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Recent advances in high-resolution imaging techniques and particle-based simulation
methods have enabled the precise microscopic characterization of collective dynamics
in various biological and engineered active matter systems. In parallel, data-driven al-
gorithms for learning interpretable continuum models have shown promising potential
for the recovery of underlying partial differential equations (PDEs) from continuum
simulation data. By contrast, learning macroscopic hydrodynamic equations for active
matter directly from experiments or particle simulations remains a major challenge,
especially when continuum models are not known a priori or analytic coarse graining
fails, as often is the case for nondilute and heterogeneous systems. Here, we present a
framework that leverages spectral basis representations and sparse regression algorithms
to discover PDE models from microscopic simulation and experimental data, while
incorporating the relevant physical symmetries. We illustrate the practical potential
through a range of applications, from a chiral active particle model mimicking
nonidentical swimming cells to recent microroller experiments and schooling fish.
In all these cases, our scheme learns hydrodynamic equations that reproduce the
self-organized collective dynamics observed in the simulations and experiments. This
inference framework makes it possible to measure a large number of hydrodynamic
parameters in parallel and directly from video data.

active matter | sparse regression | coarse-graining | hydrodynamic equations

Natural and engineered active matter, from cells (1), tissues (2), and organisms (3) to
self-propelled particle suspensions (4, 5) and autonomous robots (6–8), exhibits complex
dynamics across a wide range of length and time scales. Predicting the collective self-
organization and emergent behaviors of such systems requires extensions of traditional
theories that go beyond conventional physical descriptions of nonliving matter (9–
11). Due to the inherent complexity of active matter interactions in multicellular
communities (12, 13) and organisms (14), or even nonequilibrium chemical (15) or
colloidal (4, 5, 16) systems, it becomes increasingly difficult and inefficient for humans
to formulate and quantitatively validate continuum theories from first principles. A
key question is therefore whether one can utilize computing machines (17) to identify
interpretable systems of equations that elucidate the mechanisms underlying collective
active matter dynamics.

Enabled by recent major advances in microscopic imaging (12, 14, 18, 19) and agent-
based computational modeling (20), active matter systems can now be observed and
analyzed at unprecedented spatiotemporal (21–23) resolution. To infer interpretable
predictive theories, the high-dimensional data recorded in experiments or simulations
have to be compressed and translated into low-dimensional models. Such learned
models must faithfully capture the macroscale dynamics of the relevant collective
properties. Macroscale properties can be efficiently encoded through hydrodynamic
variables, continuous fields that are linked to the symmetries and conservation laws of the
underlying microscopic system (10, 11). Although much theoretical progress has been
made in the field of dynamical systems learning over the last two decades (24–30), the
inference of hydrodynamic models and their parameters from particle data has remained
largely unsuccessful in practice, not least due to severe complications arising from
measurement noise, inherent fluctuations, and self-organized scale-selection in active
systems. Yet, extrapolating the current experimental revolution (4, 5, 12, 13, 18, 19),
data-driven equation learning will become increasingly more important as simultaneous
observations of physical, biological, and chemical properties of individual cells and other
active units will become available in the near future (31, 32).

Learning algorithms for ordinary differential equations (ODEs) and partial differential
equations (PDEs) have been proposed and demonstrated based on least-squares fitting
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(24, 25), symbolic regression (26, 27), and sparse regres-
sion (28, 29) combined with weak formulations (33–36), artificial
neural networks (37–41), and stability selection (30, 42). These
groundbreaking studies, however, focused primarily on synthetic
data from a priori known continuum models, and recent coarse-
graining applications have remained limited to ODEs (43) or
one-dimensional (1D) PDEs (44, 45). By contrast, it is still an
open challenge to infer higher-dimensional PDE models and
measure hydrodynamic coefficients directly from microscopic
active matter simulations or experiments.

Here, we present a comprehensive learning framework that
takes microscopic particle data as input and proposes sparse
interpretable hydrodynamic models as output (Fig. 1). We
demonstrate its practical potential in applications to data from
simulations of nonidentical active particles and recent experi-
mental studies of microroller suspensions (4) as well as from
schooling fish (46), for which the biophysical interactions are
not exactly known. The learned hydrodynamic models replicate
the emergent collective dynamics seen in the experimental
videos, and their predictions agree with microroller experiments
performed in different geometries. Furthermore, the linear
hydrodynamic coefficients identified by the algorithm agree
with independent estimates obtained by analytic coarse graining
and active-sound spectroscopy (4). In addition, the framework
identifies previously inaccessible nonlinear coefficients, providing
data-informed closure relations for hydrodynamic models (10) of
active matter when analytic coarse-graining procedures fail. From
a broader theoretical perspective, the analysis below demonstrates
how insights from analytic coarse-graining calculations and prior
knowledge of conservation laws and broken symmetries can

enhance the robustness of automated equation discovery from
microscopic data. From a practical perspective, the algorithms
and codes are directly applicable to imaging and tracking data
generated in typical active matter experiments, offering a cost-
efficient method for inferring hydrodynamic coefficients from
videos.

