such that Av = λv for some nonzero vector v.

27A minor technical advantage of p+(λ) is that this is a monic degree n polynomial in the variable λ,
which means that the leading coefficient is 1, so the polynomial looks like λn + . . . .

28Warning: Some authors consider 0 to be an eigenvector too, but we do not.
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Let A be a square matrix, and let λ be a scalar. Then λ is an eigenvalue of A if and only
if det(λI −A) = 0.

As an example, let’s find the eigenvalues of the upper triangular matrix

A :=

2 3 5
0 2 7
0 0 6

 .

The characteristic polynomial is

det(λI −A) = det

λ− 2 −3 −5
0 λ− 2 −7
0 0 λ− 6

 = (λ− 2)(λ− 2)(λ− 6),

so the eigenvalues, listed with multiplicity, are 2, 2, 6.
In general, for any upper triangular or lower triangular matrix, the eigenvalues are the

diagonal entries.

20.2.1 Complex eigenvalues and eigenvectors

Generally, for any n × n matrix, the characteristic polynomial is of degree n, so the fun-
damental theorem of algebra shows that the total number of complex eigenvalues counted
with multiplicity is n.

As an example, let’s find the eigenvalues and eigenvectors of the 90◦ counterclockwise
rotation matrix

R =

(
0 −1
1 0

)
.

Since trR = 0 and detR = 1, the characteristic polynomial of R is λ2 + 1. Its roots are i
and −i; these are the eigenvalues.

The eigenspace of λ1 = i is NS(R− iI). Converting

R− iI =

(
−i −1
1 −i

)
to row-echelon form gives (

−i −1
0 0

)
, (289)

so we solve −ix− y = 0 by back-substitution and get the general solution

v1 = c

(
i
1

)
. (290)

Thus the eigenvectors having eigenvalue i are the nonzero scalar multiples of (i, 1).
Applying complex conjugation to R− iI gives R+ iI. So the vector in the nullspace of

R + iI is the eigenvector with eigenvalue λ2 = −i by definition. But it is also the complex
conjugate of the vector in the nullspace of R− iI. This shows that the eigenvectors having
−i as an eigenvector are the nonzero scalar multiples of (−i, 1).
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20.2.2 Zero as an eigenvalue

While the vector 0 is not an eigenvector, it is possible for the scalar 0 to be an eigenvalue.
The following statements are equivalent for a square matrix A.

• 0 is an eigenvalue.

• There exists a nonzero solution to Ax = 0.

• detA = 0.

The last one is a consequence of the fact that the determinant can be written as the product
of the eigenvalues.

20.2.3 Eigenspaces

The eigenspace of an eigenvalue λ of a square matrix A is the set of all eigenvectors having
that eigenvalue, together with the zero vector 0.

So each eigenspace is a set of vectors. In fact, each eigenspace is a vector space. Why?
It is the set of all solutions to Ax = λx (including x = 0), or equivalently to (A−λI)x = 0.
Thus the eigenspace of λ is the same as NS(A− λI), which is a vector space.

Assume we have found a certain eigenvalue λ for a given square matrix A. We may then
use the Gauss algorithm to find the eigenvectors associated to this eigenvalue as follows:

1. Calculate A− λI.

2. Use Gaussian elimination and back-substitution to compute a basis of NS(A− λI).

3. The eigenvectors having eigenvalue λ are all the linear combinations of those basis
vectors (not including the zero vector).

Let λ be an eigenvalue of an n × n matrix A. Suppose that the multiplicity of λ as a
root of the characteristic polynomial is m. Then

1 ≤ (dimension of eigenspace of λ) ≤ m.

Given λ, the dimension of the eigenspace of λ is also the maximum number of linearly
independent eigenvectors of eigenvalue λ that can be found. This dimension is at least 1
since A has at least one eigenvector of eigenvalue λ (otherwise λ would not have been an
eigenvalue). That this dimension is at most m requires more work to prove, and we’re not
going to do it in this class.

Generally, the eigenspace of λ is called complete if its dimension equals the multiplicitym
of λ, and deficient if its dimension is less than m. If the multiplicity is 1, then the dimension
of the eigenspace is sandwiched between 1 and 1, so the eigenspace is not deficient. A matrix
is called deficient if one of its eigenspaces is deficient.

For example, consider 9×9 matrix has characteristic polynomial (λ−2)3(λ−5)6. What
are the possibilities for the dimension of the eigenspace of 2? In this case, m = 3, so the
dimension is either 1, 2, or 3.
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20.3 Linear independence of eigenvectors

For the application to solving linear systems of ODEs, given an n × n matrix A we will
want to find as many linearly independent eigenvectors as possible. To do this, we choose
a basis of each eigenspace, and concatenate these lists of eigenvectors; it turns out that the
resulting list is linearly independent. How many eigenvectors are in this list? There are two
possibilities:

• If all the eigenspaces are complete, then the number of linearly independent eigenvec-
tors from each eigenspace is the multiplicity of the eigenvalue, so the total number of
eigenvectors in our list is the total number of eigenvalues counted with multiplicity,
which is n. In this case, the n eigenvectors form a basis of Cn, since their span is
n-dimensional.

• If instead A is deficient, then the number of linearly independent eigenvectors is less
than n.

Why does concatenating the bases produce a linearly independent list? The vectors within
each basis are linearly independent, and there are no linear relations involving eigenvectors
from different eigenspaces because of the following:

Theorem: Fix a square matrix A. Eigenvectors corresponding to distinct eigenvalues are
linearly independent.

Proof: Suppose that v1, . . . ,vn are eigenvectors corresponding to distinct eigenvalues
λ1, . . . , λn. Suppose that there were a linear relation

c1v1 + · · · cnvn = 0.

Apply A − λ1I to both sides; this gets rid of the first summand on the left. Next apply
A − λ2I, and so on, up to A − λn−1I. This shows that some nonzero number times cnvn
equals 0. But vn 6= 0, so cn = 0. Similarly each ci must be 0. Thus only the trivial relation
between v1, . . . ,vn exists, so they are linearly independent.

21 Matrix exponentials and linear systems

We know that the first order equation

ẋ = ax (291a)

with constant rate parameter a and initial condition x(0) = c is solved by

x(t) = eatc. (291b)

Equation (291a) is the 1× 1 case of the matrix equation

ẋ = Ax, (292)

where A is an n × n square matrix with constant entries. Our goal in this section is to
construct the matrix generalization of the exponential solution formula (291b).
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21.1 Matrix diagonalization

Consider an n× n square matrix A with eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn.

Assume the corresponding eigenvectors

v1 =


v11

v21
...
vn1

 , v2 =


v12

v22
...
vn2

 , . . . , vn =


v1n

v2n
...
vnn

 (293)

form a linearly independent system. This is always the case if all the eigenvalues λi are
distinct (i.e., have multiplicity 1), as we showed at the end of the previous section. If some
eigenvalues have multiplicities and eigenspace dimensions m > 1, then one can always select
m linearly independent vectors from that eigenspace.

We next define the matrix Λ = diag(λ1, . . . λn), explicitly given by

Λ =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

...
...

0 0 0 · · · λn

 (294)

and the matrix V which has the eigenvectors as columns

V =
(
v1 v2 . . . vn

)
=


v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
...

...
vn1 vn2 · · · vnn

 . (295)

It will be useful to write the inverse V −1 in terms of its row vectors

V −1 =


w>1
w>2

...
w>n

 (296)

Since V −1V = I, where I denotes the identity matrix, the rows w>k of V −1 must be
orthonormal to the columns vj of V , i.e.,

wk · vj = δkj =

{
1, k = j,

0, otherwise.
(297)

Moreover, since the n eigenvectors are linearly independent, any other vector x ∈ Rn can
be expressed as

x = c1v1 + · · ·+ cnvn =
n∑
i=1

civn (298)
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for some real constants c1, . . . , cn. Acting with A on x gives

Ax = A(c1v1 + · · ·+ cnvn) = c1λ1v1 + · · ·+ cnλnvn =
n∑
i=1

ciλivn (299)

Now consider the matrix V ΛV −1 and let it act on x

(V ΛV −1)x = (V Λ)


w>1
w>2

...
w>n

 (c1v1 + · · ·+ cnvn)
(297)
= (V Λ)


c1

c2
...
cn

 = V


λ1c1

λ2c2
...

λncn


Still working out the last product on the rhs., we find

(V ΛV −1)x =
(
v1 v2 . . . vn

)

λ1c1

λ2c2
...

λncn

 =
n∑
i=1

ciλivi. (300)

Comparing this result with Eq. (299), we see that is A and V ΛV −1 map x to the same
vector! Since this is true for all vectors x, we can conclude that

A = V ΛV −1 (301)

This important and practically useful result is called spectral decomposition29 of A. For
example, the spectral decomposition can used for image compression by approximating an
image by keeping only the dominant eigenvalue contributions. The usefulness of Eq. (301)
becomes also evident if one considers matrix functions, as we shall see now.

21.2 Matrix exponentials

The exponential function of scalar a can be defined by the infinite series

exp(a) := 1 +
a

1!
+
a2

2!
+
a3

3!
+ . . . =

∞∑
k=0

ak

k!
(302)

This definition generalizes naturally to n× n matrices

exp(B) := I +
B

1!
+
B2

2!
+
B3

3!
+ . . . =

∞∑
k=0

Bk

k!
(303)

where Bk = BB · B is the n × n matrix obtained by multiplying B with itself k times. It
is then obvious that exp(B) also is a n × n matrix. Warning: Note that exp(B + C) =
exp(B) exp(C) only if BC = CB.

