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Spectral mode representations play an essential role in various areas of physics, from quantum
mechanics to fluid turbulence, but they are not yet extensively used to characterize and describe the
behavioral dynamics of living systems. Here, we show that mode-based linear models inferred from
experimental live-imaging data can provide an accurate low-dimensional description of undulatory
locomotion in worms, centipedes, robots, and snakes. By incorporating physical symmetries and known
biological constraints into the dynamical model, we find that the shape dynamics are generically governed
by Schrödinger equations in mode space. The eigenstates of the effective biophysical Hamiltonians and
their adiabatic variations enable the efficient classification and differentiation of locomotion behaviors in
natural, simulated, and robotic organisms using Grassmann distances and Berry phases. While our analysis
focuses on a widely studied class of biophysical locomotion phenomena, the underlying approach
generalizes to other physical or living systems that permit a mode representation subject to geometric shape
constraints.
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Undulatory propulsion is the natural locomotion strategy
[1,2] of many aquatic and terrestrial animals, from worms
[3–7] and fish [8,9] to lizards [10,11] and snakes [12,13].
The mechanical wave patterns that drive undulatory motion
reflect an animal’s behavioral state [14], providing a
macroscopic physical readout of the underlying biochemi-
cal and neuronal excitations. Recent advances in automated
live imaging [15,16] enable simultaneous observations of
macroscopic locomotion dynamics and microscopic cellu-
lar activity [17–22], producing rapidly growing multiscale
datasets [23] that have to be tracked [24–26] and translated
into predictive and interpretable models. Despite recent
major progress in the experimental characterization
[17–21] and biophysical description of specific organisms
[4,10,27–34], a quantitative model inference framework for
comparing experimentally observed undulatory dynamics
within and across species has yet to be developed. In
addition to providing unifying biophysical insights span-
ning different animal kingdoms, such a framework would
also allow for a direct comparison of living systems
with computational models [35,36] and biomimetic robotic
devices [37,38].
Here, we use spectral mode representations to identify

symmetry-constrained dynamical models that can capture
and distinguish the undulatory locomotion of worms
(Caenorhabditis elegans) [14], neuromechanical worm
models [35], Mojave shovel-nosed snakes (Chionactis

occipitalis) [39], mechanical snakes, and centipedes
(Lithobius forficatus). Compared with traditional con-
tinuum descriptions of undulatory shape deformations in
position space, formulating locomotion models in mode
space [40–43] offers several theoretical and practical
advantages: (i) high-dimensional experimental data can
be efficiently compressed to obtain an interpretable low-
dimensional representation; (ii) the mode dynamics re-
duces to a system of linear ordinary differential equations
(ODEs); (iii) physical symmetries and biological con-
straints can be efficiently encoded through the structure
of the dynamical matrix; (iv) all model parameters can be
directly inferred from experimental data using ODE sensi-
tivity methods [44,45] that exploit the imposed matrix
structure [46]. In particular, for undulatory locomotion, we
find that translational invariance, rotational invariance, and
length constraints generically lead to a Schrödinger equa-
tion [47] in mode space. Similar to the characterization of
quantum systems in terms of their spectra and eigenstates
[48], the eigenspaces of the effective Hamiltonians enable
an efficient classification of the locomotion dynamics
of worms, snakes, robots, and computational models.
Furthermore, transitions between animal behavioral states
are encoded in the time evolution of the Hamiltonian and
thus can be detected using Berry phases [49]. While our
discussion focuses on an important subclass of biophysical
dynamics, the underlying approach generalizes to other
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physical or living systems that permit a mode representa-
tion while being subject to exact or approximate geometric
constraints.
The planar undulatory locomotion of an elongated

wormlike object can be described by its centerline position
in the complex plane zðs; tÞ ¼ xðs; tÞ þ iyðs; tÞ, where s ∈
½−1; 1� is the arc length and t denotes time [Figs. 1(a)
and 1(b) ]. While tens to hundreds of points are typically
required for an accurate depiction of an organism’s shape in
position space [17], interpretable lower-dimensional rep-
resentations can often be obtained by projecting on suitable
polynomial, trigonometric, or other basis functions [27,50].
Although system-dependent representations, such as
principal-component-analysis-based eigenworms [27,32],
yield near-optimal compression for a specific organism
under fixed experimental conditions, system-independent
orthogonal basis expansions enable direct comparisons
across different systems and experimental conditions (see
Supplemental Material [51] ). Moreover, system-dependent
representations are often nondifferentiable, making physi-
cally constrained modeling analytically intractable. Here,
we use Chebyshev polynomials [52] of the first kind
TkðsÞ, which are known to have advantageous analytical
and computational properties; in principle, other basis
functions could be chosen as well. The dynamics of
the complex scalar field zðs; tÞ ¼ xðs; tÞ þ iyðs; tÞ can
then be represented in terms of its leading Chebyshev