1. Learning Framework

A. Active Particle Simulations. To generate challenging test
data for the learning algorithm, we simulated a 2D system of
interacting self-propelled chiral particles (47–51) with broadly
distributed propulsion and turning rate parameters. Microscopic
models of this type are known to capture essential aspects
of the experimentally observed self-organization of protein
filaments (52, 53), bacterial swarms (21, 54, 55), and cell
monolayers (56). In the simulations, a particle i with orientation
pi = (cos θi, sin θi)> moved and changed orientation accord-
ing to the Brownian dynamics

dxi
dt

= vipi, [1a]

dθi
dt

= �i + g
∑
j∈Ni

sin(θj − θi) +
√

2Drηi, [1b]

where ηi(t) denotes orientational Gaussian white noise, with
zero mean and 〈ηi(t)ηj(t ′)〉 = δijδ(t − t ′), modulated by the
rotational diffusion constant Dr . The parameter g > 0 deter-
mines the alignment interaction strength between particles i and

A B C D

Fig. 1. Learning hydrodynamic models from particle simulations and experiments. (A) Inputs are time-series data for particle positions xi(t), particle
orientations pi(t) = (cos �i , sin �i)>, etc., measured in simulations or experiments with microscale resolution (Active Particle Simulations). (B) Spatial
kernel coarse graining of the discrete microscopic variables provides continuous hydrodynamic fields, such as the density �(t,x) or the polarization
density p(t,x) (Hydrodynamic Fields). (C) Coarse-grained fields are sampled on a spatiotemporal grid and projected onto suitable spectral basis functions.
Systematic spectral filtering (compression) ensures smoothly interpolated hydrodynamic fields, enabling efficient, and accurate computation of spatiotemporal
derivatives (Spatiotemporal Representation and Differentiation). (D) Using these derivatives, a library of candidate terms Cl(�,p) and Cl(�,p) consistent with prior
knowledge about conservation laws and broken symmetries is constructed. A sparse regression algorithm determines subsets of relevant phenomenological
coefficients al and bl (Inference of Hydrodynamic Equations). The resulting hydrodynamic models are sparse and interpretable, and their predictions can be
directly validated against analytic coarse-graining results (Validation and Discussion of Learned Models) or experiments (Learning from Experimental Data). Bottom:
Snapshots illustrating the workflow for microscopic data generated from simulations of chiral active Brownian particles in Eq. 1.
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jwithin a neighborhoodNi of radiusR. The self-propulsion speed
vi ≥ 0 and orientational rotation frequency �i ≥ 0 were drawn
from a joint distribution p(vi,�i) (SI Appendix, section A1).
This heuristic distribution was chosen such that long-lived
vortex states, similar to those observed in swimming sperm cell
suspensions (57), formed spontaneously from arbitrary random
initial conditions (Fig. 2A). Emerging vortices are left-handed
for �i ≥ 0, and their typical size is ∼〈vi〉p/〈�i〉p, where 〈·〉p
denotes an average over the parameter distribution p(vi,�i).
We simulated Eq. 1 in a nondimensionalized form, choosing
the interaction radius R as reference length and R/〈vi〉p as time
scale. Accordingly, we set R = 1 and 〈vi〉p = 1 from now
on. Simulations were performed for N = 12,000 particles on a
periodic domain of size 100× 100 (Fig. 2A).

From a learning perspective, this model poses many of the
typical challenges that one encounters when attempting to infer
hydrodynamic equations from active matter experiments: spon-
taneous symmetry breaking and mesoscale pattern formation,
microscopic parameter variability, noisy dynamics, anisotropic
interactions, and so on. Indeed, similar to many experimental
systems, it is not even clear a priori whether the heterogeneous
active particle system described by Eq. 1 permits a description
in terms of a sparse hydrodynamic continuum model, as the
standard analytic coarse-graining procedure yields a physically
unstable model (SI Appendix, section B1 and Fig. S5), reflecting
the failure of ad hoc closure assumptions when parameters
are broadly distributed. Below we will see that the learning
framework is able to identify a set of hydrodynamic equations
that replicate the key features of the particle simulations,
including density patterns, vortex dynamics and scales, and
spectral characteristics.

B. Hydrodynamic Fields. Given particle-resolved data, hydrody-
namic fields are obtained by coarse graining. A popular coarse-
graining approach is based on convolution kernels (58, 59),
weight functions that translate discrete fine-grained particle
densities into continuous fields, analogous to the point-spread
function of a microscope. For example, given the particle
positions xi(t) and orientations pi(t), an associated particle
number density field ρ(t, x) and polarization density field p(t, x)
can be defined by

ρ(t, x) =
∑
i

K [x− xi(t)], [2a]

p(t, x) =
∑
i

K [x− xi(t)] pi(t). [2b]

The symmetric kernel K (x) is centered at x = 0 and
normalized,

∫
d2x K (x) = 1, so that the total number of

particles is recovered from
∫
d2x ρ(t, x) = N . Eqs. 2a and 2b

generalize to higher tensorial density fields in a straightforward
manner and can be readily adapted to accommodate different
boundary conditions (SI Appendix, section A2).

We found that, in the context of hydrodynamic model
learning, the coarse-graining Eqs. 2a and 2b with a Gaussian
kernel K (x) ∝ exp[−|x|2/(2σ 2)] present a useful preprocessing
step that simplifies the use of fast transforms at later stages.
The coarse-graining scale σ determines the spatial resolution
of the hydrodynamic theory. In practice, σ must be chosen
larger than the particles’ mean-free path length or interaction
scale to ensure smoothness of the hydrodynamic fields but also
smaller than the emergent collective structures. In accordance
with these requirements, we fixed σ = 5 for the microscopic

test data from Eq. 1 (Fig. 2A and SI Appendix, Fig. S13).
Interestingly, measuring the spectral entropy as a function of
σ for both simulated and experimental data showed that coarse-
grained hydrodynamic fields typically maintain only about 1%
of the spectral information contained in the fine-grained particle
data (SI Appendix, section E and Figs. S13 and S14).