29There exists an analogous result for non-square matrices called singular value decomposition, which plays
a key role in modern data analysis.
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In general, it is difficult to compute exp(B) directly for an arbitrary matrixB. Analytical
calculations become possible by using (301) and noting that

Bk = BB ·B = (V ΛV −1)(V ΛV −1) . . . (V ΛV −1) = V ΛkV −1, (304)

where

Λk =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

...
...

0 0 0 · · · λn


k

=


λk1 0 0 · · · 0
0 λk2 0 · · · 0
...

...
...

...
...

0 0 0 · · · λkn

 . (305a)

We thus find that

exp(B) = V

(
I +

Λ

1!
+

Λ2

2!
+

Λ3

3!
+ . . .

)
V −1 = V exp(Λ)V −1

or, equivalently,

exp(B) = V


exp(λ1) 0 0 · · · 0

0 exp(λ2) 0 · · · 0
...

...
...

...
...

0 0 0 · · · exp(λn)

V −1 (306)

The same reasoning can be applied to any matrix function F (B) that is defined in terms of
a power series.

As an example, let’s exponentiate the matrix

P =

(
0 θ
−θ 0

)
(307)

which has eigenvalues and eigenvectors

λ± = ±iθ , v± =

(
∓i
1

)
(308)

We then have

Λ =

(
iθ 0
0 −iθ

)
, V =

(
−i i
1 1

)
, V −1 =

1

2

(
i 1
−i 1

)
(309)

Then

exp(P ) = V exp(Λ)V −1 =

(
−i i
1 1

)(
eiθ 0
0 e−iθ

)
1

2

(
i 1
−i 1

)
=

1

2

(
−ieiθ ie−iθ

eiθ e−iθ

)(
i 1
−i 1

)
=

1

2

(
−ieiθ ie−iθ

eiθ e−iθ

)(
i 1
−i 1

)
=

1

2

(
eiθ + e−iθ −i(eiθ − e−iθ)
i(eiθ − e−iθ) eiθ + e−iθ

)
.
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Now, using Euler’s formula, we see that

exp(P ) =

(
cos θ sin θ
− sin θ cos θ

)
(310)

is a rotation matrix!

21.3 Fundamental matrix

Let’s now return to our original problem of solving the matrix differential equation ẋ = Ax.
Setting B = tA, we find that

d

dt
exp(tA) =

d

dt

∞∑
k=0

(tA)k

k!
=

d

dt

∞∑
k=0

tkAk

k!
=

∞∑
k=1

ktk−1Ak

k!

=
∞∑
k=1

tk−1Ak

(k − 1)!

= A
∞∑
k=1

tk−1Ak−1

(k − 1)!

= A
∞∑
k=0

(tA)k

k!
= A exp(tA)

We thus see that

x(t) = exp(tA)c (311)

solves Eq. (292) for the initial condition x(0) = c. This is the matrix generalization of
the scalar exponential solution formula (291b). The matrix exp(tA) is often called the
fundamental matrix of the system ẋ = Ax.

To relate Eq. (311) to the eigenvector representation of system solutions found earlier,
we express c in the eigenvector basis

c =
n∑
i=1

civi
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and use Eq. (306) to write

x(t) = V exp(tΛ)V −1c = V


etλ1 0 0 · · · 0

0 etλ2 0 · · · 0
...

...
...

...
...

0 0 0 · · · etλn

V −1
n∑
i=1

civi

= V


etλ1 0 0 · · · 0

0 etλ2 0 · · · 0
...

...
...

...
...

0 0 0 · · · etλn



c1

c2
...
cn



=
(
v1 v2 · · · vn

)

etλ1c1

etλ2c2
...

etλncn


=

n∑
i=1

cie
tλivi. (312)

This is indeed the n-dimensional generalization of our earlier result (217) for 2×2 matrices.

22 Solving inhomogeneous systems

Thus far we have focussed on solving homogeneous systems

ẋ = Ax (313)

where A is a constant n× n-matrix. We now turn our attention to inhomogeneous systems
of the form

ẋ = Ax+ q(t), (314)

where q(t) is a n-dimensional vector of (possibly constant) functions

q(t) =

q1(t)
...

qn(t)

 .

In general, the matrix A will couple the components of x = (x1(t), . . . , xn(t)), which makes
it often more difficult to solve Eq. (314) directly. However, as we shall see shortly, if the
matrix A is diagonalizable, so that

A = V ΛV −1 (315)

with a diagonal matrix Λ, then we can rewrite (314) in terms of new variables y =
(y1(t), . . . , yn(t)) such that the equations for ẏ becomes decoupled ; that is, ẏ1(t) only de-
pends on y1(t), and ẏ2(t) only depends on y2(t), and so on. How can we tell if a matrix A
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is diagonalizable? A sufficient condition is that the matrix A is symmetric, which means
that A equals its transpose A>

A = A> ⇔ Aij = Aji. (316)

In this case, we have the following

Theorem.30 For a symmetric matrix with real number entries, the eigenvalues are real
numbers and it’s possible to choose a complete set of eigenvectors that are perpendicular
(or even orthonormal).

More generally, if A has n independent eigenvectors, and we can construct V from the
eigenvectors as discussed in the previous section. If A is symmetric, then we can write
A = V ΛV −1, and by constructing V from the normalized eigenvectors of A, we have
V −1 = V > (we call such a matrix with orthonormal columns orthogonal31). Hence, it
follows in this case that

A = V ΛV >. (317)

This demonstrates that symmetric matrices A are particularly ‘nice’ – instead of computing
the inverse V −1 by Gauss-Jordan elimination, we merely have to take the transpose.

30This theorem will be proved in 18.06.
31A matrix Q whose columns are orthonormal is called an orthogonal matrix. If Q is square, then Q>Q = I

tells us that Q> = Q−1. This is one of the reasons orthonormal matrices are so important, because they are
very easy to invert!
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22.1 Decoupling by diagonalization

We can now summarize the steps to solve ẋ = Ax+ q(t) by decoupling:

1. Find the eigenvalues of A (with multiplicity), and put them in a diagonal matrix Λ.

2. Find a basis of each eigenspace.32 Put the eigenvectors as columns of a matrix V .

3. Substitute x = V y to get

V ẏ = AV y + q(t) ⇔ V ẏ = (V ΛV −1)V y + q(t)

and therefore (after multiplication by V −1)

ẏ = Λy + V −1q(t). (318)

This is a decoupled system of inhomogeneous linear ODEs for y.

4. Solve for each coordinate function of y.

5. Compute V y; the result is the solution x.

22.2 Variation of parameters

We still discuss an alternative method for solving inhomogeneous systems. Long ago we
learned how to use variation of parameters to solve inhomogeneous linear ODEs

ẏ + p(t)y = q(t).

Now we’re going to use the same idea to solve an inhomogeneous linear system of ODEs
such as

ẋ = Ax+ q, (319)

where q is a vector-valued function of t. To this end, we first write the solution of the
corresponding homogeneous system

ẋ = Ax,

in terms of the fundamental33 matrix X = eAt:

x(t) = eAtc. (320)

Analogous to the variation-of-parameters method in the the scalar, case, we now try to find
a particular solution of the inhomogeneous system‘ (319) by replacing the constant vector c

32If the total number of independent eigenvectors found is less than n, then a more complicated method
(not discussed here) is required.

33In general, the fundamental matrix is not unique as one could in principle pick any basis of solutions
and combine them into a fundamental matrix X to express the homogeneous solutions as x(t) = Xc for
some constant vector c encoding initial conditions. For our purposes, however, it is sufficient to consider
X = eAt as a specific choice for the fundamental matrix.
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through a vector-valued function u(t). Inserting the ansatz x(t) = eAtu(t) into the original
system. Noting that

ẋ(t) = AeAtu(t) + eAtu̇(t) = Ax+ eAtu̇(t)

we have

eAtu̇(t) = q(t) ⇒ u̇(t) = e−Atq(t).

Integrating this with respect to t, we find

x(t) = eAtu(t) = eAt
∫
e−Atq(t) dt. (321)

Note that the indefinite integral on the rhs. gives a constant vector c, so that we have
enough free parameters to satisfy initial conditions.

22.3 Example: Inhomogeneous heated rod

Let us practice variation of parameters using the heated rod example. In this problem, we
consider the four thermometers, labeled by i = 0, 1, 2, 3 placed at equal distances along a
thin insulated metal rod. One end is held at 0 degrees Celsius and the other is held at 100
degrees Celsius, so that the first and last thermometer always show

T0 = 0 , T3 = 100.

We are interested in the temperatures T1(t) and T2(t) of the two middle thermometers.
These are determined by

Ṫ1 = κ(T0 − 2T1 + T2) , Ṫ2 = κ(T1 − 2T2 + T3). (322)

where κ is the thermal conductivity. To keep formulas simple, let us assume κ = 1 min−1

from now on. Equations (322) formalize the physical law that, in good approximation, the
temperature change of the thermometers is proportional to the (discretized) second space
derivative of the temperature. We can rewrite these equations as a system

d

dt

(
T1

T2

)
=

(
−2 1
1 −2

)(
T1

T2

)
+

(
T0

T3

)
(323)

The coefficient matrix A has eigenvalues λ1 = −1 and λ3 = −3 with normalized eigenvectors

v1 =
1√
2

(
1 1

)
, v2 =

1√
2

(
1 −1

)
,

which we can combine into the 2× 2 matrix V = (v1 v2). Since the coefficient matrix A
is symmetric, we have V −1 = V >, and we can write the matrix exponential as

eAt =
1√
2

(
1 1
1 −1

)(
e−t 0
0 e−3t

)
1√
2

(
1 1
1 −1

)
= e−2t

(
cosh t sinh t
sinh t cosh t

)
. (324)

97



The inverse is given by

e−At = e2t

(
cosh t − sinh t
− sinh t cosh t

)
. (325)

According to Eq. (321), the solution is given by

T (t) = eAt
∫
e−At

(
T0

T3

)
dt (326)

Noting that ∫
e−At

(
T0

T3

)
dt =

∫ (
−T3e

2t sinh t
T3e

2t cosh t

)
dt = T3

et

6

(
3− e2t

3 + e2t

)
+ c (327)

We have

T (t) = e−2t

(
cosh t sinh t
sinh t cosh t

)[
T3
et

6

(
3− e2t

3 + e2t

)
+ c

]
, (328)

which for large times t→∞ approaches

T (t) = T3

(
1/3
2/3

)
. (329)

This is exactly as we could have predicted. The temperature diffuses no matter what the
initial condition until it is linearly distributed across the bar from T0 = 0 to T3 = 100.
The temperatures at the two internal thermometers measuring being 1/3 and 2/3 of the
difference in temperature between the two end points.

