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Topological packing statistics of living and
nonliving matter
Dominic J. Skinner1,2, Hannah Jeckel3,4, Adam C. Martin5, Knut Drescher4, Jörn Dunkel1*

Complex disordered matter is of central importance to a wide range of disciplines, from bacterial colonies and
embryonic tissues in biology to foams and granular media in materials science to stellar configurations in as-
trophysics. Because of the vast differences in composition and scale, comparing structural features across such
disparate systems remains challenging. Here, by using the statistical properties of Delaunay tessellations, we
introduce a mathematical framework for measuring topological distances between general three-dimensional
point clouds. The resulting system-agnostic metric reveals subtle structural differences between bacterial
biofilms as well as between zebrafish brain regions, and it recovers temporal ordering of embryonic develop-
ment. We apply the metric to construct a universal topological atlas encompassing bacterial biofilms, snowflake
yeast, plant shoots, zebrafish brain matter, organoids, and embryonic tissues as well as foams, colloidal pack-
ings, glassy materials, and stellar configurations. Living systems localize within a bounded island-like region of
the atlas, reflecting that biological growth mechanisms result in characteristic topological properties.
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INTRODUCTION
Topology (1) studies the fundamental neighborhood relations
among living (2–4), nonliving (5, 6), or abstract (7, 8) entities. By
ignoring object-specific features, such as particle shape or chemical
composition, topological analysis of spatial packings and nearest-
neighbor networks can reveal universal ordering principles (9, 10)
that extend across broad classes of systems (11). As recent advances
in high-resolution imaging (12, 13), deep learning–based image
analysis (14), and simulation (15–18) techniques are offering un-
precedented insights into the spatial organization of biological
(19–21) and physical (22) matter, there now exists a unique oppor-
tunity to explore the topological similarities and differences across a
diverse range of complex systems, from bacterial communities and
eukaryotic tissues to amorphous materials (23) or large-scale astro-
physical structures (24). A central open question in this context is
whether, or to which extent, living and nonliving matter have dis-
tinct topological properties.
To address this problem, we introduce here a general mathemat-

ical framework for comparing the topology of three-dimensional
(3D) disordered packings (6) or, more generally, point clouds.
These point clouds can represent the positions of the cell nuclei
in a piece of tissue (12, 25, 26), the midpoints of bacteria within a
biofilm (27, 28), the atoms in a liquid or solid (23, 29), or the loci of
nearby stars in our galaxy (30). Extending recent progress in the
statistical characterization of topological structures (6, 29, 31), we
developed a computationally efficient algorithm that makes it pos-
sible to directly compare all these and many other systems, without
requiring curated training data. Intuitively, the underlying numer-
ical scheme has two steps: In the first step, the algorithm determines
the relative frequencies of typical neighborhood patterns (“motifs”)

within a given 3D point cloud; in the second step, it computes the
cost of transforming one motif frequency distribution into another
by exploiting a natural graph structure on the space of motifs. By
applying this framework to a diverse set of experimental and simu-
lated data, we find that basic topological information suffices to
identify biofilms from different bacterial species (Fig. 1), to deter-
mine time ordering and developmental transitions in zebrafish
embryos (Fig. 2), and to distinguish these and other living
systems from a variety of inanimate physical structures (Fig. 3).
More generally, the statistical analysis approach developed here
opens a path toward quantifying and comparing the structural dif-
ferences within and across broad classes 3D disordered media.

RESULTS
Topological representation of disordered systems
Our starting point for constructing a metric framework that can
measure distances between 3D disordered structures is the classical
Delaunay tessellation (9), which is a topological object linking
nearest neighbors in a point cloud (Materials and Methods). In
three spatial dimensions, Delaunay tessellations are composed of
adjacent tetrahedrons, illustrated in Fig. 1A for bacterial biofilm
imaging data from four different species (32). If we pick any cell
within a biofilm, then its nearest neighbors form an elementary
motif consisting of the corresponding Delaunay tetrahedrons
(Fig. 1B). In a disordered multicellular system, these nearest-neigh-
bormotifs typically differ from cell to cell, but, as we show in section
S2 and fig. S4, it is possible to uniquely identify and label each pos-
sible motif. This important fact allows us to count how often each
motif appears within the bulk of a given 3D structure. To distin-
guish the bulkmaterial from the boundary, which can have different
topological properties (section S1), we use the α-complex (33), an
interior subset of the Delaunay tessellation (Materials and Methods
and section S1).
Having captured the topological properties of a material as a dis-