C. Spatiotemporal Representation and Differentiation. A cen-
tral challenge in PDE learning is the computation of spatial and
temporal derivatives of the coarse-grained fields. Our framework
exploits that hydrodynamic models aim to capture the long-
wavelength dynamics of the slow collective modes (10). This fact
allows us to project the coarse-grained fields on suitable basis
functions that additionally enable sparse representations (high
compression), fast transforms, and efficient differentiation. Here,
we work with representations of the form

ρ(t, x) =
∑
n,q
ρ̂n,qTn(t)Fq(x), [3a]

p(t, x) =
∑
n,q

p̂n,qTn(t)Fq(x), [3b]

where Tn(t) denotes a degree-n Chebyshev polynomial of the
first kind (60, 61), Fq(x) = exp(2π iq ·x) is a Fourier mode with
wave vector q = (qx , qy)>, and ρ̂n,q and p̂n,q are complex mode
coefficients (Fig. 2B). Generally, the choice of the basis functions
should be adapted to the spatiotemporal boundary conditions of
the microscopic data (Learning from Experimental Data).

The spectral representation in Eq. 3 enables the efficient
and accurate computation of space and time derivatives (62).
Preprocessing via spatial coarse graining (Hydrodynamic Fields)
ensures that the mode coefficients ρ̂n,q and p̂n,q decay fast
for |q| � 1/(2πσ ) (Fig. 2 B, Left). If the asymptotic decay
of the mode amplitudes with the temporal mode number n
is at least exponential, then deterministic PDE descriptions
are sufficient, whereas algebraically decaying temporal spectra
indicate that stochastic PDEs may be required to capture essential
aspects of the coarse-grained dynamics. For the simulated and
experimental systems considered in this work, temporal spectra
were found to decay exponentially (Fig. 2B) or superexponentially
(SI Appendix, Fig. S17), suggesting the existence of deterministic
PDE-based hydrodynamic models. To infer such models from
data, we focus on the slow hydrodynamic modes and filter out the
fast modes with n > n0 by keeping only the dominant Chebyshev
terms in Eq. 3. The cutoff value n0 can usually be directly inferred
from a characteristic steep drop-off in the power spectrum
of the data, which signals the transition to hydrodynamically
irrelevant fast fluctuations (63) (Fig. 2 B, Right). Choosing n0
according to this criterion yields accurate, spatiotemporally
consistent derivatives as illustrated for the kymographs of the
derivative fields ∂tρ and −∇ · p, which are essential to capture
mass conservation. More generally, combining kernel-based
and spectral coarse graining also mitigates measurement noise,
enabling a direct application to experimental data (Learning from
Experimental Data).

D. Inference of Hydrodynamic Equations. To infer hydrody-
namic models that are consistent with the coarse-grained pro-
jected fields from Eq. 3, we build on a recently proposed sparse
regression framework (28, 29). The specific aim is to determine
sparse PDEs for the density and polarization dynamics of the form
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A

B

C

D

E

Fig. 2. Learning mass conservation dynamics. (A) Top: Time evolution of positions and orientations of 12,000 particles following the dynamics in Eqs. 2a and
2b. Bottom: Coarse-grained density � (color code) and polarization field p (arrows). Starting from random initial conditions (t = 0), a long-lived vortex pattern
with well-defined handedness emerges (t = 1,250). Training data were randomly sampled from the time window t ∈ [40,400], enclosed within the gray box.
Domain size: 100 × 100. (B) Slices through the spatiotemporal power spectrum Sx;n,q = |ex · p̂n,q|2 for different values of the Chebyshev polynomial order
n ∈ {0,300,600}, corresponding to modes with increasing temporal frequencies. The rightmost panel depicts the total spatial spectral power

∑
q Sx;n,q of each

Chebyshev mode n; see Eq. 3b. The slowly decaying long tail of fast modes indicates a regime in which fluctuations dominate over a smooth signal. The cutoff
n0 = 600 removes these modes, in line with the goal to learn a hydrodynamic model for the slow long-wavelength modes. (C) Kymographs of the spectral
derivatives ∂t� and−∇ ·p at y = 50, obtained from the spectrally truncated data. (D) Mass conservation in the microscopic system restricts the physics-informed
candidate library to terms that can be written as divergence of a vector field. (E) Learned phenomenological coefficients al of PDEs with increasing complexity
(decreasing sparsity) (SI Appendix, section C). PDE 1 (J) is given by ∂t� = a1∇ · p with a1 = −0.99. As PDE 1 is the sparsest PDE that agrees well with analytic
coarse-graining results (Table 1), it is selected for the hydrodynamic model.

∂tρ =
∑
l

al Cl (ρ, p), [4a]

∂tp =
∑
l

bl C l (ρ, p). [4b]

Additional dynamic equations and libraries can be added to
Eq. 4 if, for example, higher-rank orientational order-parameter
fields (such as a Q-tensor field describing spatiotemporal nematic
order; SI Appendix, section B2) are dynamically relevant and
can be extracted from microscopic data. For self-propelled polar
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systems, the relaxation of higher-rank hydrodynamic fields is
typically fast compared to the relaxation of the polar orientation
field (64). In this case, higher-rank tensorial fields are dynamically
less relevant and can often be approximated by lower-rank
fields and their derivatives through theoretically or empirically
motivated closure relations (9, 10, 48). Accordingly, for the active
particle data considered here, ρ and p present a natural choice for
the hydrodynamic variables in a minimal mean-field description.
This rationale is supported by generic analytic coarse-graining
arguments (SI Appendix, section B), which also suggest first-
order-in-time dynamics as described by Eq. 4.

The candidate library terms
{
Cl (ρ, p)

}
and

{
C l (ρ, p)

}
are

functions of the fields and their derivatives, which can be directly
evaluated using spectral representation Eq. 3 at various sample
points. Eq. 4 thus define a linear system for the phenomenological
coefficients al and bl , and the objective is to find sparse solutions
such that the resulting hydrodynamic model recapitulates the
collective particle dynamics.