coefficients ẑkðtÞ ¼ x̂kðtÞ þ iŷkðtÞ up to degree n, de-
fined by

zðs; tÞ ¼
Xn
k¼0

TkðsÞẑkðtÞ: ð1Þ

For the experimental imaging data analyzed below, nþ1¼
10 modes suffice for achieving reconstruction errors less
than 1% [Fig. 1(c) and [51] ]. Since Chebyshev polyno-
mials are orthogonal with respect to the weight function
wðsÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
[52], the coefficients ẑk are obtained by

taking inner products,

ẑkðtÞ ¼
γk
π

Z
1

−1
dswðsÞTkðsÞ zðs; tÞ; ð2Þ

where γ0 ¼ 1 and γk ¼ 2 for k > 0. We illustrate the
physical meaning of the Chebyshev modes using recent
tracking microscopy video data [17] for C. elegans
[Figs. 1(a) and 1(b) ], a widely studied model organism
with 95 body wall muscle cells, 302 neurons, and a rich set
of behavioral states and corresponding locomotion patterns
[14]. The real and imaginary parts of ẑ0ðtÞ¼ x̂0ðtÞþiŷ0ðtÞ,
obtained from Eq. (2) with T0ðsÞ ¼ 1, describe the
w-weighted Chebyshev c.m. of the moving worm, which
follows closely the geometric c.m. [Fig. 1(d) ]. The degree-1
coefficient ẑ1ðtÞ with T1ðsÞ ¼ s represents the mean
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FIG. 1. Chebyshev mode representation enables an efficient and interpretable low-dimensional description of undulatory locomotion
across species and model systems. (a) Experimental image of C. elegans worm with center of mass (c.m.) and mean orientation
overlayed. (b) Tracked centerline of worm over 100 s. Arrow indicates direction of motion. (c) A small number of Chebyshev
polynomials suffices to accurately reconstruct the worm shape (left). Faint colored lines correspond to centerline reconstructions at
different polynomial degrees. Reconstruction error (right) decays rapidly as the Chebyshev degree n increases. (d) The zeroth-order
Chebyshev coefficients follow closely the worm’s geometric c.m., illustrating the physical interpretability of the Chebyshev mode
representation. (e) Similarly, the first-order Chebyshev coefficients represent the tail-to-head worm orientation. (f) The mode-averaged
dominant frequency of Chebyshev mode oscillations correlates closely with the locomotion speed of the worm.
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orientation of the worm [Fig. 1(e) and [51] ]. Similarly, the
Chebyshev coefficients ẑk of degree k ≥ 2 encode curva-
ture and higher deformation modes [Fig. 1(c), inset]. The
average dominant frequency across the mode oscillations
closely matches the speed of the worm in real space
[Fig. 1(f) and [51] ].
Equipped with this representation, we seek to formulate

a dynamical model for undulatory motion in mode space.
Defining a combined mode vector ΨðtÞ ¼ ½ẑ0;…; ẑn� ∈
Cnþ1, the most general coupled linear first-order dynamics
is _Ψ ¼ MΨ. Note that the complex formulation is man-
ifestly rotationally invariant, since a rotation by θ corre-
sponds to multiplication by eiθ. Incorporating additional
symmetries and invariances into the model imposes further
structure on M. Translational invariance requires the
Chebyshev c.m.ψ0 ¼ ẑ0 to decouple from the higher degree
coefficients ψ̂ ¼ ½ẑ1;…; ẑn� ∈ Cn that describe the orienta-
tion and shape [51]. Abbreviating ∂sz ¼ ∂z=∂s, an addi-
tional biophysical constraint for undulatory motion is that
the length of the centerline lðtÞ ¼ R

1
−1 dsj∂szj remains

approximately constant (see Supplemental Material [51] ).
In mode space, length variations can be bounded by
conserving the convex quadratic functional

el2 ¼
Z

1

−1
dsj∂szj2 ¼ ψ̂†Wψ̂; ð3Þ

where W is a symmetric matrix with elements Wk;m ¼R
1
−1 ds∂sTkðsÞ∂sTmðsÞ. In particular, W is positive definite
and can thus be interpreted as a basis-specific metric.
Taylor expanding the curve length l around the space
and time average of j∂szj2, denoted by h·i, shows that l is
approximately proportional to el2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj∂szj2i

p
; additionally,

the Cauchy-Schwarz inequality implies l2 ≤ 2el2 [51].
Therefore, demanding constant el corresponds to an ener-
getic penalty against contracting or lengthening and ensures
l remains approximately constant and bounded. Keeping
Eq. (3) constant forces the shape modes ψ̂ onto a hyper-
ellipsoid, with axes determined by W. Using the Cholesky
factorization W ¼ LL†, this hyperellipsoid can be trans-
formed to a unit hypersphere by defining the rescaled mode
vector ψ ¼ ðL†=elÞψ̂. Under this transformation, the length
constraint (3) becomes a normalization condition