tribution over neighborhood motifs, the second important observa-
tion is that one can determine how many elementary neighbor
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exchanges (“flips”) are needed to transform one motif into another
(section S2). This means that we can construct a so-called “flip
graph” (31) where each vertex represents a specific motif and
edges link motifs that are exactly one flip apart from each other
(Fig. 1C). Any discrete 3D material structure can then be identified
with a specific empirical probability distribution on the flip graph,
by assigning to every motif its relative frequency in the material, in-
dicated by the relative vertex size in Fig. 1C. In practice, a few
hundred cells or particles often suffice to obtain a sufficiently accu-
rate approximation of the empirical motif probability distributions
on the flip graph (section S3).

Topological distance between motif distributions
With the weighted flip graph representation at hand, measuring the
topological distance between two disordered structures reduces to
comparing their associated probability distributions on the flip
graph. To do so, we implement a topological diffusion distance
(TDD) which relaxes the well-known earth mover’s distance (31),
or optimal transport, on a graph (Materials and Methods and
section S3), and use the TDD to compare structures of biological
and nonbiological matter. Intuitively, such transport distances

measure how probability density needs to be shuffled along the
flip graph to transform one motif distribution into another. By
using information about the separation of motifs on the flip
graph, these transport distances are better at distinguishing disor-
dered structures than conventional entropic distance measures
(section S3). The TDD has the practical advantage over other dis-
tances, that it can be efficiently computed, enabling a fast compar-
ison of 3D structures even with several million points and
thousands of motifs.

Topological differences between bacterial biofilms
As a first application, we find that the TDD is able to detect the
subtle topological differences between biofilms formed by the bac-
terial species Pseudomonas aeruginosa, Salmonella enterica, Vibrio
cholerae, and Escherichia coli [Fig. 1, D and E; 15 biofilm colonies
per species with ∼2000 cells each, data from (32)]. We used the 3D
spatial position of cell centroids to compute a pairwise TDD dis-
tance matrix between colonies. The block structure of the distance
matrix (Fig. 1D), and its 2D embedding obtained using multidi-
mensional scaling (MDS) (34) (Fig. 1E), show that the topological
information encoded in the Delaunay tessellations suffices to

Fig. 1. Topological diffusion distance distinguishes prokaryotic multicellular colonies from local topological information alone. (A) 3D reconstruction of bacterial
biofilms formed by the species P. aeruginosa, S. enterica, V. cholerae, and E. coli [top row; ~2000 cells per biofilm; experimental data from (32)]. The topological structure is
encoded in (the α-complex of ) the Delaunay tessellation (bottom row; section S1). Color indicates local density (red, high; blue, low). Scale bar, 5 μm. (B) For each cell (red,
left), we determine its nearest-neighbor motif (right), formed by all Delaunay tetrahedrons that have the cell and its neighbors as vertices (centroids of neighboring cells
shown as blue spheres). (C) Motifs only change through discrete topological transitions (flips), which naturally induces a graph structure where each vertex is a motif and
vertices are connected if they are one transition apart, illustrated here for selectedmotifs. Vertex size reflects the relative frequency of amotif. Each biofilm is thus mapped
to a probability distribution of motifs over this flip graph. (D) Pairwise topological diffusion distance (TDD)matrix between all 4 × 15 experiments, grouped by species. The
block structure shows that the TDD detects differences between the species. (E) Topological atlas obtained from theMDS embedding of the TDD distancematrix, with the
first two principal components (PC) shown. The embedding is colored by the mean cell aspect ratio, showing that topological changes correlate strongly with changes in
the cell geometry. TDD identifies every pair of biofilm species as statistically different at P < 0.01 (fig. S11).
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distinguish the 3D structure of these four prokaryotic systems. In
particular, we observe a close correlation between the mean cell
aspect ratio and the topological clustering in the MDS atlas,
which illustrates that the TDD can detect fine differences in posi-
tional and orientational ordering arising from the interplay of
steric repulsion and growth memory in bacterial biofilms (27, 28,
32, 35).