Hydrodynamic models for both equilibrium and nonequilib-
rium systems must respect the symmetries of the underlying mi-
croscopic dynamics. This requirement is a natural extension (65)
of Landau-type theories for equilibrium systems, which derive
hydrodynamic models from gradients of free energies that have to
respect the symmetries of the underlying microscopic dynamics.
However, continuum theories of nonequilibrium systems can
have additional terms that are not functional derivatives of
potentials, requiring more general libraries to perform model
inference. Notwithstanding, prior knowledge of symmetries can
greatly accelerate the inference process by placing constraints
on the continuum model parameters. For example, the learning
ansatz Eq. 4b already assumes global rotational invariance by
using identical coefficients bl for the x and y components of the
polarization field equations. Generally, coordinate independence
of hydrodynamic models demands that the dynamical fields and
the library functions Cl , C l , etc., have the correct scalar, vec-
torial, or tensorial transformation properties. This fact imposes
stringent constraints on permissible libraries, as do microscopic
conservation laws, such as particle number conservation.
D.1. Symmetries and conservation laws: Generating a
physics-informed candidate library. Whenever prior knowledge
about (broken) symmetries and conservation laws is available,
it should inform the candidate library construction to ensure
that the PDE learning is performed within a properly
constrained model space. A useful constraint that holds in many
experimental active matter systems as well as in the microscopic
model in Eq. 1 arises from particle number conservation.
To impose a corresponding mass conservation in the learned
hydrodynamic models, we can restrict the scalar library terms
Cl (ρ, p) in Eq. 4a to expressions that can be written as the
divergence of a vector field. In this case, each term represents
a different contribution to an overall mass flux, and mass
conservation holds by construction for any model that will be
learned. For the application considered in this work, we included
fluxes up to first order in derivatives and third order in the fields
(Fig. 2D). If required, such an approach can easily be generalized
to other conservation laws, which then require libraries to be
constructed exclusively from divergences of suitable tensors.

The active particle model in Eq. 1 describes a chiral dynamical
system with intrinsic microscopic rotation rates �i ≥ 0. The
space of valid hydrodynamic models therefore includes PDEs
in which the mirror symmetry is explicitly broken. Formally,
this implies that the Levi-Civita symbol εij can be used to
generate a pseudovector p

⊥
:= �> · p = (−py, px)> that has

to be included in the construction of the candidate libraries

{
Cl (ρ, p)

}
and

{
C l (ρ, p)

}
. The vectorial library

{
C l (ρ, p)

}
for

the chiral polarization dynamics, Eq. 4b, cannot be constrained
further by symmetries or conservation laws. Mechanical substrate
interactions with the environment as invoked by the microscopic
model in Eq. 1 and present in many active matter experiments
explicitly break Galilean invariance, leading to external forces and
torques whose form is not known a priori. We therefore included
in Eq. 4b also vector fields that cannot be written as a divergence,
such as p

⊥
, ρp or (p · ∇)p, in our candidate library

{
C l (ρ, p)

}
.

In general, higher-order terms can be systematically con-
structed from the basic set of available fields and operators
B = {ρ, p, p

⊥
,∇}. We illustrate the general procedure for an

example library containing terms up to linear order in ρ and up
to cubic order of the other terms in B. The first step is to write
the list of distinct rank-2 tensors

S =
{
sI, pp, pp

⊥
, p
⊥
p
⊥
,∇p,∇p

⊥

}
, [5]

where s ∈
{
1, ρ,∇ · p,∇ · p

⊥

}
represents one of the linearly

independent scalars that can be formed from elements in B.
From any tensor666 ∈ S and its transpose, we can then generate
vectorial terms C l by forming scalar products with the elements
in B. In particular, terms ∇ ·666 yield possible contributions from
internal stresses and torques due to alignment interactions, while
666 ·p and666 ·p

⊥
correspond to substrate-dependent interactions.

Note that we omitted � from the set S, as it yields only one
additional linearly independent term∼∇⊥ρ that can be excluded
for the microscopic dynamics in Eq. 1a on the basis of generic
coarse-graining arguments (SI Appendix, section B2).

For pattern-forming systems with emergent length scale
selection, the library should be extended to include Swift–
Hohenberg-type (66) terms 12p, 12p

⊥
, etc. (67, 68). Such

terms can stabilize small-wavelength modes and, combined with
1p and1p

⊥
, can give rise to patterns of well-defined length (66).

The final 19-term library with linearly independent terms (SI
Appendix, section A5) used to learn the polarization dynamics for
the chiral particle model from Eq. 1 is summarized in Fig. 3C.
D.2. Sparse model learning. To determine the hydrodynamic
parameters al and bl in Eq. 4, we randomly sampled the
coarse-grained fields ρ(t, x) and p(t, x) and their derivatives at
∼106 space-time points within a predetermined learning interval
(SI Appendix, section A). Generally, the success or failure of
hydrodynamic model learning depends crucially on the choice
of an appropriate space-time sampling interval. As a guiding
principle, learning should be performed during the relaxation
stage, when both time and space derivatives show the most
substantial variation.

Evaluating Eqs. 4a and b at all sample points yields linear
systems of the form Ut = Θ�, where the vector Ut contains the
time derivatives (SI Appendix, section A3). The columns of the
matrix Θ hold the numerical values of the library terms Cl (ρ, p)
and C l (ρ, p) computed from the spectral representations in
Eq. 3. The aim is to infer a parsimonious model so that the vector
� containing the hydrodynamic parameters al or bl is sparse. In
this case, the corresponding PDE contains only a subset of the
library terms, and we refer to the total number of terms in a PDE
as its complexity.