ψ†ψ ¼ 1: ð4aÞ
Combined with rotational and translational invariance, the
normalization restricts the class of permissible linearmodels
to the form [51]

_ψ0 ¼ h†0ψ; ð4bÞ
i _ψ ¼ Hψ; ð4cÞ

where h0 is a complex vector andH is a complex Hermitian
matrix with real eigenvalues. Equation (4b) describes how
the Chebyshev c.m. dynamics couples to the body oscil-
lations through h0. Equation (4c), which governs the shape
dynamics, is mathematically equivalent to a Schrödinger
equation with Hamiltonian H [47].
To confirm that Eqs. (4) can indeed describe and

distinguish the undulatory dynamics of C. elegans worms
[17] and other organisms and systems, we implemented an
inference framework (see Supplemental Material [51] ) for
estimating the propulsion vector h0ðtÞ and the shape
Hamiltonian HðtÞ from experimental data for short
straight-motion segments (Figs. 2 and 3), as well as longer
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FIG. 2. Inferred Schrödinger dynamics replicate stereotypical C. elegans locomotion. (a) Representative real propulsion vector h0 and
Hamiltonian H ¼ Sþ iA for a minimal periodic straight-motion model [Eq. (4) with S ¼ 0 and equidistant spectrum ofH] fitted to data
from a single oscillation period (τ ¼ 3.05 s). (b) Kymographs of xðs; tÞ and yðs; tÞ coordinate fields for observed data (left) and model
prediction (middle) show little deviation (right), confirming that Eq. (4) can accurately capture undulatory shape dynamics ofC. elegans.
(c) Real-space dynamics predicted by the Schrödinger model (line) is consistent with the observed worm dynamics (circles); see
Supplemental Material, Video S1 [51]. Experimental data have been periodically extended for visualization to avoid overlapping body
segments. (d) Real-space shape functions [Eq. (5) ] corresponding to the three smallest magnitude eigenvalues, λ�k ¼ �kλ for k ¼ 0, 1,
2, account for > 98% of the shape dynamics, enabling a generalizable low-rank description. More complex turning dynamics can be
described using time-varying Hamiltonians with unconstrained spectra (Fig. 4 and [51] ).
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trajectories that include turning events (Fig. 4). Before
outlining the model inference procedure, recall that any
Hermitian matrix H can be decomposed in the form
H ¼ Sþ iA, where S is real symmetric and A real skew
symmetric. In the present context, S encodes turning
behavior, whereas A governs straight locomotion: For
straight motions, x and ymodes do not couple significantly,
so that h0 is real and S ≈ 0 and, hence, H ≈ iA in this case
[Fig. 4(a) and [51] ].
Generally, both h0 and H can be efficiently determined

from tracked centerlines via a physics-informed dynamic
mode decomposition [53,54] that exploits matrix structure
[46]. Since H is Hermitian, it permits the decomposition
H ¼ UΛU†, where U is unitary and Λ is a real diagonal
matrix. This leaves n2 parameters in U and Λ plus 2n in h0
to be estimated from data. If available data are limited, the
number of parameters can be reduced further by imposing
additional constraints on the spectrum of H (see
Supplemental Material [51] ). To avoid numerical differ-
entiation of noisy data, our inference scheme compares
numerically integrated predictions from Eqs. (4) directly to
the experimental data [51]. Our algorithm sequentially
optimizes U, Λ, and h0 by minimizing deviations from
both real-space body shapes and mode-space trajectories, to
balance shape matching with model generalizability and to
prevent overfitting [51]. Minimization is performed using
gradient-based optimization [55–57] with forward mode
automatic differentiation through the ODE solver [43–45].