23 Introduction to Fourier series

23.1 Periodic functions

Because
sin(t+ 2π) = sin t, cos(t+ 2π) = cos t,

hold for all t, the functions sin t and cos t are called periodic with period 2π. In general a
function f(t) defined for all real t is periodic of period P if

f(t+ P ) = f(t) ∀ t. (330)

There are many such functions beyond the sinusoidal functions. To construct one, divide
the real line into intervals of length P , start with any function defined on one such interval
[t0, t0 + P ), and then copy its values in the other intervals. The entire graph consists of
horizontally shifted copies of the width P graph. For the remainder of this section we
assume P = 2π and consider the interval t ∈ [−π, π).

Is sin 3t periodic of period 2π? The shortest period is 2π/3, but sin 3t is also periodic
with period any positive integer multiple of 2π/3, including 3(2π/3) = 2π:

sin(3(t+ 2π)) = sin(3t+ 6π) = sin 3t.
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So the answer is yes.
Another example of a periodic function, which we will frequently refer to in this section

is the square wave, defined by

Sq(t) :=

{
−1 if − π < t < 0,

1, if 0 < t < π

and extended to a periodic function of period 2π. The function Sq(t) has jump disconti-
nuities,34 for example at t = 0. The graph is usually drawn with vertical segments at the
jumps (even though this violates the vertical line test). Below, we will see that

Sq(t) =
4

π

(
sin t+

sin 3t

3
+

sin 5t

5
+ · · ·

)
.

23.2 Fourier series

A Fourier series is a linear combination of the infinitely many functions cosnt and sinnt
as n ranges over integers:

f(t) =
a0

2
+ a1 cos t+ a2 cos 2t+ a3 cos 3t+ · · · (331)

+ b1 sin t+ b2 sin 2t+ b3 sin 3t+ · · · (332)

Terms like cos(−2t) are redundant since cos(−2t) = cos 2t. Also sin 0t = 0 produces nothing
new. But cos 0t = 1 is included. We’ll explain later why we write a0 times 1/2 instead of
times 1. In sum-notation, we can write the Fourier series as

f(t) =
a0

2
+

∞∑
n=1

an cosnt+

∞∑
n=1

bn sinnt.

Recall that, for example,
∑∞

n=1 bn sinnt means the sum of the series whose nth term is
obtained by plugging in the positive integer n into the expression bn sinnt, so∑

n≥1

bn sinnt = b1 sin t+ b2 sin 2t+ b3 sin 3t+ · · · .

Any Fourier series as above is, by construction, periodic of period 2π. Later we will extend
to the definition of Fourier series to include functions of other periods. The numbers an
and bn are called the Fourier coefficients of f . Each summand, such as a0/2, an cosnt, or
bn sinnt is called a Fourier component of f .

A famous and practically very important theorem is

Fourier’s Theorem. ‘Every’ periodic function f of period 2π ‘is’ a Fourier series, and the
Fourier coefficients are uniquely determined by f .

The word ‘Every’ has to be taken with a grain of salt: The function has to be ‘reasonable’.

34If you must define Sq(0), compromise between the upper and lower values by setting Sq(0) := 0.
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Piecewise differentiable functions with jump discontinuities are reasonable, as are virtually
all other functions that arise in physical applications. Similarly, the word ‘is’ has to be
taken with a grain of salt: If f has a jump discontinuity at τ , then the Fourier series might
disagree with f there; the value of the Fourier series at τ is always the average of the left
limit f(τ−) and the right limit f(τ+), regardless of the actual value of f(τ).

The statement of the theorem means that the functions

1, cos t, cos 2t, cos 3t, . . . , sin t, sin 2t, sin 3t, . . .

form a basis for the vector space of ‘all’ periodic functions of period 2π. The Fourier
coefficients are then the coordinates of the function f with respect to this basis.

23.3 Scalar product for real-valued functions

Given f , how do we find the Fourier coefficients an and bn? That is, how do we find the
coordinates of f with respect to the basis of cosines and sines? Let’s recall how this works
for ordinary vectors. If v and w are vectors in Rn, then their scalar product is defined by

〈v,w〉 := v ·w :=

n∑
i=1

viwi.

The coordinates wi of the vector w with respect to some orthonormal basis {e1, . . . , en} of
Rn are then obtained by forming the scalar products of w with all the ei

wi = 〈w, ei〉. (333)

This concept translates directly to functions: If f and g are real-valued periodic functions
with period 2π, then their scalar (or inner) product is

〈f, g〉 :=

∫ π

−π
f(t)g(t) dt.

For example, by definition,

〈1, cos t〉 =

∫ π

−π
cos t dt = 0.

Thus, the functions 1 and cos t are orthogonal. In fact, calculating all the inner products
shows that

1, cos t, cos 2t, cos 3t, . . . , sin t, sin 2t, sin 3t, . . . (334)

is an orthogonal basis! Is it an orthonormal basis? The answer is no, since

〈1, 1〉 =

∫ π

−π
1 dt = 2π 6= 1. (335)

Let’s try to compute

〈sin t, sin t〉 =

∫ π

−π
sin2 t dt (336a)

100



and

〈cos t, cos t〉 =

∫ π

−π
cos2 t dt (336b)

Since cos t is just a shift of sin t, the integrals are going to be the same. Also, the two
integrals can be added up to give∫ π

−π
(sin2 t+ cos2 t)dt =

∫ π

−π
dt = 2π, (337)

so each is π. The same idea works to show that

〈cosnt, cosnt〉 = π , 〈sinnt, sinnt〉 = π (338)

for each positive integer n.

23.4 Fourier coefficient formulas

We can now provide formulas for the coefficients an and bn such that

f(t) =
a0

2
+ a1 cos t+ a2 cos 2t+ a3 cos 3t+ · · ·

+ b1 sin t+ b2 sin 2t+ b3 sin 3t+ · · · (339)

By the shortcut formulas (338),

an =
〈f, cosnt〉
〈cosnt, cosnt〉

=
1

π

∫ π

−π
f(t) cosnt dt,

and the coefficient of 1 is
a0

2
=
〈f, 1〉
〈1, 1〉

=
1

2π

∫ π

−π
f(t) dt.

so

a0 =
1

π

∫ π

−π
f(t) cos 0t dt.

Using a0/2 in the series ensures that the formula for an for n > 0 works also for n = 0. A
similar formula holds for bn.

To summarize: Given f , its Fourier coefficients can be calculated as follows:

an =
1

π

∫ π

−π
f(t) cosnt dt , ∀ n ≥ 0 (340a)

bn =
1

π

∫ π

−π
f(t) sinnt dt , ∀ n ≥ 1 (340b)

In particular, the constant term of the Fourier series of f is

a0

2
=

1

2π

∫ π

−π
f(t) dt,

which is the average value of f on (−π, π).
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23.5 Even and odd symmetry

Before starting to compute Fourier coefficients for a function f(t), you should always check
whether f is symmetric. Recall that a function f(t) is even if f(−t) = f(t) for all t and
odd if f(−t) = −f(t) for all t. If

f(t) =
a0

2
+
∞∑
n=1

an cosnt+
∞∑
n=1

bn sinnt,

then substituting −t for t gives

f(−t) =
a0

2
+

∞∑
n=1

an cosnt+

∞∑
n=1

(−bn) sinnt.

The right hand sides match if and only if bn = 0 for all n. This means that Fourier series
of an even function f has only cosine terms (including the constant term):

f(t) =
a0

2
+

∞∑
n=1

an cosnt. (341a)

Similarly, the Fourier series of an odd function f has only sine terms:

f(t) =
∞∑
n=1

bn sinnt. (341b)

For example, the square wave Sq(t) is an odd function, so

Sq(t) =
∞∑
n=1

bn sinnt

for some numbers bn. The Fourier coefficient formula says

bn =
1

π

∫ π

−π
Sq(t) sinnt︸ ︷︷ ︸

even

dt

=
2

π

∫ π

0
Sq(t) sinnt dt (by symmetry)

=
2

π

∫ π

0
sinnt dt (since Sq(t) = 1 whenever 0 < t < π)

=
2(− cosnt)

πn

∣∣∣∣π
0

=
2

πn
(− cosnπ + cos 0)

=


4

πn
, if n is odd,

0, if n is even.
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Thus

b1 =
4

π
, b3 =

4

3π
, b5 =

4

5π
, . . .

and all other Fourier coefficients are 0.

Sq(t) =
4

π

(
sin t+

sin 3t

3
+

sin 5t

5
+ · · ·

)
.

23.6 Gibbs’ Phenomenon

You might be wondering how we can use Fourier series, series composed of continuous
functions, to approximate a discontinuous functions. While it’s true that we can get a
Fourier series that converges to a function with discontinuities, the convergence is very slow
(everywhere, but particularly near the discontinuities). Something very curious happens
near the points where the target function is discontinuous. Namely, the partial sums of the
Fourier series overshoot and undershoot the values of the function at these points. This is
known as the Gibbs’ Phenomenon.