To estimate sparse parameters �, we used the previously
proposed sequentially thresholded least-squares (STLSQ) algo-
rithm from SINDy (28). STLSQ first finds the least-squares
estimate �̂ = arg min� ||Ut − Θ�||22. Subsequently, sparsity
of �̂ is imposed by iteratively setting coefficients below a
thresholding hyperparameter τ to zero. By construction, this
regression uses data only from the bulk of the domain and
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Fig. 3. Learning polarization dynamics. (A) Same particle dynamics as in Fig. 2A for visual reference. (B) Top: Coarse-grained density and polarization field as
in Fig. 2A. Bottom: Magnitude |p| of the coarse-grained polarization field. Emerging vortices (t=400, 1,250) appear as ring-like patterns in |p|. Training data were
randomly sampled from the time window t ∈ [40,400], enclosed within the gray box. (C) Physics-informed candidate library (with b1 = −Dr ) including terms
constructed from p⊥ = (−py , px)>, which are allowed due to the chirality of the microscopic system. (D) Learned phenomenological coefficients bl of PDEs with
increasing complexity (SI Appendix, section C). For all PDEs, learned coefficients of the linear terms p⊥ and ∇� compare well with analytic predictions (Table 1
and SI Appendix, section B2). (E) Simulation of the final hydrodynamic model (PDE 8 for the polarization dynamics and PDE 1 in Fig. 2E for the density dynamics).
Starting from random initial conditions (t = 0), long-lived vortex states emerge on a similar time scale, with similar spatial patterns, and with comparable
density and polarization amplitudes as in the coarse-grained microscopic model data (B). Hydrodynamic models with PDEs sparser than PDE 8 do not form
stable vortex patterns.

therefore does not require information about boundary condi-
tions. Adopting a stability selection approach (30, 42, 69, 70)
in which τ is systematically varied over a regularization path
[τmax, τmin] (SI Appendix, section A3), we obtain candidate PDEs
of increasing complexity (Figs. 2E and 3D) whose predictions
need to be validated against the phenomenology of the input
data.
D.3. Performance improvements and pitfalls. Sparse regression-
based learning becomes more efficient and robust if known

symmetries or other available information can be used to reduce
the number of undetermined parameters al and bl in Eq. 4.
Equally helpful and important is prior knowledge of the relevant
time and length scales. The coarse-grained field data need to
be sampled across spatiotemporal scales that contain sufficient
dynamical information; oversampling in a steady-state typically
prevents algorithms from learning terms relevant to the relaxation
dynamics. Systems exhibiting slow diffusion time scales can
pose additional challenges. For example, generic analytic coarse
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graining (SI Appendix, section B1) shows that additive rotational
noise as in Eq.1b implies the linear term−Drp in the polarization
dynamics in Eq. 4b. If the diffusive time scale 1/Dr approaches
or exceeds the duration of the sampling time interval, then the
learned PDEs may not properly capture the relaxation dynamics
of the polarization field. From a practical perspective, this is
not a prohibitive obstacle, as the rotational diffusion coefficient
Dr can be often measured independently from isolated single-
particle trajectories (71). In this case, fixing −Drp in Eq. 4b
and performing the regression over the remaining parameters
produced satisfactory learning results (Fig. 3, where 1/Dr ∼ 100
is comparable to the length of the learning interval t ∈ [40, 400]).

E. Validation and Discussion of Learned Models. The STLSQ
algorithm with stability selection proposes PDEs of increasing
complexity—The final learning step is to identify the sparsest
acceptable hydrodynamic model among these (Fig. 1). This can
be achieved by simulating all the candidate PDEs (SI Appendix,
section A6) and comparing their predictions against the original
data and, if available, against analytic coarse-graining results
(SI Appendix, section B).

For the microscopic particle model from Eq. 1, the
sparsest learned PDE for the particle number density is
∂tρ = a1∇ · p (Fig. 2E); this mass conservation equation is also
predicted by analytic coarse graining (SI Appendix, section B).
The learned coefficient a1 = −0.99 implies an effective number
density flux −a1p ≈ p, which agrees very well with the analytic
prediction 〈vi〉pp = p. Additional coefficients appearing in more
complex models proposed by the algorithm are at least one order
of magnitude smaller than a1 (Fig. 2E). Hence, as part of a
hydrodynamic description of the microscopic system in Eq. 1,
we adopt the minimal density dynamics ∂tρ = a1∇ ·p from now
on.

The sparsest learned PDE for the dynamics of the polarization
field p contains only three terms. However, together with
the density dynamics, the resulting hydrodynamic models are
either unstable or do not lead to the formation of vortex
patterns. Our simulations showed that a certain level of model
complexity is required to reproduce the dynamics observed in
the test data. In particular, there exists a unique sparsest model
(PDE 8 in Fig. 3D) for which long-lived vortex states emerge
from random initial conditions. The resulting hydrodynamic
model exhibits density and polarization patterns matching those
observed in the original particle system (Fig. 3 A, B, and E and
SI Appendix, Movie S1), which also form on a similar time scale.
Furthermore, the learned coefficients of the linear terms ∼p

⊥

and ∼∇ρ agree well with the analytic predictions (Table 1 and
SI Appendix, section B2). A direct comparison of temporal and
spatial spectra from simulations of the learned hydrodynamic
model with the coarse-grained original data shows satisfactory
agreement between the characteristic length and time scales seen
in each dataset (SI Appendix, section D and Figs. S11 and S12).
Furthermore, density profiles, vortex sizes, and the disordered
nature of emergent vortex patterns are also consistent between the
coarse-grained particle data and the learned model (SI Appendix,
Fig. S10), confirming that the learned model captures key features
of the collective hydrodynamic modes.