This scheme makes it possible to infer the instantaneous
shape Hamiltonians HðtÞ and the propulsion vectors h0ðtÞ
from just a single oscillation period for straight motions
(Figs. 2 and 3), as well as from longer curved trajectories
(Fig. 4). For C. elegans (Fig. 2), as well as for previously
proposed neuromechanical worm models [35], C. occipi-
talis snakes [39], snake robots, and L. forficatus centipedes
(Fig. 3), the best-fit straight-motion models based on
Eqs. (4) with H ¼ iA accurately capture the undulatory
dynamics ( [51], Video S1).
Since the shape dynamics are encoded by the

Hamiltonian H, we can use its eigenstates to compare
and classify undulatory motion across species and systems
[48]. Indeed, for straight motions, it suffices to study the
eigenstates of A. Considering n ¼ 9 as before, A has one
zero eigenvalue λ0 ¼ 0 corresponding to the zero-mode
eigenvector ϕ0, and four distinct pairs of opposite sign
eigenvalues λ�k≥1 with complex conjugate eigenvectors ϕ�

k ,
where ϕþ

k ¼ ðϕ−
k Þ�. We define two real orthogonal mode-

space vectors vk ¼ Reðϕþ
k Þ and wk ¼ Imðϕþ

k Þ that span the
eigenspace of ϕ�

k . The real-space shape functions corre-
sponding to the real mode-space vectors are

vkðsÞ ¼ l½L−1TðsÞ�†vk; wkðsÞ ¼ l½L−1TðsÞ�†wk; ð5Þ

where TðsÞ ¼ ½T1ðsÞ; T2ðsÞ;…; TnðsÞ� is a vector of
Chebyshev functions. Time-varying linear combinations
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of vkðsÞ and wkðsÞ give the instantaneous centerline
reconstruction [51]. We find that the zero state v0ðsÞ is
close to the best-fit straight line through the motion,
accounting for 85% of the time-averaged centerline
reconstruction, while most of the oscillations are accounted
for by the first excited states v1ðsÞ and w1ðsÞ corresponding
to the smallest magnitude nonzero eigenvalues (13.3%).
Since most (> 98%) of the dynamics is captured by the
zero state and first excited states, one can, in fact, further
reduce the complexity of the Schrödinger model, by
approximating A through its projection Â on the eigens-
paces corresponding to the first two distinct eigenvalues.
This additional low-rank approximation also further
reduces the risk of overfitting and hence improves model
generalizability, similar to sparsity promotion in other
dynamical inference methods [58].
The compact low-rank characterization of the undulatory

shape dynamics makes it possible to compare the loco-
motion behaviors of C. elegans, previously proposed
neuromechanical worm models [35], C. occipitalis snakes
[39], robotic toy snakes, and centipedes, by measuring the
Grassmann distance [59] between the dominant eigenspa-
ces of Â. As most of the variation of the oscillatory
dynamics is contained in the first excited states v1 and
w1, we determined the pairwise Grassmann distances
between the eigenspaces spanned by v1 and w1 for the
various systems (see Supplemental Material [51] ). Both the
distance matrix and a corresponding 2D phase diagram
constructed by multidimensional scaling reveal that the
neuromechanical worm model [35] succeeds in reproduc-
ing key dynamical aspects of C. elegans locomotion,
whereas the robotic toy snake used in our experiments is
equally far from real snake or worm locomotion [Fig. 3(d)].
Beyond interspecies comparisons, the above framework

enables us to characterize behavioral transitions by borrow-
ing concepts from quantum mechanics, such as Berry
phases and adiabatic approximations [49]. To illustrate
this, we focus on a longer C. elegans trajectory during
which the worm performs a turn [Fig. 4(a)] after briefly
reversing its motion due to a change in neuromechanical
activity [60]. By reconstructing the time-dependent
Hamiltonian HðtÞ ¼ SðtÞ þ iAðtÞ along the path [51], we
observe a significant increase in kSðtÞk at the turn, whereas
AðtÞ remains approximately constant throughout. When the
worm switches on S to facilitate a turn, the instantaneous
eigenvectors of HðtÞ change [51], signaled by a rapid
change of the Berry phase [blue curve in Fig. 4(b)].
Furthermore, while the locomotion dynamics before the
turn is well described by an adiabatic approximation (see
Supplemental Material [51], Video S2), this approximation
becomes inaccurate during the turn [red curve in Fig. 4(b)].
From a practical perspective, the above results show how

symmetry-constrained mode representations can faci-
litate a low-dimensional description and efficient classi-
fication of biophysical dynamics. The underlying inference
framework is directly applicable to diagnose and quantify

the effects of genetic or chemical perturbations on animal
locomotion within and across species. From a theoretical
perspective, the fact that translational and rotational invari-
ance combined with a quadratic integral constraint generi-
cally lead to a Schrödinger equation [47] in mode space
promises advances in the quantitative understanding of
biological systems, as the comprehensive toolbox of
quantum physics [61,62] now becomes available to char-
acterize and predict behavioral dynamics.
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