We illustrate this phenomenon using the example of the square wave of height π/4 —
which we denote by S(t) = π

4 Sq(t). In this case the discontinuities are the integer multiples
of π. The Fourier series for S(t) is

S(t) =
π

4
Sq(t) = sin t+

1

3
sin 3t+

1

5
sin 5t+ · · ·

=

∞∑
nodd

1

n
sinnt. (342)

For an odd positive integer N , write SN (t) for the N th partial sum

SN (t) :=
N∑

nodd

1

n
sinnt. (343)

Then S(t) is the limit of the functions SN (t) as N →∞. It turns out that it is possible to
do a calculation that’s a little bit beyond the scope of this class that for N very large, SN
overshoots π/4 (or undershoots −π/4) at a point of discontinuity by about π

2 ·(0.089490 . . .),
or about 9%. This overshooting and undershooting can easily be seen in the figures below.

This overshoot/undershoot by about 9% happens always, not just for the case of S(t),
but for any function with discontinuities. In practice, one can only generate approximate
Fourier series (with only a finite number of Fourier coefficients, known with some error).
Thus the poor convergence of Fourier series for functions with discontinuities – and, particu-
larly the Gibb’s phenomenon, creates (serious) difficulties in areas such as signal processing.

The main mathematical intuition behind this is that approximating a discontinuous
function with a finite sum of continuous functions, such as each sucessive SN , always gives
a continuous function, so that continuous function will act poorly at the point of disconti-
nuity (if the discontinuity isn’t a removable discontinuity). A confusing point is that even
though for N arbitrarily large, the function SN acts poorly at the discontinuity, the series∑∞

nodd
1
n sinnt doesn’t. This illustrates how limits can act strangely sometimes, as well as

the fact that the convergence of SN (t) to S(t) ‘doesn’t happen in the best possible way’. If
you’re interested in questions like this, you might find 18.311 or 18.100 interesting.
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24 Fourier series of arbitrary period

24.1 Functions of arbitrary period

Everything we did with periodic functions of period 2π can be generalized to periodic
functions of other periods. Let’s for example consider the ‘stretched’ square wave, defined
by

f(t) :=

{
1, 0 < t < L,

−1 −L < t < 0.
(344)

and extended to a periodic function of period 2L. We can express this new square wave
f(t) in terms of the original square wave function Sq(u) by setting

u =
π

L
t

so that u = π corresponds to t = L. Then f(t) = Sq(u) or explicitly

f(t) = Sq

(
πt

L

)
. (345)

Similarly, we can stretch any function of period 2π to get a function of different period. Let
L be a positive real number. Start with “any” periodic function

g(u) =
a0

2
+
∑
n≥1

an cosnu+
∑
n≥1

bn sinnu,

of period 2π. Stretching horizontally by a factor L/π gives a periodic function f(t) of period
2L, and ‘every’ f of period 2L arises this way. By the same calculation as above,

f(t) = g

(
πt

L

)
=

a0

2
+
∑
n≥1

an cos
nπt

L
+
∑
n≥1

bn sin
nπt

L
. (346)

The substitution u = πt/L, which implies du = (π/L) dt, also leads to Fourier coefficient
formulas for period 2L:

an =
1

π

∫ π

−π
g(u) cosnu du

=
1

π

∫ L

−L
g

(
πt

L

)
cos

(
nπt

L

)
π

L
dt

=
1

L

∫ L

−L
f(t) cos

(
nπt

L

)
dt. (347)

Similarly, we find

bn =
1

L

∫ L

−L
f(t) sin

(
nπt

L

)
dt. (348)
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24.2 Inner product for periodic functions of period 2L

We can adapt the definition of the inner product to the case of functions f and g of period
2L by defining

〈f, g〉 :=

∫ L

−L
f(t)g(t) dt, (349)

which reduces to our our earlier definition for 2π-periodic functions, when we set L = π.
The same calculations as before show that the functions

1, cos
πt

L
, cos

2πt

L
, cos

3πt

L
, . . . , sin

πt

L
, sin

2πt

L
, sin

3πt

L
, . . .

form an orthogonal basis for the vector space of ‘all’ periodic functions of period 2L, with35

〈1, 1〉 = 2L ,

〈
cos

nπt

L
, cos

nπt

L

〉
= L ,

〈
sin

nπt

L
, sin

nπt

L

〉
= L. (350)

As another example of how to work with scalar (inner) products of functions, let T (t)
be the even periodic function of period 2 such that T (t) = |t| for −1 ≤ t ≤ 1; this is called
a triangle wave. Let Sq(x) denote the odd square wave of period 2. We then find that

〈T, Sq〉 =

∫ 1

−1
|x|Sq(x)dx = 0.

Hence, the triangle wave and square wave are orthogonal on the interval [−1, 1].

24.3 Summary

Fourier’s theorem states that every sufficiently regular periodic function f of period 2L is
a Fourier series

f(t) =
a0

2
+
∑
n≥1

an cos
nπt

L
+
∑
n≥1

bn sin
nπt

L
. (351)

Given f , the Fourier coefficients an and bn can be computed using:

an =
1

L

∫ L

−L
f(t) cos

nπt

L
dt for all n ≥ 0, (352a)

bn =
1

L

∫ L

−L
f(t) sin

nπt

L
dt for all n ≥ 1. (352b)

It is important to keep in mind that

• If f is even, then only the cosine terms (including the a0/2 term) appear.

• If f is odd, then only the sine terms appear.

35The average value of cos2 ωt is 1/2 for any ω, and the average value of sin2 ωt is 1/2 too. This gives
another way to derive the Fourier coefficient formulas for functions of period 2L.
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24.4 Convergence of a Fourier series

A periodic function f of period 2L is called piecewise differentiable if

(i) there are at most finitely many points in [−L,L) where f ′(t) does not exist,

(ii) at points where the derivative exists it is bounded, (that is |f ′(t)| ≤M <∞), and

(iii) at each such point τ , the left limit f(τ−) := limt→τ− f(t) and right limit f(τ+) :=
limt→τ+ f(t) exist (although they might be unequal, in which case we say that f has
a jump discontinuity at τ).

Theorem. If f is a piecewise differentiable periodic function, then the Fourier series of f
(with the an and bn defined by the Fourier coefficient formulas)

• converges to f(t) at values of t where f is continuous, and

• converges to
f(t−) + f(t+)

2
where f has a jump discontinuity.

For example, for the square wave we find that the left limit Sq(0−) = −1 and right limit
Sq(0+) = 1 average to 0. The Fourier series

4

π

(
sin t+

sin 3t

3
+

sin 5t

5
+ · · ·

)
evaluated at t = 0 converges to 0 too.

24.5 Differentiating a Fourier series

If a function is differentiable, you can simply differentiate its Fourier series term by term to
obtain the Fourier series for the derivative. For example, the Fourier Series for the period
2π triangle wave is:

g(t) =
π

2
− 4

π

(
cos t+

cos 3t

32
+

cos 5t

52
+ · · ·

)
.

Differentiating the Fourier series g(t) term-by-term gives

g′(t) =
4

π

(
sin t+

sin 3t

3
+

sin 5t

5
+ . . .

)
,

which is the Fourier series of the 2π–periodic square wave!
There are many subtle, but important, questions in Fourier series that we will not cover

here (but which courses such as 18.100 do, at least partially). For example: If I write
some arbitrary Fourier series, how do I know if it comes from a differentiable function? If
I differentiate term by term the Fourier series for a function that is not differentiable (like
the square wave function), is the result the Fourier series for something?
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24.6 Antiderivative of a Fourier series

Suppose that f is a piecewise differentiable periodic function, and that F is an antideriva-
tive36 of f . The function F might not be periodic. For example, if f is a function of period 2
such that

f(t) :=

{
2, if 0 < t < 1,

−1 if − 1 < t < 0,

then F (t) creeps upward over time. An even easier example: if f(t) = 1, then F (t) = t+C
for some C, so F (t) is not periodic. But if the constant term a0/2 in the Fourier series of
f is 0, then F is periodic, and its Fourier series can be obtained by taking the simplest
antiderivative of each cosine and sine term, and adding an overall +C, where C is the
average value of F .

As another example, let T (t) be the triangle wave of period 2 and amplitude 1: so that
T (t) = |t| for −1 ≤ t ≤ 1. To find the Fourier series of T (t), we could use the Fourier
coefficient formula. But instead, notice that T (t) has slope −1 on (−1, 0) and slope 1 on
(0, 1), so T (t) is an antiderivative of the period 2 square wave

Sq(πt) =
∑

n≥1odd

4

nπ
sinnπt.

Taking an antiderivative termwise (and using that the average value of T (t) is 1/2) gives

T (t) =
1

2
+

∑
n≥1 odd

4

nπ

(
− cosnπt

nπ

)
=

1

2
−

∑
n≥1 odd

4

n2π2
cosnπt. (353)

Warning: If a periodic function f is not continuous, it will not be an antiderivative of any
piecewise differentiable function, so you cannot find the Fourier series of f by integration.

Remark. The Fourier series for a function with discontinuities can (formally) be differ-
entiated term by term, but the result will not converge. For example, the termwise derivative
of the Fourier series for Sq(t) is

4

π

∑
n odd

cos(nt).

This does not converge anywhere (since the nth term does not even vanish as n → ∞).
However, note that it is possible to make sense of this series, and of the anti-derivative of
the square wave function, in terms of Dirac’s delta functions and the theory of distributions
— seen in more advanced courses than this one.