The individual terms appearing in the learned hydrodynamic
equations identify specific physical mechanisms that contribute to
emergent pattern formation. The linear contributions are directly
interpretable based on generic analytic coarse-graining arguments
(SI Appendix, section B): The term b1p with b1 < 0 corresponds
to the lowest-order mean-field contribution of rotational diffu-

Table 1. Parameters of the hydrodynamic model
learned for the microscopic dynamics in Eq. 1 and val-
ues predicted by analytic coarse graining (SI Appendix,
section B2)
Term Learned value Analytic coarse graining

Density dynamics
a1∇ · p a1 =−0.99 −〈vi〉p =−1.00
Polarization dynamics
b3p

⊥
b3 = 0.44 〈vi�i〉p/〈vi〉p = 0.50

b5∇� b5 =−0.60 −
1
2 〈v

2
i 〉p/〈vi〉p =−0.57

〈·〉p denotes averages over the distribution p(vi ,�i) of particle velocities vi and rotation
rates �i (SI Appendix, section A1).

sion that suppresses orientational order at long times. The chiral
term b3p⊥ with b3 > 0 drives counterclockwise rotations of the
local polar field since ∂tp = b3p⊥ is solved by the rotating vector
field p = (cos b3t, sin b3t). This term represents the lowest-order
chiral mean-field contribution to the dynamics and is a direct
consequence of the active rotations ∼�i of single particles in
Eq. 1b. The term b7∇ρ with b7 < 0 comes from an effective
extensile isotropic stress � ∼ −b7ρI that arises entropically in
systems with moving polar particles (SI Appendix, section B2).
The nonlinear ρp and |p|2p terms represent density-dependent
polar alignment interactions, similar to ferromagnetic interac-
tions in spin systems. Other higher-order and nonlinear terms can
be identified as contributions from an effective closure relation,
capturing the interplay between polar and nematic order in the
particle system, or from effects of the microscopic parameter
variability. (A detailed discussion is provided in SI Appendix,
section B3.) We emphasize that, for the microscopic model in
Eq. 1, standard methods for analytically deriving coarse-grained
hydrodynamic equations (10, 48, 49, 55, 64, 72, 73) predict
coefficients for nonlinear terms that are quantitatively different
from those in our learned equations (SI Appendix, Table SI).
Even more critically, the analytically derived model does not
correctly capture vortex pattern formation, instead exhibiting
locally diverging mass and polarization densities that render
simulations unstable (SI Appendix, Fig. S5). By contrast, the
learned hydrodynamic model is numerically stable and correctly
reproduces the vortex formation seen in the particle simulations.

As the learning algorithm used coarse-grained field data
only in the time interval t ∈ [40, 400], simulation results for
t > 400 represent predictions of the learned hydrodynamic
model (Fig. 3E). The close agreement between original data and
the model simulations (Fig. 3 B and E) shows that the inference
framework has succeeded in learning a previously unknown
hydrodynamic description for a chiral polar active particle system
with broadly distributed microscopic parameters.

2. Learning from Experimental Data

The inference framework can be readily applied to experimental
data. We illustrate this by learning a hydrodynamic model
directly from a video recorded in a recent study (4) of driven
colloidal suspensions (Fig. 4A). In these experiments, an electro-
hydrodynamic instability enables micron-sized particles to self-
propel with speeds up to a few millimeters per second across a
surface. The rich collective dynamics of these so-called Quincke
rollers (4, 74) provides a striking experimental realization of self-
organization in active polar particle systems (10, 75, 76).
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A

B

C

D

E

F

Fig. 4. Learning from active polar particle experiments. (A) Snapshot of particle positions and velocity components of ∼2,200 spontaneously moving Quincke
rollers in a microfluidic channel (4). (Scale bar, 200 µm.) (B) Coarse-grained density field �(t,x), expressed as the fraction of area occupied by the rollers with
diameter Dc = 4.8 µm, and components vx(t,x) and vy (t,x) of the coarse-grained velocity field (� = 45 µm). 5 × 105 randomly sampled data points from
∼580 such snapshots over a time duration of 1.4 s were used for the learning algorithm. (C) Physics-informed candidate libraries for the density and velocity
dynamics, {C̄l(�,v)} and {C̄l(�,v)}, respectively, Eq. 6b. These are the same libraries as shown in Figs. 2E and 3D but without the chiral terms and replacing
p → v. (D) Learned phenomenological coefficients cl and dl of the four sparsest PDEs for the density (Left) and velocity (Right) dynamics. The coefficients are
nondimensionalized with length scale � and time scale �/v0, where v0 = 1.2 mm s−1 is the average roller speed. PDE 1 for density dynamics corresponds to
∂t� = c3∇ ·(�v) with c3 ' −0.95. PDE 2 for the velocity dynamics is shown in Eq. 7b. Learned coefficients compare well with the values reported in ref. 4 (Table 2).
(E) Simulation snapshot at t = 1.8 s of the learned hydrodynamic model (PDEs marked by J in (D) in a doubly periodic domain. Spontaneous flow emerges
from random initial conditions and exhibits density and velocity fluctuations that show similar spatial patterns and amplitudes as seen in the experiments (A).
(F) Simulation snapshots at t = 18.5 s of the same hydrodynamic model as in (E) on a square domain with reflective boundary conditions. The model predicts the
emergence of a vortex-like flow permeated by density shock waves. This prediction agrees qualitatively with experimental observations (Rightmost) of Quincke
rollers in a 5 mm× 5 mm confinement with average density �0 ≈ 0.1 (Image credits: Alexandre Morin, Delphine Geyer, and Denis Bartolo). (Scale bars, 200 µm
(simulation) and 1 mm (experiment).)
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A. Coarse Graining and Spectral Representation of Experimen-
tal Data. To gather dynamic particle data from experiments, we
extracted particle positions xi(t) from the SI Appendix, Movie S2
in ref. 4, with particle velocities vi(t) = dxi/dt replacing the
particle orientations pi(t) from before. This dataset captures a
weakly compressible suspension of Quincke rollers in a part of a
racetrack-shaped channel (Fig. 4A). We then applied the kernel
coarse graining in Eq. 2 with σ = 45 µm, SI Appendix, Fig. S14
to obtain the density field ρ and the velocity field v = p/ρ.
Accounting for the nonperiodicity of the data, ρ and v were
projected on a Chebyshev polynomial basis, Eq. 3, in time
and space (Fig. 4B). Filtering out nonhydrodynamic fast modes
with temporal mode numbers n > n0, we found that the
final learning results were robust for a large range of cutoff
modes n0 (SI Appendix, section C).