Topological differences between zebrafish brain matter
To demonstrate the practical potential of the TDD framework for
characterizing both static and dynamic tissue architecture in more
complex eukarotic organisms, we next analyze the topology of brain
and embryo tissues. State-of-the-art microscopy and image analysis
methods are able to visualize and segment the cell nuclei within the
brains of commonly studied model organisms (13, 14). An open
question is whether spatially and functionally distinct brain
regions have different topological characteristics and, if so, what
the properties of the underlying topological manifold are. As a spe-
cific example, we consider the juvenile zebrafish brain, for which
∼80,000 nuclei positions were recently measured (13) with x-ray
microtomography (Fig. 2A). Computing the TDD matrix (fig.
S14), and its 2D MDS embedding (Fig. 2B), for nine different
brain regions across 5 experiments (13) reveals substantial topolog-
ical differences between the white matter, hypothalamus, and dien-
cephalon regions. However, all nine brain regions localize near a 1D
manifold (Fig. 2B), suggesting that topological variability in the

juvenile zebrafish brain tissue is highly constrained and can be ef-
fectively described by a single differentiation parameter along this
manifold (36).

Topological changes during multicellular development
In addition to comparing static multicellular structures, the TDD
makes it possible to quantify the topological changes of tissues
during embryonic development. Recent advances in light-sheet mi-
croscopy enable the nondestructive imaging of tissue dynamics at a
fine temporal resolution (12, 19). An open question is whether to-
pological information suffices to detect and define structural tran-
sitions during embryogenesis. Taking zebrafish development as a
widely studied example, we analyzed light-sheet microscopy data
from (19), which reported the positions of all cell nuclei from
around 200 to 1500 min post fertilization (mpf ), during which
the number of cells increases from a few hundreds to around
15,000. As cells divide and rearrange to form different tissue
domains, the internal structure of the Delaunay tessellations
changes in time. Five snapshots showing the evolution of the Delau-
nay networks of a zebrafish embryo are shown in Fig. 2C; in total,
900 time points were imaged at regular intervals separated by 90s.
Dividing the data into 90 time intervals, each containing 10 sequen-
tial time points, we computed the 90 × 90 TDD matrix (fig. S15).
The planar MDS embedding shows the topological trajectory of
the zebrafish embryo (Fig. 2D). Note that, even though the TDD
does not explicitly use temporal information, one can recover the

Fig. 2. Topological statistics distinguish static and dynamic eukaryotic architectures. (A) Nuclei within a juvenile zebrafish brain, as measured with x-ray micro-
tomography, colored by nine major brain regions (top), with corresponding α-complex of Delaunay tessellation (bottom). Data are from (13). Scale bar, 100 μm. (B)
Topological analysis detects systematic differences between regions of the zebrafish brain (see also fig. S12), revealing that brain tissue architectures vary along a 1D
topological manifold. The topological distance was computed pairwise between nine brain regions across five separate experiments, and the resulting distance matrix
was embedded with MDS. Although overall brain size and morphology differs across the experiments, corresponding regions of the brain lie together in the embedding
space. (C) Cell nuclei in a zebrafish embryo imaged during development with light-sheet microscopy (top) and the corresponding α-complex of Delaunay tessellation
(bottom). Data are from (19). Scale bar, 200 μm [minutes post fertilization (mpf)]. (D) Collecting the average topological distribution at 90 different time points and
computing the pairwise distance matrix, the resulting MDS embedding recovers a curve parameterized by time. Note that, although the distance calculation and em-
bedding are not explicitly aware of the temporal ordering of the data, the developmental progression is imprinted in the tissue topology and can thus be recovered from
the TDD matrix.
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temporal ordering of the imaging data by following the topological
trajectory reconstructed from the TDD. In other words, the non-
equilibrium temporal growth trajectory is ingrained into the Delau-
nay structure. Therefore, changes in the topological trajectory can
be used to define an intrinsic topological clock of the embryo, rem-
iniscent of the proper times derived from the particle world lines in
special and general relativity (37).
An interesting mathematical aspect of the topological distance