24.7 Generalizing Fourier series: The Fourier transform

You may have heard about the Fourier transform and perhaps want to know what it is. In
this class, we only work with periodic functions and signals. In the real world, signals may

36If f has jump discontinuities, one can still define F (t) :=
∫ t
0
f(τ) dτ +C, but at the jump discontinuities

F will be only continuous, not differentiable.
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not be periodic. Below let’s generalize the method of Fourier series to non-periodic signals.
This is known as the Fourier transform.

Suppose you have an electric field at a point — radio signal or pressure wave due to
sound coming from a speaker. This signal changes in time. Assume the signal has some
period T . Then we can write the signal in the form

f(t) =

∞∑
n=−∞

cne
2πint/T ,

where the cn are the coefficients determined by

cn =
2

T

∫ T/2

−T/2
f(t)e−2πint/Tdt.

We can think of a non-periodic signal as the limit as T goes to infinity of a periodic signal
of period T . As T increases, the spacing between the frequncies in our sum are approaching
zero. This turns the sum into an integral in the limit, and we have the equations:

f(t) =

∫ ∞
−∞

f̂(n)e2πintdn (354a)

f̂(n) =

∫ ∞
−∞

f(t)e−2πintdt (354b)

We call f̂(n) the Fourier Transform of f .
Note that the continuous function f̂(n) replaces the discrete coefficients cn. So now f(t)

can be composed of a continuous infinite sum (an integral) of complex sinusoids e2πint with
the weights being given by the f̂(n) function.

In practice, the above Fourier transform is often a starting point for analysis of signals.
However, discrete Fourier series are sufficient approximations in many cases. However,
you’ll likely encounter a Fourier transform in other courses. See for example 18.103, 18.303,
18.311, 18.353, and 18.354.

25 Solving ODEs with Fourier series

25.1 Reminder: ERF for sinusoidal input

Suppose that f(t) is an odd periodic function of period 2π, and we would like to find the
periodic function x(t) of period 2π that is a solution to

ẍ+ 50x = f(t) (355)

We may think of f(t) as the input signal, and the solution x(t) as the system response
(output signal). Let’s consider the special case is f(t) = sinnt and try to find the particular
solution x(t) to

ẍ+ 50x = sinnt
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that has the same (smallest) period as sinnt. To tackle this problem, we first complexify
to find the response to eint, and then take the imaginary part. The complexified problem is

z̈ + 50z = eint,

and has the characteristic polynomial is p(r) = r2 + 50. So, by ERF, the system response
to eint is

z =
eint

p(in)
=

eint

50− n2
. (356)

This is indeed the solution we were looking for as it has the right period. The complex gain
is 1/(50− n2), and

x(t) = =
(

eint

50− n2

)
=

sinnt

50− n2
(357)

is the system response to sinnt. This explains all the rows of the table below except the
last row.

Input signal System response

eint 1
50−n2 e

int

sinnt 1
50−n2 sinnt

sin t 1
49 sin t

sin 2t 1
46 sin 2t

sin 3t 1
41 sin 3t

...
...∑

n≥1

bn sinnt
∑
n≥1

bn
50− n2

sinnt

25.2 System response to Fourier series input

Now let’s return to the original problem in Eq. (355). Suppose that the input signal f is
an odd periodic function of period 2π. Since f is odd, the Fourier series of f is a linear
combination of the shape

f(t) = b1 sin t+ b2 sin 2t+ b3 sin 3t+ · · · . (358)

By the superposition principle, the system response to f(t) is

x(t) = b1
1

49
sin t+ b2

1

46
sin 2t+ b3

1

41
sin 3t+ · · · .

Note that each Fourier component sinnt has a different gain: the gain depends on the
frequency. One could write the answer using sum

x(t) =
∑
n≥1

bn
50− n2

sinnt. (359)
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This is better since it shows precisely what every term in the series is. For which input
signal sinnt is the gain the largest? The gain is

∣∣1/(50− n2)
∣∣, which is largest when |50−n2|

is smallest. This happens for n = 7.
The gain for sin 7t is 1, and the next largest gain, occurring for sin 6t and sin 8t, is 1/14.

Thus the system approximately filters out all the Fourier components of f(t) except for the
sin 7t term.

As related example, let’s consider

ẍ+ 50x =
π

4
Sq(t). (360)

As we have seen in the last section, the input signal can be written as

π

4
Sq(t) =

∑
n≥1, odd

sinnt

n
(361)

which is a special case of Eq. (358). The system response to this signal is

x(t) =
∑

n≥1, odd

(
1

50− n2

)
sinnt

n

≈ 0.020 sin t+ 0.008 sin 3t+ 0.008 sin 5t+

0.143 sin 7t− 0.003 sin 9t− even smaller terms, (362)

so the coefficient of sin 7t is largest, and the coefficient of sin t is second largest. This makes

sense since the Fourier coefficient
1

(50− n2)n
is large only when one of n or 50−n2 is small.

This example illustrates a practically important fact: Even though the system response
is a complicated Fourier series, with infinitely many terms, only one or two are significant,
and the rest are negligible.

25.3 Pure resonance

Let’s now consider what happens if we change 50 to 49 in the above ODE (360). To solve

ẍ+ 49x =
π

4
Sq(t) (363)

we have to distinguish the cases n 6= 7 and n = 7. For n 6= 7, we can solve ẍ+ 49x = sinnt
using complex replacement and ERF since in is not a root of r2 + 49. For n = 7, we can
still solve ẍ+ 49x = sin 7t (the existence and uniqueness theorem guarantees this), but the
solution requires the generalized ERF, and involves t, and hence is not periodic: it turns
out that one solution is −(t/14) cos 7t. For the input signal Sq(t), we can find a solution xp
by superposition: most of the terms will be periodic, but one of them will be

1

7

(
− t

14
cos 7t

)
and this makes the whole solution xp non-periodic. Moreover, there are infinitely many
other solutions, namely xp + c1 cos 7t + c2 sin 7t for any c1 and c2, but these solutions still
include the term 1

7

(
− t

14 cos 7t
)
, and hence are not periodic. If the ODE had been

ẍ+ 36x =
π

4
Sq(t)
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then all solutions would have been periodic, because π
4 Sq(t) has no sin 6t term in its Fourier

series.
In general, for a periodic function f , the ODE p(D)x = f(t) has a periodic solution if

and only if for each term cosωt or sinωt appearing with a nonzero coefficient in the Fourier
series of f , the number iω is not a root of p(r).

25.4 Resonance with damping

In real life, there is always damping, and this prevents the runaway growth in the pure
resonance scenario of the previous section. So let’s try to find the steady-state solution to

ẍ+ 0.1ẋ+ 49x =
π

4
Sq(t),

where 0.1ẋ is the linear damping term. Recall that the steady-state solution is the periodic
solution. (Other solutions will be a sum of the steady-state solution with a transient solution
solving the homogeneous ODE

ẍ+ 0.1ẋ+ 49x = 0;

these transient solutions tend to 0 as t → ∞, because the coefficients of the characteristic
polynomial are positive (in fact, this is an underdamped system). First let’s solve

ẍ+ 0.1ẋ+ 49x = sinnt.

Before doing that, solve the complex replacement ODE

z̈ + 0.1ż + 49z = eint.

The characteristic polynomial is p(r) = r2 + 0.1r + 49, so ERF gives

z =
1

p(in)
eint =

eint

(49− n2) + (0.1n)i
,

with complex gain
1

(49− n2) + (0.1n)i
and gain

gn :=
1

|(49− n2) + (0.1n)i|
.

Thus

x = =
(

eint

(49− n2) + (0.1n)i

)
,

which is a sinusoid of amplitude gn, so x = gn cos(nt− φn) for some φn. The input signal

π

4
Sq(t) =

∑
n≥1, odd

sinnt

n
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elicits the system response

x(t) =
∑

n≥1, odd

gn
cos(nt− φn)

n

≈ 0.020 cos(t− φ1) + 0.008 cos(3t− φ3) + 0.008 cos(5t− φ5)

+ 0.204 cos(7t− φ7) + 0.003 cos(9t− φ9) + even smaller terms.

We conclude that the system response is almost indistinguishable from a pure sinusoid of
angular frequency 7.

25.5 Complex Fourier Series

Euler’s formula

eit = cos t+ i sin t

tells us that complex exponentials can be written as a sum of a sine and a cosine function.
This suggests that we might be able to write a Fourier series

f(t) =
a0

2
+

∞∑
n=1

(an cosnt+ bn sinnt) (364)

as a series of complex exponentials

f(t) =
∞∑

n=−∞
cne

int (365)

for some complex coefficients cn. As it turns out, this is true, that is, we can always write
a Fourier series in terms of complex exponentials. Since the two series turn out to be
equal, we’ll also call the series in terms of complex exponentials a Fourier series. So let’s
walk through the process of converting a series from the real form (364) to the complex
form (365).

Step 1: Rewriting the sum. Using Euler’s formula and the fact that sin t is an odd
function and cos t is an even function, we notice that

sin t =
i

2
(e−it − eit) , cos t =

1

2
(eit + e−it).

Then we see that given any Fourier series f , we can write

f(t) =
a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt)

=
a0

2
+

∞∑
n=1

[
an
2

(
eint + e−int

)
+
ibn
2

(
e−int − eint

)]

=
a0

2
+

1

2

∞∑
n=1

[
(an − ibn) eint + (an + ibn) e−int

]
.
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Step 2: Defining coefficients. We can see that f can be written as a sum of complex
exponentials. Let’s write the coefficients of these exponentials nicely so that we can easily
convert back and forth between the two forms. Define c0 := a0/2. For n > 0, define

cn =
1

2
(an − ibn) , c−n := c̄n =

1

2
(an + ibn) .

Then we can write f compactly as

f(t) =
∞∑

n=−∞
cne

int. (366)

This complex Fourier series is useful for two reasons: First, integrals involving complex
exponentials are often much easier to compute than integrals involving sines and cosines.
Second, we can also make sense of Fourier series of complex-valued functions more easily in
this setting.