B. Physics-Informed Library. The goal is to learn a hydrody-
namic model of the form

∂tρ =
∑
l

cl C̄l (ρ, v), [6a]

∂tv =
∑
l

dl C̄ l (ρ, v), [6b]

where C̄l (ρ, v) and C̄ l (ρ, v) denote library terms with coeffi-
cients cl and dl , respectively. The experimental Quincke roller
system shares several key features with the particle model in Eq. 1,
so the construction of the candidate libraries

{
C̄l (ρ, v)

}
and{

C̄ l (ρ, v)
}

follows similar principles (Fig. 4C). Conservation of
the particle number implies that C̄l can be written as divergences
of vector fields. However, rollers do not explicitly break mirror
symmetry, so chiral terms can be dropped from the

{
C̄ l (ρ, v)

}
library, leaving the candidate terms shown in Fig. 4C.

C. Learned Hydrodynamic Equations and Validation. The
sparse regression algorithm proposed a hierarchy of hydrody-
namic models with increasing complexity (Fig. 4D). The sparsest
learned model that recapitulates the experimental observations is
given by

∂tρ = c3∇ · (ρv), [7a]

∂tv = d1v + d2ρv + d3|v|2v + d4∇ρ + d5(v · ∇)v. [7b]

Notably, Eqs. 7a and 7b contain all the relevant terms
to describe the propagation of underdamped sound waves, a
counterintuitive, but characteristic feature of overdamped active
polar particle systems (4).

Although the finite experimental observation window and
imperfect particle tracking was expected to limit the accuracy
of the learned models, the learned coefficient values agree well
with corresponding parameters estimated in ref. 4 by fitting a
linearized Toner-Tu model to the experimental data (Table 2).
The coefficient c3 ' −0.95 in the mass conservation equation
is close to the theoretically expected value −1. The learned
coefficient d4 in the velocity Eq. 7b is of similar magnitude
but slightly less negative than the dispersion-based estimate in
ref. 4. The learned coefficients d1, d2, and d3 are described in
SI Appendix, Table SVI. Despite being inferred from a single
video, these parameters yield a remarkably accurate prediction
v0(ρ0) =

√
−(d1 + d2ρ0)/d3 for the typical roller speed as a

function of the area fraction ρ0 (SI Appendix, Fig. S4 in ref. 4
and Fig. 5). Similarly, the learned coefficient d5 of the nonlinear

Table 2. Parameters of the learned hydrodynamic
model for the Quincke roller system are close to values
expected from analytic coarse graining (*) and reported
in ref. 4 for experiments performed at mean area
fraction �0 ≈ 0.11
Term Learned values Ref. 4

Density dynamics
c3∇ · (�v) c3=−0.95 −1.0*

Velocity dynamics
(d1 + d2�)v

+d3|v|2v
√

d1+d2�0
−d3

=1.21 mm/s 1.20 mm/s
d4∇� d4 =−1.62 mm2/s2

−5.0± 2.0 mm2/s2

d5(v · ∇)v d5 =−0.67 −0.7± 0.1

advective term ∼(v · ∇)v is in close agreement with the value
reported in ref. 4. Interestingly, d5 6= −1 reveals the broken
Galilean invariance (9, 10) due to fluid-mediated roller–substrate
interaction, a key physical aspect of the experimental system
that is robustly discovered by the hydrodynamic model learning
framework.

To validate the learned hydrodynamic model, we simulated
Eq. 7 on a periodic domain comparable to the experimental
observation window (Fig. 4E and SI Appendix, section A6). Start-
ing from random initial conditions, spontaneously flowing states
emerge (SI Appendix, Movie S2), even though the spontaneous
onset of particle flow is not a part of the experimental data from
which the model was learned. The emergent density and flow
patterns are quantitatively similar to the experimentally observed
ones. In particular, the learned model predicts the formation of
transverse velocity bands as seen in the experiments (Fig. 4 B
and E).

D. Predicting Collective Roller Dynamics in Confinement. Use-
ful models must be able to make predictions for a variety of ex-
perimental conditions. At minimum, if a learned hydrodynamic
model captures the most relevant physics of an active system,
then it should remain valid in different geometries and boundary
conditions. To confirm this for the Quincke system, we simulated
Eq. 7 on a square domain using no-flux and shear-free boundary
conditions (SI Appendix, section A6). Starting from random
initial conditions, our learned model predicts the formation of
a vortex-like flow, permeated by four interwoven density shock
waves, which arise from reflections at the boundary (Fig. 4 F,
Left and SI Appendix, Movie S3). Remarkably, this behavior has
indeed been observed in experiments (74) in which Quincke
rollers were confined within a square domain (Fig. 4 F, Right).
These results demonstrate the practical potential of automated
model learning for complex active matter systems. As an
additional demonstration, we present in SI Appendix, section F
an application of the above learning framework to recent fish
schooling experiments (46). In this case, the exact nature of
the underlying fish–fish interactions, which likely involve both
hydrodynamic (77, 78) and visual (79, 80) cues, is not exactly
known. Interestingly, the inference algorithm identifies a sparse
hydrodynamic model (SI Appendix, Table SVIII) that is struc-
turally similar to the Quincke system (SI Appendix, Table SVI),
despite a vast difference in scales.