framework, with substantial future theoretical and practical poten-
tial, is that the TDD provides a foundation for developing a compre-
hensive geometric characterization of topological trajectories (as in
Fig. 2, B and D) as well as higher-dimensional embedding mani-
folds (such as in Fig. 1E). This can be achieved combining the
TDD approach with known ideas and results from distance geom-
etry (38). Intuitively, distance geometry makes it possible to intro-
duce well-defined notions of curvature and other geometric
concepts (section S4) on abstract point sets endowed with a
metric structure; for instance, in Fig. 2D, each point represents an
ensemble of Delaunay tessellations (developmental states of the ze-
brafish embryo) and ametric is provided by the TDD. Bymeasuring
the distances between three nearby points along the topological tra-
jectory in Fig. 2D, one can compute the local Menger curvature of

the developmental trajectory, corresponding to the inverse radius of
the circumcircle of the three points (fig. S8). An application to ze-
brafish data (19) suggests that regions of extremal topological cur-
vature correlate with structural transitions during biological
development (section S4).

Topological comparison of living and nonliving systems
Arguably one of the most interesting applications of the TDD
framework concerns our initial question: Are the topological archi-
tectures of living systems typically distinct from those of nonliving
systems? Because the TDD does not require system-specific infor-
mation beyond 3DDelaunay tessellations, it can be used to compute
the topological distance between any pair of systems for which such
tessellations are available. To initiate a cross-disciplinary compari-
son, we determined pairwise TDDs between various biological and
physical systems (section S6 and table S1), including bacterial bio-
films (32), embryonic tissues from zebrafish (19), worms (39), sea
squirts (40), flies (12), human cancer organoids (41), snowflake
yeast (10), plant shoot tips (42), random Poisson-Voronoi point
sets, diffusion-limited aggregation structures, simulated granular
packings (22), fluid and industrial foams (43, 44), and stars in our
galaxy (30). The resulting combined topological atlas (3D MDS

Fig. 3. Combined topological atlas reveals topological variation across living and nonliving systems. The atlas was constructed by calculating the TDD between
various biological and physical systems: bacterial biofilms, zebrafish brain regions, zebrafish embryo, fly embryo (Drosophila melanogaster), worm (Caenorhabditis elegans)
embryo, sea squirt embryo (Phallusia mammillata), human cancer organoid, plant (Arabidopsis thaliana) apical meristem, snowflake yeast, simulated random packings, a
polyurethane industrial foam, a simulated fluid foam, a diffusion-limited aggregation model, Poisson-Voronoi tessellations, and a collection of stars close to Earth (table
S1). The first three principal components of the MDS embedding are shown, using filled symbols for living systems and nonfilled symbols for nonliving systems. For the
various datasets analyzed here, the convex hull enclosing the first three MDS components of the living systems (green) contains the industrial foam as the only nonliving
systems (1 of 40 nonliving points).
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embedding) in Fig. 3 suggests that the topological architectures of
biological systems are typically distinct from those of many nonliv-
ing physical systems. Of 40 points corresponding to nonliving
systems, only an industrial foam is contained within the convex
hull of points in the MDS corresponding to living systems.
Which common structural features present in living systems give

rise to their topological similarity? Contributing factors may
include the structure induced by growth, a particular distribution
of cell geometries, or a common soft cell-cell interaction mecha-
nism in contrast to the hard excluded volume interaction of the
granular packings. We can isolate the effect of structure induced
by growth, through randomizing cell centroids, which removes
the growth memory while retaining cell geometry and soft cell-
cell interactions. Specifically, we take bulk data from the zebrafish
brain, permute the spatial positions of cells, and then allow the
system to relax through cell-cell interactions, resulting in a
random packing with the same cell geometry as the original living
system (section S7). We find that this randomization leads to sys-
tematically different topological packings, more similar to that of
the polyurethane foam (fig. S21). This demonstrates that the mech-
anism by which a system forms has a measurable impact on the
topology.