25.6 Listening to Fourier series

Your ear is capable of decomposing a sound wave into its Fourier components of different
frequencies. Each frequency corresponds to a certain pitch. Increasing the frequency pro-
duces a higher pitch. More precisely, multiplying the frequency by a number greater than 1
increases the pitch by what in music theory is called an interval. For example, multiplying
the frequency by 2 raises the pitch by an octave, and multiplying by 3 raises the pitch an
octave plus a perfect fifth. Can our ear detect phase shifts? No – try it on the mathlet if
you don’t believe it.

When an instrument plays a note, it is producing a periodic sound wave in which
typically many of the Fourier coefficients are nonzero. In a general Fourier series, the
combination of the first two non-constant terms (a1 cos t + b1 sin t, if the period is 2π) is
a sinusoid of some frequency ν, and the next combination (e.g., a2 cos 2t + b2 sin 2t) has
frequency 2ν, and so on: the frequencies are the positive integer multiples of the lowest
frequency ν. The note corresponding to the frequency ν is called the fundamental, and the
notes corresponding to frequencies 2ν, 3ν, . . . are called the overtones.

26 Boundary value problems

26.1 Failure of existence and uniqueness

Our goal is to use boundary conditions for PDEs, but ODEs can have boundary conditions
as well. In general, ODEs are much easier to solve than PDEs, so we now move our
discussion to ODEs with boundary conditions to get a sense of how to solve these boundary
value problems in a more comfortable setting. As a warm-up let’s try to find all nonzero
functions v(x) on [0, π] satisfying

v′′(x) = λ v(x) (367a)

for a constant λ and satisfying the boundary conditions

v(0) = 0 , v(π) = 0 (367b)
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If λ = −n2, then any multiple of sin(nt) is a solution. However, for other λ, there is no
solution! This reflects the fact that the existence and uniqueness theorem is valid only for
initial value problems. As we will see in what follows, linear boundary value problems can
have either no solutions at all, or infinitely many. The situation for nonlinear boundary
value problems is even more complicated.

26.2 Solving a boundary value problem

Let’s discuss how to to solve the boundary value problem (367) explicitly. The equation
v′′(x) = λ v(x) is a homogeneous linear ODE with characteristic polynomial r2 − λ.

Case 1: λ > 0. Then the general solution is ae
√
λx + be−

√
λx, and the boundary

conditions say

a+ b = 0 , ae
√
λπ + be−

√
λπ = 0, (368)

which is a linear system for (a, b). Since

det

(
1 1

e
√
λπ e−

√
λπ

)
6= 0, (369)

the only solution to this linear system is (a, b) = (0, 0). Thus there are no nonzero solu-
tions v.

Case 2: λ = 0. Then the general solution is a+ bx, and the boundary conditions say

a = 0 , a+ bπ = 0. (370)

Again the only solution to this linear system is (a, b) = (0, 0). Thus there are no nonzero
solutions v.

Case 3: λ < 0. We can write λ = −ω2 for some ω > 0. Then the roots of the
characteristic polynomial are ±iω, and the general solution is a cosωx+ b sinωx. The first
boundary condition says a = 0, so v = b sinωx. The second boundary condition then says
b sinωπ = 0. We are looking for nonzero solutions v, so we can assume that b 6= 0. Then
sinωπ = 0, so ω is an integer n; also n > 0, since ω > 0.

We may thus conclude that there exist nonzero solutions if and only if λ = −n2 for
some positive integer n; in that case, all solutions are of the form b sinnx. Below, we will
use this conclusion as one key step in the solution of the heat qquation.

26.3 Analogy with eigenvalue-eigenvector problems

To describe a function v(x), one needs to give infinitely many numbers, namely its values
at all the different input x-values. Thus v(x) is like a vector of infinite length. The linear

differential operator
d2

dx2
maps each function to a function, just as a 2× 2 matrix defines a

linear transformation mapping each vector in R2 to another vector in R2. Thus
d2

dx2
is like

an ∞×∞ matrix.
The ODE v′′ = λv (with boundary conditions) amounts to an infinite system of equa-

tions: the ODE consists of one equality of numbers at each x ∈ (0, π), and boundary
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Eigenvector problem Eigenfunction problem

vector v function v(x)

A the linear operator
d2

dx2

eigenvalue-eigenvector problem boundary value problem

Av = λv
d2

dx2
v = λv, v(0) = 0, v(π) = 0

eigenvalues λ eigenvalues λ = −1,−4,−9, . . .

eigenvectors v eigenfunctions v(x) = sinnx with n =
√
−λ

Table 2: Summary of the analogies between eigenvector problems and eigenfunction prob-
lems.

conditions are equalities at the endpoints. Thus the ODE with boundary conditions is like
a system of equations Av = λv. Nonzero solutions v(x) to

d2

dx2
v = λv

exist only for special values of λ, namely

λ = −1, −4, −9, . . . ,

just as Av = λv has a nonzero solution v only for special values of λ, namely the eigenvalues
of λ. But the differential operator4 := d2/dx2 has infinitely many eigenvalues, as one would
expect for an ∞×∞ matrix.

The nonzero solutions v(x) to 4v = λv satisfying the boundary conditions are called
eigenfunctions, since they act like eigenvectors.

26.4 Introduction to the heat equation

In this section we meet our first partial differential equation (PDE)

∂u

∂t
= ν

∂2u

∂x2

This is the equation satisfied by the temperature u(x, t) at position x and time t of a bar
depicted as a line segment,

0 ≤ x ≤ L, t ≥ 0
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The constant ν is the heat diffusion coefficient, which depends on the material of the bar.
Let’s focus on a specific physical experiment. Suppose that the initial temperature is 1, and
then the ends of the bar are put in ice. We write this as

u(x, 0) = 1, 0 ≤ x ≤ L u(0, t) = 0, u(L, t) = 0, t > 0.

The value(s) of u = 1 at t = 0 are called initial conditions. The values at the ends are called
endpoint or boundary conditions. We think of the initial and endpoint values of u as the
input, and the temperature u(x, t) for t > 0, 0 < x < L as the response. For simplicity, we
assume that only the ends are exposed to the fixed external temperature. The rest of the
bar is insulated, not subject to any external change in temperature. Fourier’s techniques
also yield answers even when there is heat input over time at other points along the bar.

As time passes, the temperature decreases as cooling from the ends spreads toward the
middle. At the midpoint, L/2, one finds Newton’s law of cooling,

u(L/2, t) ≈ ce−t/τ , t > τ

The so-called characteristic time τ is inversely proportional to the conductivity of the ma-
terial. If we choose units so that τ = 1 for copper, then according to Wikipedia,

τ ∼ 7 (cast iron); τ ∼ 7000 (dry snow)

The constant c, on the other hand, is universal :

c ≈ 1.3

It depends only on the fact that the shape is a bar (modeled as a line segment). Fourier
figured out not only how to explain c using differential equations, but the whole temperature
profile:

u(x, t) ≈ e−t/τh(x) , h(x) =
4

π
sin
(π
L
x
)
, t > τ.

The shape of h reflects how much faster the temperature drops near the ends than in the
middle. It’s natural that h should be some kind of hump, symmetric around L/2.

26.5 Deriving the heat equation

To explain the heat equation, we start with a thought experiment. If we fix the temperature
at the ends, u(0, t) = 0 and u(L, t) = T , what will happen in the long term as t→∞? The
answer is that

u(x, t)→ Usteady(x), t→∞

where Usteady is the steady, or equilibrium, temperature given by a linear profile

Usteady(x) = T
x

L
.

The temperature u(L/2, t) at the midpoint L/2 tends to the average of 0 and T , namely
T/2. At the point L/4, half way between 0 and L/2, the temperature tends to the average
of the temperature at 0 and T/2, and so forth.
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At a very small scale, this same mechanism, the tendency of the temperature profile
toward a straight line equilibrium means that if u is concave down then the temperature in
the middle should decrease (so the profile becomes closer to being straight). If u is concave
up, then the temperature in the middle should increase (so that, once again, the profile
becomes closer to being straight). We write this as

∂2u

∂x2
< 0 ⇒ ∂u

∂t
< 0 (371a)

∂2u

∂x2
> 0 ⇒ ∂u

∂t
> 0. (371b)

The simplest relationship that reflects this is a linear (proportional) relationship,

∂u

∂t
= ν

∂2u

∂x2
, ν > 0 (372)

Another ‘more macroscopic’ way of deriving the heat equation starts from the general
conservation law

∂u

∂t
= −∇ · J , (373)

which states that the time-change of u at position x is determined by the net differences of
the heat fluxes into and out of x. In 1D, we have only an current along the x-axis, so that
the last equation simplifies to

∂u

∂t
= − ∂

∂x
Jx. (374)

It is reasonable to assume that the heat flux Jx is negatively proportional to the temperature
gradient J = −ν∇u, which in 1D becomes

Jx(x, t) = −ν ∂u
∂x
, (375)

where ν is a material parameter. Substituting this into Eq. (374), we recover the 1D heat
diffusion equation. Equations (373) and Eq. (374) are conservation laws. To see this, let’s
integrate (374) from x = 0 to x = L,

d

dt

∫ L

0
dxu =

∫ L

0
dx

∂

∂t
u

= −
∫ L

0
dx

∂

∂x
Jx = −[J(L, t)− J(0, t)].