E. Limitations and Outlook. Any learning or inference frame-
work is fundamentally limited by its underlying model space. In
neural network (NN)-based machine learning schemes (39, 81–
83), the NN architecture is prescribed by the human modeler,
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Fig. 5. The learned model accurately predicts collective Quincke roller
speeds v0 at different average area fractions �0. Although Eq. 7 was
learned from a single experiment (SI Appendix, Movie S2 in ref. 4) at fixed
average area fraction �0 = 0.11 (filled black circle), the model prediction
v0(�0) =

√
−(d1 + d2�0)/d3 (solid line) with inferred parameters d1 , d2 , d3

(SI Appendix, Table SVI), agrees well the experimentally measured speed
values (red symbols) reported in SI Appendix, Fig. S4 of ref. 4.

whose heuristically plausible yet ad hoc choices limit the range of
predictable phenomena. In continuum dynamical systems infer-
ence (26, 28, 37, 84–86), as considered here, the spatiotemporal
evolution of tensorial order-parameter fields is parameterized
in terms of partial differential equations, and the range of
predictable phenomena is limited by the choice of the library.
Independent of whether one prefers NN-based, PDE-based,
or other approaches, once the model space and its parameter-
ization have been fixed, “learning” reduces to solving a high-
dimensional (usually nonconvex) optimization problem. While
NN models prioritize expressive power over interpretability,
PDE-based models tend to be more easily interpretable and
amenable to symmetry constraints, but their expressive power
is inherently limited by the “domain knowledge” that informs
library selection. An interesting approach toward reducing bias
and increasing flexibility in model formulation are symbolic
regression techniques (87–89) that could, in principle, discover
novel classes of equations. Unfortunately, symbolic regression
comes with high computational complexity, so that human-
informed modeling frameworks will remain practically relevant
in the physical and life sciences.

3. Discussion & Conclusions

Leveraging spectral representations of field observables and
recent advances in the sparse PDE inference (28–30, 42),
we have presented a PDE learning framework that robustly
identifies hydrodynamic models for the self-organized dynamics
of active matter systems. To illustrate its broad practical potential
and applicability, we demonstrated the automated inference of
interpretable hydrodynamic models from microscopic simulation
data as well as from experimental video data for active and
living systems (SI Appendix, section F). The underlying com-
putational framework complements modern machine learning
approaches, including model-free methods (90, 91) and others
that leverage a priori known model structure to predict complex
dynamics (39, 41, 59, 81), infer specific model parameters (92)
or hidden fields (82), partially replace PDE models with suitably

trained neural networks (40, 93), or use them for dimensionality
reduction (94, 95).

Inferring sparse hydrodynamic models from coarse-grained
active matter data also complements analytic coarse-graining
techniques (10, 48, 49, 55, 64, 72, 73), which generally require ad
hoc moment closures to truncate infinite hierarchies of coupled
mode equations (SI Appendix, section B). Such closures typically
neglect correlations and rely on approximations that may not
be valid in heterogeneous interacting active matter systems.
Automated learning of hydrodynamic equations instead yields
data-informed closure relations, while simultaneously providing
quantitative measurements of phenomenological coefficients
(viscosities, elastic moduli, etc.) from video data (92). We have
shown here that this data-driven approach yields well-defined,
numerically stable continuum models in situations where analytic
coarse-graining methods lead to hydrodynamic equations that do
not reproduce the observed patterns and instead generate locally
diverging density patterns (SI Appendix, Fig. S5).

Successful model learning requires both good data and a
good library. Good data need to sample all dynamically relevant
length and time scales (84). A good library is large enough to
include all hydrodynamically relevant terms and small enough
to enable robust sparse regression (30). Since the number of
possible terms increases combinatorially with the number of
fields and differential operators, library construction should
be guided by prior knowledge of global, local, and explicitly
broken symmetries. From a physics perspective, using symmetry
considerations as a key guiding principle to construct phe-
nomenological models naturally builds on Ginzburg–Landau-
type approaches to nonequilibrium pattern formation (65, 96).
Here, this approach enabled us to infer quantitative hydro-
dynamic models directly from particle data, consistent with
symmetry constraints arising from the microscopic dynamics.
From an algorithmic perspective, physics-informed libraries
ensure properly constrained model search spaces, promising a
more efficient sparse regression. Equally important is the use of
suitable spectral field representations—without these, an accurate
evaluation of the library terms seems nearly impossible even for
very-high quality data.

In view of the above successful applications, which encom-
passed microscopic parameter variability, explicitly noisy particle
dynamics, and measurement noise in experimental data, we
expect that the computational framework presented here can
be directly applied to a wide variety of passive and active
matter systems. Specifically, the fish schooling (46) example
(SI Appendix, section F) demonstrates that automated model
inference can yield predictive continuum models even when the
biophysical particle–particle interactions are highly complex (77–
80) or not yet exactly known. The computational framework
presented here can likely be enhanced by combining recent
advances in sparse regression (42, 97) and weak formulations (35)
with statistical information criteria (85) and cross-validation (98)
for model selection. Furthermore, an extension to three di-
mensions is conceptually and computationally straightforward:
Kernel-based coarse-graining, spectral data representation, the
implementation of conservation laws through suitable restrictions
of library terms, and the sparse regression scheme all extend
naturally to higher dimensions in a parallelizable manner.
Given the rapid progress in experimental imaging and tracking
techniques (12, 14, 18, 19, 46), we anticipate that many
previously intractable physical and biological systems will soon
find interpretable quantitative continuum descriptions that may
reveal novel ordering and self-organization principles.
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other data are available from authors upon reasonable request.
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