DISCUSSION
The above results illustrate how the topological metric framework
can be used to analyze and compare 3D disordered systems
within and across disciplines, from microbiological to astrophysical
scales. In particular, the statistical properties of Delaunay tessella-
tions suffice to distinguish representative prokaryotic and eukar-
oytic multicellular packings from a wide variety of ordered and
disordered physical structures. Our analysis of naturally grown
and randomized cell packings showed that structural memory,
arising from positional and orientational correlations inherited
during cell division and growth,
contributes to characteristically different neighborhood motif

distributions in biological systems. This conclusion is supported
by recent live-imaging experiments that demonstrated the impor-
tance of growth-induced ordering in bacterial (27, 28, 32, 35, 45)
and eukaryotic systems (46).
In the future, the topological distance framework introduced

here can help overcome major current challenges in the analysis
of natural and engineeredmulticellular structures, from quantifying
how genetic mutations, diseases, and drugs modify tissue architec-
tures (47) to the evaluation and classification of tumors (48) and
organoids (41, 49). Unlike machine learning approaches, which
are biased by the choice of training data and may fail to generalize
(50), the topological approach requires no training data, only the
data to be compared. As more and more high-resolution 3D
imaging data become available in the next years, they can be
added to the topological atlas (Fig. 3) through the online platform
(51) provided with this work. A particularly interesting challenge
will be the identification and characterization of other exceptional
biological or physical systems that cross the topological boundaries
between living and nonliving matter.

MATERIALS AND METHODS
Delaunay tessellation
Given a set of points, X = {xi}, with xi ∈ ℝ3, the Voronoi diagram
divides space into polygonal regions Vi associated to each point, xi

Vi ¼ fy jkxi � yk � kxj � yk8xj [ Xg ð1Þ

The Delaunay tessellation, DT (X ), is dual to the Voronoi diagram;
two points are connected in the Delaunay tessellation if their
regions of the Voronoi diagram share a face. More generally, the De-
launay tessellation is a simplicial complex, specified by a set of tet-
rahedrons in 3D (or triangles in 2D) (52), with each tetrahedron
defined by four points in X, for instance T = {xi, xj, xk, xl}.

Motifs
A point xi is a neighbor of a point xj if there exists a tetrahedron T
with xi, xj ∈ T. A neighborhood (of radius 1) N(xi) is the set of all
neighbors of xi. We define the motif,Mi, at point xi as the simplicial
complex, and subcomplex of the full Delaunay, which contains all
tetrahedrons T such that T ⊆ {xi} ∪ N(xi). The exact topological in-
formation contained in the motif can be stored in a vector after a
canonical labeling (section S2). In practice, we have observed
more than 300,000 unique motifs, providing a rich topological
space to characterize disordered material. Taking instead a neigh-
borhood of radius 2 or higher (31) would massively increase the
number of motifs, rendering practical computations unfeasible
(section S1).

Boundary points and the α-complex
Points on the boundary of a material can have different topological
properties than points in the bulk. We define a point xi as being a
boundary point if ∃ y with ‖xi − y‖ = α and ‖xj − y‖ ≥ α for all other
points xj, i.e., if a sphere of radius α, can touch a point xi while con-
taining no other points, then xi is a boundary point, where α is a
parameter that we choose depending on the data (section S1 and
table S1). This definition relates to the α-complex of the Delaunay
tessellation (33) (section S1).

Motif distributions and the flip graph
We define the topological distribution of a material as the probabil-
ity distribution over the space ofmotifs. Motifs only change through
discrete topological transitions, and this defines a natural graph
structure over the space of motifs. Specifically, the flip graph is
the graph where two motifs (vertices) are connected by an edge if
one motif can be transformed into the other by a single topological
transition.

Topological diffusion distance
We wish to compare distributions ρA, ρB, for materials A and B,
which live over the space of motifs, while making use of the flip
graph structure. To do so, we first define the directed incidence
matrix for the flip graph

Dev ¼

1 if 9 w with e ¼ ðv;wÞ
� 1 if 9 w with e ¼ ðw; vÞ

0 else

8
<

:
ð2Þ

where e are graph edges, and v and w are graph vertices. From this,
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we define the graph Laplacian L = D⊤D. The TDD is defined as

dTDDðA;BÞ ¼ jjDLþðρA � ρBÞ jj1 ð3Þ

where L+ is the pseudo-inverse. For diffusion interpretation and re-
lationship to optimal transport, see section S3.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S21
Table S1
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