This shows that the time change of the integral of the quantity u is only determined by the
flux at the endpoints. In particular, if the endpoints are insulated, so that

J(0, t) = −ν ∂u
∂x

(0, t) = 0 , J(L, t) = −ν ∂u
∂x

(L, t) = 0. (376)

Then the integral of u is conserved (constant in time).
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26.6 Separation of variables and normal modes

Let’s now try to solve the PDE. For simplicity, suppose that L = π and ν = 1. The general
case is similar. In fact, one could reduce to this special case by changes of variable. So now
we are solving

∂u

∂t
=
∂2u

∂x2
(377a)

u(0, t) = 0 , u(π, t) = 0 for t ≥ 0 (377b)

u(x, 0) = u0(x) for x ∈ (0, π), (377c)

where u0(x) is a given initial temperature profile. We now use an important technique
called separation of variables. Forgetting about the initial condition u(x, 0) = u0(x) for
now, we look for nonzero solutions of the form

u(x, t) = v(x)w(t)

Substituting into the PDE gives

ẇ(t)v(x) = v′′(x)w(t) (378a)

ẇ(t)

w(t)
=

v′′(x)

v(x)
(378b)

at least where w(t) and v(x) are nonzero. Whenever a function of x is equal to a function
of t there is a constant λ such that

v′′(x)

v(x)
= λ and

ẇ(t)

w(t)
= λ,

or in other words,
v′′(x) = λ v(x) and ẇ(t) = λw(t).

Substituting u(x, t) = w(t)v(x) into the first boundary condition u(0, t) = 0 gives w(t)v(0) =
0 for all t, but w(t) is not the zero function, so this translates into v(0) = 0. Similarly, the
second boundary condition u(π, t) = 0 translates into v(π) = 0. At the beginning of this
section, we already solved v′′(x) = λ v(x) subject to the boundary conditions v(0) = 0 and
v(π) = 0: nonzero solutions v(x) exist only if λ = −n2 for some positive integer n, and in
that case v(x) is a scalar times sinnx.

For λ = −n2, what is a matching possibility for w? Since ẇ = −n2w, the function w is
a scalar times e−n

2t. This gives rise to one solution

un(x, t) = bne
−n2t sinnx (379)

for each positive integer n to the PDE with boundary conditions. Each such solution un is
called a normal mode.

The PDE and boundary conditions are homogeneous, so we can get other solutions by
taking linear combinations:

u(x, t) = b1e
−t sinx+ b2e

−4t sin 2x+ b3e
−9t sin 3x+ · · · . (380)
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This turns out to be the general solution to the PDE with the boundary conditions. We
can also write this as

u(x, t) =
∞∑
n=1

bne
−n2t sinnx. (381)

The one thing we haven’t used so far is the initial condition u0(x) = u(x, 0). This condition
determines the coefficients bn, as we we can see by setting t = 0 in the solution formula,
which gives

u(x, 0) =
∞∑
n=1

bn sinnx = u0(x). (382)

That is, the coefficients bn are simply the coefficients of the Fourier-sine series of u0(x), and
we know how determine those from the scalar product of u0(x) and the basis functions sinnx.

27 Heat equation with insulated ends: von Neumann bound-
ary conditions

In the last class, we considered an insulated metal rod of length L = π and thermal con-
ductivity ν = 1 with exposed ends held at 0◦C. The temperature profile u(x, t) along the
rod was governed by the heat equation

∂u

∂t
=
∂2u

∂x2
(383a)

which is a linear PDE. The heat equation is first order in time t and second order in the
space coordinate x, so we have to specify one initial condition

u(x, 0) = u0(x) (383b)

and two boundary conditions, which chose as

u(0, t) = u(π, t) = 0 , ∀ t > 0. (383c)

Keep in mind that all three Eqs. (383) are required to uniquely specify the temperature
field u(x, t). When the value of the of the sought-after function (in this case u) described
by a PDE are prescribed, then one speaks of Dirichlet boundary conditions.

Trying u = w(t)v(x) we found separate ODEs for v and w, leading to solutions e−n
2t sinnx

for n = 1, 2, . . . to the PDE with boundary conditions. The condition of discrete n was im-
posed by the boundary conditions. Since the PDE is linear, we then took linear combinations
to get the general solution

u(x, t) = b1e
−t sinx+ b2e

−4t sin 2x+ b3e
−9t sin 3x+ · · · (384)

To fully specify the solutions, we still need to determine the coefficients bn by making use of
the initial condition. For simplicity, we specialize to the case where the initial temperature
profile is homogeneous u(x, 0) = u0(x) = 1. Setting t = 0, the general solution becomes

u(x, 0) = b1e
−t sinx+ b2e

−4t sin 2x+ b3e
−9t sin 3x+ · · · (385)
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System of ODEs Heat Equation

vector v function v(x)

A the linear operator d2/dx2

eigenvalue-eigenvector problem boundary value problem

Av = λv d2v/dx2 = λv, v(0) = 0, v(π) = 0

eigenvalues λ eigenvalues λ = −1,−4,−9, . . .

eigenvectors v eigenfunctions v(x) = sinnx

linear system of ODEs Heat Equation with boundary conditions

ẋ = Ax ∂u/∂t = ∂2u/∂x2, u(0, t) = 0, u(π, t) = 0

normal modes: eλtv normal modes: eλtv(x) = e−n
2t sinnx

for an eigenvector v with eigenvalue λ for eigenfunction v(x) = sinnx, eigenvalue λ = −n2

General solution: u =
∑

cne
λntvn General solution: u =

∑
bne
−n2t sinnx

Solve u(0) =
∑

cnvn to get the cn Solve u(x, 0) =
∑

bn sinnx to get the bn

Table 3: Analogy between a linear system of ODEs and the Heat Equation.

Inserting the initial condition on the left, we get

1 = b1 sinx+ b2 sin 2x+ b3 sin 3x+ · · · , ∀ x ∈ (0, π), (386)

which must be solved for b1, b2, . . .. We already showed how to find such bi: the left hand
side extends to an odd period 2π function, namely Sq(x), so we need to solve

Sq(x) = b1 sinx+ b2 sin 2x+ b3 sin 3x+ · · · , ∀ x ∈ R.

We already know the answer:

Sq(x) =
4

π
sinx+

4

3π
sin 3x+

4

5π
sin 5x+ · · · . (387)

In other words bn = 0 for even n, and bn =
4

nπ
for odd n. Substituting these bn back into

the general solution to the heat equation gives

u(x, t) =
4

π
e−t sinx+

4

3π
e−9t sin 3x+

4

5π
e−25t sin 5x+ · · · .

What does the temperature profile look like when t is large? All the Fourier components
are decaying, so u(x, t) → 0 as t → +∞ at every position. Thus the temperature profile
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approaches a horizontal segment, the graph of the zero function. But the Fourier compo-
nents of higher frequency decay much faster than the first Fourier component, so when t is
large, the formula

u(x, t) ≈ 4

π
e−t sinx

is a very good approximation. Eventually, the temperature profile is indistinguishable from
a sinusoid of angular frequency 1 whose amplitude is decaying to 0. This can be observed
in the Heat Equation mathlet.

27.1 Inhomogeneous boundary conditions

The steps to solve a linear PDE with inhomogeneous boundary conditions are

1. Find a particular solution up to the PDE with the inhomogeneous boundary conditions
(but without initial conditions). If the boundary conditions do not depend on t, try
to find the steady-state solution up(x, t), i.e., the solution that does not depend on t.

2. Find the general solution uh to the PDE with the homogeneous boundary conditions.

3. Then u := up+uh is the general solution to the PDE with the inhomogeneous bound-
ary conditions.

4. If initial conditions are given, use them to find the specific solution to the PDE
with the inhomogeneous boundary conditions. (This often involves finding Fourier
coefficients.)

As an example, let’s consider the same insulated uniform metal rod as before (ν = 1,
length π, initial temperature 1◦C), but now suppose that the left end is held at 0◦C while
the right end is held at 20◦C. What is u(x, t) in this case? To find the answer, we proceed
through the list of steps above:

1. Forgetting the initial condition for now, we look for a solution u = u(x) that does not

depend on t. Plugging this into the Heat Equation PDE gives 0 =
∂2u

∂x2
. The general

solution to this simplified DE is u(x) = ax + b Imposing the boundary conditions

u(0) = 0 and u(π) = 20 leads to b = 0 and a = 20/π, so up =
20

π
x.

2. The PDE with the homogeneous boundary conditions is what we solved earlier; the
general solution is

uh = b1e
−t sinx+ b2e

−4t sin 2x+ b3e
−9t sin 3x+ · · · .

3. The general solution to the PDE with inhomogeneous boundary conditions is then

u(x, t) = up + uh =
20

π
x+ b1e

−t sinx+ b2e
−4t sin 2x+ b3e

−9t sin 3x+ · · · . (388)
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4. To find the bn, set t = 0 and use the initial condition on the left:

1 =
20

π
x+ b1 sinx+ b2 sin 2x+ b3 sin 3x+ · · · , ∀ x ∈ (0, π). (389)

Bringing time-independent terms to the right, we have

1− 20

π
x = b1 sinx+ b2 sin 2x+ b3 sin 3x+ · · · , ∀ x ∈ (0, π). (390)

Extend 1− 20

π
x on (0, π) to an odd periodic function f(x) of period 2π. Then use the

Fourier coefficient formulas to find the bn such that

f(x) = b1 sinx+ b2 sin 2x+ b3 sin 3x+ . . .

Alternatively, find the Fourier series for the odd periodic extensions of 1 and x sepa-

rately, and take a linear combination to get 1− 20

π
x. Once the bn are found, plug them

back into the general solution for the heat equation with inhomogeneous boundary
conditions.

27.2 Insulated ends

Consider the same insulated uniform metal rod as before (ν = 1, length π) but now assume
that the ends are insulated too (instead of exposed and held in ice), and that the initial
temperature is given by u(x, 0) = x for x ∈ (0, π). Now what is u(x, t)? As before, we
temporarily forget the initial condition and account for them in the finals step.

‘Insulated ends’ means that there is zero heat flow through the ends. We showed above
that the heat flux density function

Jx ∝ −
∂u

∂x
,

so this quantity must vanish at the endpoints x = 0 or x = π

∂u

∂x
(0, t) = 0,

∂u

∂x
(π, t) = 0 , ∀ t > 0, (391)

These conditions on the first order spatial derivatives are called von Neumann boundary con-
dition. They describe a different physical condition than the Dirichlet boundary conditions
u(0, t) = 0 and u(π, t) = 0 used above. So we need to solve the heat equation

∂u

∂t
=
∂2u

∂x2

with the boundary conditions for insulated ends. Separation of variables u(x, t) = v(x)w(t)
leads to

v′′(x) = λ v(x) , v′(0) = 0 , v′(π) = 0 , ẇ(t) = λw(t). (392)

for a constant λ. Looking at the cases λ > 0, λ = 0, λ < 0, we find that

λ = −n2 and v(x) = cosnx
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where n is one of 0, 1, 2, . . .. This time n starts at 0 since cos 0x is a nonzero function. For
each such v(x), the corresponding w is w(t) = e−n

2t (times a scalar), and the normal mode
is

u = e−n
2t cosnx.

The case n = 0 is the constant function 1, so the general solution is

u(x, t) =
a0

2
+ a1e

−t cosx+ a2e
−4t cos 2x+ a3e

−9t cos 3x+ · · · .

Finally, we bring back the initial condition: substitute t = 0 and use the initial condition
on the left to get

x =
a0

2
+ a1 cosx+ a2 cos 2x+ a3 cos 3x+ · · ·

for all x ∈ (0, π). The right hand side is a period 2π even function, so extend the left hand
side to a period 2π even function T (x), a triangle wave, which is an antiderivative of

Sq(x) =
4

π

(
sinx+

sin 3x

3
+

sin 5x

5
+ · · ·

)
.

Integration gives

T (x) =
a0

2
− 4

π

(
cosx+

cos 3x

9
+

cos 5x

25
+ · · ·

)
,

and the constant term a0/2 is the average value of T (x), which is π/2. Thus

T (x) =
π

2
− 4

π

(
cosx+

cos 3x

9
+

cos 5x

25
+ · · ·

)
(393)

yielding the full time-dependent solution

u(x, t) =
π

2
− 4

π

(
e−t cosx+ e−9t cos 3x

9
+ e−25t cos 5x

25
+ · · ·

)
. (394)

This answer makes physical sense: when the entire bar is insulated, its temperature tends
to a constant equal to the average of the initial temperature.

27.3 Other boundary conditions

Besides the two simple boundary conditions we described above, there are a few others that
can be useful. One other boundary condition, not used as often but still important , is what
is know as the Robin boundary condition. This condition has the form on the boundary

u+ a
∂u

∂x
= b (395)

where a and b are constants. Such a condition is usually used to represent some sort of
convective transport occurring at the boundaries. Imagine a glass of beer or soda with the
top open to the atmosphere, and a wind is blowing over it. CO2 naturally diffuses into
the air above the beverage, and the wind will tend to carry it away. The above boundary
condition deals with this case.

123



28 Wave equation

The wave equation in 1+1 dimensions is the following PDE:

∂2u

∂t2
= c2 ∂

2u

∂x2
(396)

You can think of u(x, t) as describing the vertical displacement of a guitar string or elastic
fibre from its uncurved equilibrium configuration, which we can assume to be given by a
straight horizontal line segment [0, L]. Comparing units of both sides of the wave equation
shows that the units for c are m/s, and we interpret c as the wave speed. While the rhs.
of the wave equation looks similar to a diffusion equation, the lhs. features a second order
derivative; that is, the wave equation is a linear second-order equation in both space and
time. Hence, to uniquely determine a solution, we will have to specify 4 conditions: 2 initial
conditions and 2 boundary conditions.

The 3+1-dimensional generalization of Eq. (396)

∂2u

∂t2
= c2

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
, (397)

where u(x, y, z) can also be a scalar (or a component of a vector or a matrix), describes
the propagation of sound waves in a solid (with c the sound speed), the propagation of
electromagnetic waves (with c the speed of light), and also weak gravitational waves (with
c the speed of light).

28.1 Separation of variables in PDEs and normal modes

Let’s find solutions for Eq. (396) assuming that the endpoints of the string are fixed. For
simplicity, suppose that c = 1 and L = π. So now we are solving the PDE with boundary
conditions

∂2u

∂t2
=

∂2u

∂x2
(398a)

u(0, t) = 0 (398b)

u(π, t) = 0. (398c)

As with the heat equation, we try separation of variables. In other words, we try to find
normal modes of the form

u(x, t) = v(x)w(t), (399)

for some nonzero functions v(x) and w(t). Substituting this into the PDE gives

v(x)ẅ(t) = v′′(x)w(t) ,
ẅ(t)

w(t)
=
v′′(x)

v(x)
. (400)

As usual, a function of t can equal a function of x only if both are equal to the same
constant, say λ, so this breaks into two ODEs:

ẅ(t) = λw(t), v′′(x) = λ v(x).
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Moreover, the boundary conditions become v(0) = 0 and v(π) = 0.
We already solved the eigenfunction equation v′′(x) = λ v(x) with the boundary condi-

tions v(0) = 0 and v(π) = 0: nonzero solutions exist only when λ = −n2 for some positive
integer n, and in this case

v(x) = sinnx. (401)

What is different this time is that w satisfies a second -order ODE

ẅ(t) = −n2w(t). (402)

The characteristic polynomial is r2 + n2, which has roots ±in, so

w(t) := cosnt and w(t) := sinnt (403)

are possibilities (and all the others are linear combinations). Multiplying each by the v(x)
with the matching λ gives the normal modes

cosnt sinnx, sinnt sinnx. (404)

Any linear combination

u(x, t) =
∑
n≥1

an cosnt sinnx+
∑
n≥1

bn sinnt sinnx (405)

is a solution to the PDE with boundary conditions, and this turns out to be the general
solution.

Initial conditions. To obtain a unique solution, we have to specify two initial con-

ditions: not only the initial position u(x, 0), but also the initial velocity
∂u

∂t
(x, 0), at each

position of the string.
For a plucked string, it is reasonable to assume that the initial velocity is 0, so one initial

condition is

∂u

∂t
(x, 0) = 0. (406)

What condition does this impose on the an and bn? Well, for the general solution above,

∂u

∂t
(x, t) =

∑
n≥1

−nan sinnt sinnx+
∑
n≥1

nbn cosnt sinnx (407)

so that at time t = 0

∂u

∂t
(x, 0) =

∑
n≥1

nbn sinnx, (408)

so the initial condition (406) says that bn = 0 for every n; and the solution simplifies to

u(x, t) =
∑
n≥1

an cosnt sinnx. (409)

If we also knew the initial position u(x, 0), we could solve for the an by extending to an
odd, period 2π function of x and using the Fourier coefficient formula.
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28.2 D’Alembert’s solution: traveling waves

D’Alembert figured out another way to write down solutions, in the case when u(x, t) is
defined for all real numbers x instead of just x ∈ [0, L]. Then, for any reasonable function f ,

u(x, t) := f(x− ct) (410)

is a solution to the PDE, as shown by the following calculations:

∂u

∂t
= (−c)f ′(x− ct) ∂u

∂x
= f ′(x− ct)

∂2u

∂t2
= (−c)2f ′′(x− ct) ∂2u

∂x2
= f ′′(x− ct),

so

∂2u

∂t2
= c2∂

2u

∂x2
. (411)

What is the physical meaning of this solution? At t = 0, we have

u(x, 0) = f(x), (412)

so f(x) is the initial position. For any number t, the position of the wave at time t is the
graph of f(x − ct), which is the graph of f shifted ct units to the right. Thus the wave
travels at constant speed c to the right, maintaining its shape.

It is easy to check, by going through the same calculation, that the function

u(x, t) := g(x+ ct), (413)

for any reasonable function g(x), is a solution too. This describes wave moving to the left.
It turns out that the general solution is a superposition

u(x, t) = f(x+ ct) + g(x− ct).

There is a tiny bit of redundancy: one can add a constant to f and subtract the same
constant from g without changing u.

28.3 Wave fronts

Define the step function

s(x) :=

{
1, if x < 0

0, if x > 0,

and consider the solution u(x, t) = s(x − t). This is a ‘cliff-shaped’ wave traveling to the
right. You would be right to complain that this function is not differentiable and therefore
cannot satisfy the PDE in the usual sense, but you can imagine replacing s(x) with a smooth
approximation, a function with very steep slope. The smooth approximation also makes
more sense physically: a physical wave would not actually have a jump discontinuity.

Another way to plot the behavior is to use a space-time diagram, in a plane with axes x
(space) and t (time). (Usually one draws only the part with t ≥ 0.) Divide the (x, t)-plane
into regions according to the value of u. The boundary between the regions is called the
wave front.

In the example above, u(x, t) = 1 for points to the left of the line x − t = 0, and
u(x, t) = 0 for points to the right of the line x− t = 0. So the wave front is the line x = t.

126



28.4 Real-life waves

In real life, there is always damping. This introduces a new term into the wave equation,
giving the damped wave equation (aka the telegrapher’s equation)

∂2u

∂t2
+

1

τ

∂u

∂t
= c2 ∂

2u

∂x2
, (414)

where τ is a damping time scale. In this case, separation of variables still works, but in each
normal mode, the w(t) is a damped sinusoid involving a factor e−t/(2τ) in the underdamped
case, where τ is sufficiently large (if τ becomes small, we recover the diffusion equation).
This equation was derived by Lord Kelvin in the 1850s, when he did calculations to estimate
the signal transduction for the first transatlantic cable.
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